
J. Sens. Actuator Netw. 2012, 1, 166-182; doi:10.3390/jsan1030166

Journal of Sensor

and Actuator Networks
ISSN 2224-2708

www.mdpi.com/journal/jsan/

Article

Low Cost Multisensor Kinematic Positioning and Navigation

System with Linux/RTAI

Kun Qian *, Jianguo Wang, Nilesh S. Gopaul and Baoxin Hu

Department of Earth and Space Science and Engineering, York University, Toronto, ON M3J 1P3,

Canada; E-Mails: jgwang@yorku.ca (J.W.); nileshgo@yorku.ca (N.S.G.);

baoxin@yorku.ca (B.H.)

* Author to whom correspondence should be addressed; E-Mail: qiankun@yorku.ca;

Tel.: +1-416-566-1690; Fax: +1-416-650-8135.

Received: 17 July 2012; in revised form: 28 August 2012 / Accepted: 9 September 2012 /

Published: 28 September 2012

Abstract: Despite its popularity, the development of an embedded real-time multisensor

kinematic positioning and navigation system discourages many researchers and developers

due to its complicated hardware environment setup and time consuming device driver

development. To address these issues, this paper proposed a multisensor kinematic

positioning and navigation system built on Linux with Real Time Application Interface

(RTAI), which can be constructed in a fast and economical manner upon popular hardware

platforms. The authors designed, developed, evaluated and validated the application of

Linux/RTAI in the proposed system for the integration of the low cost MEMS IMU and

OEM GPS sensors. The developed system with Linux/RTAI as the core of a direct

geo-referencing system provides not only an excellent hard real-time performance but also

the conveniences for sensor hardware integration and real-time software development. A

software framework is proposed in this paper for a universal kinematic positioning and

navigation system with loosely-coupled integration architecture. In addition, general

strategies of sensor time synchronization in a multisensor system are also discussed. The

success of the loosely-coupled GPS-aided inertial navigation Kalman filter is represented

via post-processed solutions from road tests.

Keywords: embedded; Global Position System (GPS); Inertial Navigation System (INS);

Inertial Measurement Unit (IMU); multisensor integrated navigation; real-time; Linux;

RTAI; LXRT; time synchronization

OPEN ACCESS

J. Sens. Actuator Netw. 2012, 1

167

1. Introduction

Since the late 1990s, the use of the GNSS (Global Navigation Satellite Systems) aided inertial

navigation in mobile mapping industry has revolutionarily changed the way how to geo-reference the

geo-spatial data. This is well known as direct geo-referencing technology in the field of Geomatics.

However, the high expenses of the high-end inertial measurement units (IMU) and the commercial hard

real-time operating system (RTOS) greatly hinder many researchers and engineers from their activities

in the navigation area. This paper presents a fast and economical solution for the development of the core

component of the direct geo-referencing multisensor system: a low cost kinematic positioning and

navigation system focusing on the real-time data acquisition and the post-processing GPS-aided inertial

integrated navigation solution.

In comparison with the high-end IMU unit in the commercial navigation systems, the low cost

Micro-Electro-Mechanical Systems (MEMS)-based IMU is more attractive in practice. The error

modeling and inertial sensor integration algorithms for the MEMS-based IMUs have been discussed for

years [1–8]. Technically, with aiding sensors such as GPS receivers or odometers, the rapid-growing

navigation solution errors in a low cost land vehicle system can be constrained within a level of

meters [9]. In terms of the RTOS, numerous low cost systems employ an open and free soft real-time

Linux system as a compromised economical alternative. Nevertheless, the strict hard real-time

requirement more or less limits its usage in a kinematic positioning and navigation system which needs

to collect and process the sensor data strictly within a specified amount of time. Inspired by the

successful precedents in [10,11], a low cost kinematic positioning and navigation system based on

Linux/RTAI integrating the low cost MEMS-based IMU and OEM GPS sensors was designed and

developed in the Earth Observation Laboratory (EOL) at York University. RTAI, as one of the main

real-time Linux variants, has demonstrated its competitive hard real-time performance vs. other

commercial counterparts in many industrial applications [12]. Another advantage of RTAI with the

LXRT (Linux Real Time) feature is that the development cost and time can greatly be reduced. Refer

to [13] for the definition of the soft and hard real-time systems.

This paper presents a panoramic view of the low cost multisensor kinematic positioning and

navigation system featuring Linux/RTAI along with system hardware platform, real-time operating

system, software framework, time synchronization strategies and post-processing GPS-aided inertial

integrated navigation algorithms for direct geo-referencing purposes. Following the introduction, the

system hardware platform is introduced in Section 2. After the Linux/RTAI software package is

summarized in Section 3, Section 4 describes the generic software architecture of a multisensor

positioning and navigation system involving multiple GPS receivers and one IMU unit. Multiple time

synchronization strategies are discussed in Section 5. Finally, Section 6 presents two road tests with their

setup and our goal solutions: the post-processed kinematic positioning and navigation solutions at an

accuracy level of centimeters based on the loosely-coupled GPS-aided inertial integrated

navigation architecture.

2. Navigation Hardware System

In general, the control unit in a kinematic positioning and navigation system dealing with massive

data traffic and heavy computation load requires multi-tasking capability, accurate timing, powerful

J. Sens. Actuator Netw. 2012, 1

168

CPU, and flexible sensor accessibility. Fortunately, all of above requirements are no longer barriers for

modern personal laptops and desktops capable of hundreds of times faster computing performance than

the control unit in an old navigation system.

The positioning and navigation system developed in the EOL lab at York University consists of a

MEMS IMU and two OEM GPS receivers together with the third GPS receiver as a base station, which

is currently being extended to integrate two digital cameras for research in visual simultaneous

localization and mapping (SLAM) and visual odometry. The prototype of our integrated navigation

system was developed on both a Dell personal laptop and a mini control board system with Intel Atom

CPU. The laptop model is Dell XPS 1,530 with 2.2 GHz Core-2-Duo T7500 processor and an

express-card serial adapter is installed to provide two extra serial ports. A Jetway motherboard

(NF94-270-LF) equipped with 1.6 GHz Intel Atom N270 CPU is the second platform with a power

consumption as low as 15 Watt. This control board has rich peripheral interfaces including four RS232

serial ports, four USB 2.0 ports, one Parallel port, one LAN port, and one1 PCI expansion slot. On both

platforms, Ubuntu Linux (10.04 LTS) with Real Time Application Interface (RTAI 3.8.1) was installed

as their operating system.

Moreover, a navigation system needs to work under a hard real-time operating system environment

since it has to handle multiple tasks within a certain time constraint to avoid time latency. In Section 3

the Linux/RTAI real-time system is investigated for its application on our low cost navigation system.

3. RTAI Linux

3.1. Real Time Linux

Michael [14] first developed the real-time feature into the Linux system with the concept design and

implemented RTLinux in 1996. His work was acquired by Wind River in 2007 and converted into the

commercial Wind River Linux. Another main real-time Linux variant is RTAI independently developed

by DIAPM (Dipartimento di Ingegneria Aerospaziale—Politecnico di Milano) in 2000 [15]. There have

been many successful RTAI applications implemented on computer numerical control machines in the

manufacturing industry. Linux/RTAI is used in our system because it is free and well maintained by the

RTAI team. Refer to website: www.rtai.org for more details about its development.

3.2. Principles and Real Time Performance

Like all other hard real-time operating systems, RTAI runs with a pre-emptive task scheduler that is

different from the non pre-emptive task scheduler in Linux. Three striking characteristics of RTAI also

need to be pointed out. First, the RTAI micro kernel guarantees that higher execution priority is assigned

to the hard real-time RTAI tasks than that to the Linux tasks by intercepting and redistributing all

interrupts and signals. Second, RTAI avoids uncontrolled hard disk I/O time which can become

disastrous for the real-time module while doing virtual memory swapping. Third, RTAI also provides

real-time inter-process communication (IPC) methods such as pipe, message box, etc. Refer to [16] for

more details about the real-time Linux implementation.

In order to evaluate the hard real-time performance, RTAI comes with the test suites (user space

applications) that output several critical real-time kernel indices such as timer latency, task switching

time and so on. For different hardware platforms, these indices might vary. One sample result of the

J. Sens. Actuator Netw. 2012, 1

169

RTAI timer latency test in the Jetway mini control board is shown in Figure 1 below, in which the

column ―ovl max‖ presents the worst latency measurement during the test. Usually, a system with

excellent timing accuracy has the ―ovl max‖ less than 15–20 s. Refer to [12] for more discussions about

the real-time performance among various operating systems.

Figure 1. Real Time Application Interface (RTAI) Timer latency test result.

3.3. Task Management

By default, a RTAI task is registered as a soft real-time task [14]. The behaviors of a soft real-time

RTAI task is exactly the same as a Linux thread except its communication capability with other RTAI

hard/soft real-time threads/modules. In order to achieve the superior execution priority to all other Linux

tasks, all tasks with hard real-time requirements need to be registered as hard real-time RTAI tasks as

opposed to the soft real-time RTAI tasks under the RTAI system.

Figure 2 shows that a RTAI scheduler and a Linux scheduler exist in parallel. By modifying the

interrupt dispatcher, the RTAI scheduler seizes a higher priority than the Linux scheduler does while

handling the peripherals’ interrupts (hard external interrupt, timer, signal, message, etc.) [15]. After the

corresponding RTAI tasks finish their work, the RTAI scheduler hands over the CPU to the Linux

scheduler. So, the existence of hard real-time RTAI tasks is transparent for all other Linux programs.

This architecture not only allows our system to take the advantages of all existing Linux features it also

balances the distribution of CPU power on the Linux programs and the real-time RTAI tasks.

Figure 2. RTAI architecture (Adapted from [15]).

RTAI latency calibration tool ##

period = 100000 (ns)

avrgtime = 1 (s)

do not use the FPU

start the timer

timer_mode is oneshot

RTAI Testsuite - KERNEL latency (all data in nanoseconds)
RTH| lat min| ovl min| lat avg| lat max| ovl max| overruns
RTD| -1148| -1148| -713| 7395| 7395| 0

RTD| -1065| -1148| -703| 4598| 7395| 0

RTD| -930| -1148| -741| 7350| 7395| 0

RTD| -1028| -1148| -722| 10582| 10582| 0

RTD| -1043| -1148| -702| 8557| 10582| 0

RTD| -1088| -1148| -730| 6795| 10582| 0

RTD| -1148| -1148| -754| 8340| 10582| 0

RTD| -1178| -1178| -755| 6600| 10582| 0

RTD| -1088| -1178| -780| 5003| 10582| 0

RTD| -1103| -1178| -778| 6210| 10582| 0

RTD| -1110| -1178| -732| 5895| 10582| 0

RTD| -938| -1178| -757| 2213| 10582| 0

RTD| -930| -1178| -792| 6353| 10582| 0

RTD| -1125| -1178| -764| 7118| 10582| 0

RTD| -1013| -1178| -706| 9817| 10582| 0

RTD| -930| -1178| -775| 2273| 10582| 0

RTD| -1080| -1178| -722| 1620| 10582| 0

RTD| -945| -1178| -729| 1193| 10582| 0

RTD| -1065| -1178| -689| 8490| 10582| 0

RTD| -930| -1178| -705| 12660| 12660| 0

RTD| -1118| -1178| -714| 10012| 12660| 0

J. Sens. Actuator Netw. 2012, 1

170

3.4. LXRT Service/Module

LXRT service is a special software module of RTAI allowing the implementation of a hard real-time

thread/module under the user space environment. A hard real-time RTAI module is usually coded as a

kernel module in order to access the hardware and be executed with hard real-time performance.

However, the system may crash simply due to one careless instruction from the real-time module in the

kernel space. As a main advantage of LXRT, a real-time RTAI module can be realized under the user

space LXRT environment and also use all the application programming interface (API) available in the

user space [17]. In addition, one can employ the luxury of a user space graphic debugger to debug the

hard real-time module without worrying about the system crash. Moreover, it is very convenient to

convert a Linux application into a RTAI/LXRT application because only a few lines of the source codes

are needed. Refer to [17,18] for details about the LXRT and its realization in the Linux/RTAI.

In theory, a LXRT hard real-time module consumes a few more microseconds than a traditional hard

real-time module does. However, because the influences of the time latency at the microsecond level are

insignificant for the land vehicle kinematic positioning and navigation system, a user space LXRT module

can be a full substitute for the RTAI kernel module in terms of its functionality and performance. More

discussions about the effect of the time latency on the final navigation solutions can be seen in Section 5.

4. Navigation System Software Architecture

4.1. Navigation System Framework

To simplify the software structure of the positioning and navigation system dealing with two

processing modes (the real-time mode and the post-processing mode), we propose one unified software

architecture with its two different concrete realizations. The developed integrated navigation system

provides three main software modules: data collector, navigator (processor) and the data buffer. Figure 3

presents the software architecture of the navigation system.

Figure 3. Software architecture of navigation system.

J. Sens. Actuator Netw. 2012, 1

171

In the real-time mode, both the data collector and the navigator deal with the sensor data directly from

the hardware under the hard real-time environment. On the other hand, the data collector in the

post-processing mode reads the sensor measurements from the file and the navigator/processor is

executed without concerning the time constraint. Consequently, the inertial navigator in the

post-processing mode will not consider the time delay in the feedback correction for the IMU systematic

errors due to the lag of the Kalman filter execution. However, this time delay has to be taken into account

as an extra source of the process noises for the inertial navigator in real-time mode. Section 4.2 has more

details about the loose-coupled inertial navigator.

In the unified system structure, both of the GPS receivers and the IMU unit (data collectors)

periodically (e.g., at 1 Hz and 100 Hz) transmit sensor data to the data collectors. At the same time, the

navigator or processor can retrieve and process the raw measurements whenever necessary. The data

collectors and the navigators exchange the sensor data through the data buffers such that a clear system

structure is maintained. Namely, one data collector module is created for each sensor to collect the

sensor measurements and transmit them into a dedicated data buffer which manages the synchronized

data access requested by any other threads. The solved GPS solution or the INS solution is then stored in

a solution buffer for any further usage.

4.2. GPS and Inertial Navigator

In our system, the measurements from the GPS receivers and the IMU unit are blended by using the

loosely-coupled GPS-aided inertial navigation architecture (Figure 4). Depending on the processing

mode, the pseudo range, Doppler and carrier phase observations from the primary GPS receiver in

conjunction with or without those from the base station are used to estimate the position and velocity of

the vehicle. Besides, the observables from the primary and secondary GPS receivers on the vehicle are

used to determine the heading of the vehicle. Because the MEME-based IMU sensors are rigidly

strapped to the platform, the INS mechanization is executed with the strapdown inertial navigation

strategy [19] to generate the navigation solutions using the IMU measurements. Next, the differenced

solutions between the synchronized GPS solutions and the INS mechanization solution are then treated

as aiding measurements in the loosely-coupled GPS-aided inertial navigation Kalman filter. The

discussion of the four major modules in the loosely-coupled system (Figure 4) is given below.

Figure 4. Loosely-coupled Global Position System (GPS)-aided inertial navigation architecture.

Position,

Velocity,

Attitude

Differenced

Position,

Velocity,

Heading

C/A, L1/L2 phase

C/A, L1/L2phase

IMU Unit

GPS

Navigator

Inertial

Mechanization

Algorithm

Acceleration and

Angular Velocity

GPS

Position,

Velocity

Sensor Biases

GPS/Inertial

Blending

AlgorithmGPS

Heading

Processor

GPS

Heading

GPS

Secondary

Unit

GPS

Primary

Unit

C/A, L1 phase

GPS

Base Units

 (Post-Processing)

Loosely-coupled

Solution (Position,

Velocity, Attitude)

J. Sens. Actuator Netw. 2012, 1

172

4.2.1. Inertial Mechanization

The INS mechanization [19] is the essential algorithm to calculate the position, velocity and attitude

of the vehicle relative to the target coordinate system. Through angular rate measurements, the attitude

angles of the vehicle represented by the direction cosines matrix (DCM) are solved. Similarly, the

velocity could be propagated through specific force measurements. Finally, the position is updated based

on the solved attitude and velocity of the vehicle. Refer to [19] for more details about the strapdown INS

mechanization for the MEMS-based IMU.

4.2.2. GPS Navigator

The GPS navigator has different realizations in two processing modes. In the post-processing mode,

the GPS navigator is actually a Kalman filter with the position-velocity-acceleration (PVA) state model

with the jerk vector as the process noise vector. It generates the 1 Hz GPS positioning solution of the

primary GPS with respect to the base GPS station by using their dual frequency (L1/L2) measurements

including the pseudo range, Doppler and carrier phase observations. However, in the real-time mode, the

GPS navigator in our system can only produce the 1 Hz carrier phase smoothed pseudorange single point

positioning solutions for now due to lack of communication devices for the transmission of the base

station information.

4.2.3. GPS Heading Processor

The heading processor in Figure 3, as an independent GPS heading Kalman filter with the

position-velocity (PV) state model for the three baseline components between the primary and the

secondary GPS receivers, is able to estimate the (1 Hz) headings epochwise by using the L1 C/A and

carrier phase measurements from the primary and secondary GPS receivers. With a baseline length of

1.780 m between the primary and secondary GPS receivers, the accuracy of the heading estimate can be

expected to be better than half a degree. In both of the GPS Kalman filters, the LAMBDA method was

implemented to fix the floated ambiguities and subsequently produce the fixed baseline solution [20].

4.2.4. Inertial Navigator

The developed loosely coupled GPS-aided inertial navigation engine (Inertial navigator) runs its

Kalman filter based on the phi-angle inertial navigation error model to estimate the position, velocity

and attitude errors together with the accelerometer and gyro biases in its 15-state vector whilst the

differences between the synchronized 1 Hz GPS and 1 Hz inertial navigation solutions including

positions, velocities and headings are used as the measurements in the loosely-coupled integrated

navigation Kalman filter. In turn, estimates of the IMU errors are used to correct the raw IMU

measurements to form a closed-loop system. Therefore, synchronizing the sensor is of paramount

importance to ensure the correct estimation of the error states in the Kalman filter.

4.3. Data Collector and Associated Data Buffers

The prototype of our integrated navigation system integrated only one IMU unit (Crossbow MEMS

NAV440 or IMU800CA) and two NovAtel GPS receivers. The real-time data collector module was

J. Sens. Actuator Netw. 2012, 1

173

designed to run in the asynchronous mode in order to efficiently respond to the incoming data while the

data collector in post-processing mode runs in the periodical poll (request-reply) mode without concerning

the time. Each sensor data collector manages its own measurements through one internal data buffer. The

communication between modules is conducted through reading and writing the data buffers.

To avoid any data corruption and ensure I/O on the same data block in the multiple threads

environment, the data buffer is implemented with a mutual exclusive data access (MUTEX) protection

mechanism based on the producer-consumer design pattern. It is noted that the size of the buffer (number

of blocks) is fixed and large enough to handle the peak data traffic so that the problematic run-time

memory allocation and memory release operations are prevented. Thus, the system can gain a higher

data I/O speed without concern for notorious memory leak.

5. Time Synchronization in Multisensor Data Acquisition

5.1. General

Time synchronization is to tag the acquired data of multiple sensors with a time stamp in the same

time frame, which is essential for kinematic positioning and navigation. In nature, we may use the local

computer time frame as the default time frame for all sensors. However, the clock oscillator in the

computer suffers from potential drift so that its long term instability cannot satisfy the requirement of a

high-accuracy timing system. Furthermore, the navigation module has to present the final navigation

solution in an absolute/universal time frame. Consequently, we need to find a stable external clock

source with high resolution and long term stability. By periodically synchronizing the local computer

time with the high accuracy external clock, the magnitude of the clock drift and instability in local

computer can be minimized and becomes ignorable.

Nowadays the GPS time is a popular time frame for multisensor integrated navigation systems

because the high-accuracy 1 Hz PPS hard signal can be easily retrieved from a GPS unit, for example,

50 ns accuracy from the NovAtel GPS OEM unit. Physically, the 1 Hz PPS signal (Figure 5) as the

timing signal is nothing but a square wave (pulse) with 1 ms width [18]. The absolute GPS time

corresponding to the left dropping edge is conveyed in the special PPS message dispatched from the GPS

receiver. Subsequently, the GPS time for data acquired from other sensors can be computed as follows:

where Tsensor is the sensor data time stamp in the GPS time frame, tlocal is the local computer time stamp

in the sensor data packet, tPPS is the local computer time stamp for 1 Hz PPS pulse, and TPPS is the time

stamp in the GPS time frame corresponding to the 1 Hz PPS.

Figure 5. PPS signal and message diagram (Adapted from [21]).

PPSPPSlocalsensor TttT  (1)

J. Sens. Actuator Netw. 2012, 1

174

In general, two tasks need to be completed for the time synchronization: GPS time import into our

system whenever the GPS time is available and time tagging the sensor data using GPS time.

5.2. GPS Time Import

In our navigation system, a global variable named ―PPS_struct‖ is normally updated at 1 Hz, for

instance, in order to maintain the relationship between the true GPS time and the synchronous local

computer time. Through interpreting the 1 Hz PPS signal using both the local computer time and the

GPS time, the GPS time import is accomplished and the clock drift is restrained. Two different methods

for two different hardware platforms are given below in this section respectively.

5.2.1. Mini Control Board

On the Jetway mini control board platform, the PPS signal is hardwired into the pin #10 of the parallel

port to trigger the interrupt IRQ7, whose handler retrieves the current local computer time using the

Linux system API function ―clock_gettime‖ and assigns it into the variable ―PPS_struct‖. This time

stamp with a lag of a few tens of microseconds due to the interrupt response delay (10~30 s) is the most

accurate representation of the PPS signal in the local computer frame. The GPS time of the PPS signal is

then captured through the RS232 serial port later (e.g., about 20 ms with NovAtel OEM GPS receivers).

Herein lies the connection between the GPS time and the computer time.

5.2.2. Dell Laptop XPS1530

As the Dell laptop XPS1530 does not have accessibility to the external hardware interrupt, the 1 Hz

PPS hard signal is directly hardwired into the CTS pin of a dedicated RS232 serial port in the

express-card serial port adapter. Instead of passively waiting for the PPS interrupt signal, the PPS hard

signal is actively detected by periodically reading the electronic signal level on the CTS pin triggered by

a 50 s RTAI timer. Because the jitter of the RTAI timer (the duration change of a timer period) is

approximately 30 s~50 s, the GPS time import using the serial port can achieve an accuracy of 100 s,

which is practically good enough for our low cost kinematic positioning and navigation system

according to the analysis in Section III of [22]. For a land vehicle, the effect of the maximum jerk of

4 m/s
3 on the predicted state vector in the Kalman filter is too small to bias the final navigation solution

because the product of the timing error and the jerk of a moving vehicle is ten times smaller than the

absolute magnitude of the system innovation in the loosely-coupled GPS-aided integrated Kalman filter.

As a result, the error in the final navigation solution could become numerically ignorable. For the same

reason, that timing error can also be ignored in the INS mechanization module.

5.3. Sensor Data Time Stamp

In the second stage of time synchronization, a time stamp for the sensor measurement needs to be

tagged at the exact time instant when the sensor measurements are taken. This job has been done in the

GPS receivers for all GPS measurements while it has to be taken by the control unit for all IMU data

acquired either from a RS232 serial port or the analog signal pins. Without loss of generality, only the

time synchronization solution for the Crossbow MEMS IMU units is discussed here. Two types of

J. Sens. Actuator Netw. 2012, 1

175

measurements are supported with the Crossbow MEMS IMU sensors: continuous analog signal and

digital data packet. In both situations, the time delay due to data acquisition and transmission has to be

taken into account.

According to the Crossbow DMU (Dynamic Measurement Unit) manuals [23,24], the digital data

packet mode will sequentially experience three stages: sampling (T1), processing (T2) and transferring

(T3). Whereas the sensor data are presented immediately on the analog output pins after the processing

step (T2) is over when a Crossbow DMU is working in the continuous analog signal mode. The analog

output has a time delay of 2.3 ms with the 400 Hz output rate while the scaled digital packet has a time

delay of 6.4 ms with the working frequency 156 Hz (Table 1).

Table 1. IMU300 Series, IMU400 Series and VG300CB Timing (Data from [24]).

Operating Mode Sampling Processing Transferring Total delay Max Rate

Voltage 0.8 ms 0.5 ms 4.7 ms 6.0 ms 166 Hz

Scaled 0.8 ms 0.9 ms 4.7 ms 6.4 ms 156 Hz

VG(VGX only) 0.8 ms 1.5 ms 5.2 ms 7.5 ms 133 Hz

Analog Output 0.8 ms 1.5 ms - 2.3 ms 400 Hz

In our low cost system, the initial local computer time stamps are assigned to the packets when the

digital IMU data are acquired from the serial port. In theory, three strategies can be used for further

calibration of these initial time stamps: hardware alignment [25], software processing [26,27] and online

correction with known constants. In our system, the known timing error constant (Table 1) is directly

applied to the initial time stamp of the raw IMU measurements according to the same analysis of the

timing error presented in the Section 5.2.2.

6. Road Tests and Results

6.1. System Setup

With the development of the low-cost GPS-aided inertial navigation system at York’s EOL

laboratory, a number of road tests have been performed. The results from two latest road tests with

Crossbow IMU400CA and IMU800CA respectively are presented in this section. One Leica GPS1200

receiver located at the start location was configured as the static base station. Another two NovAtel

OEM GPS receivers, an OEM4 in the front as primary and an OEM3 in behind as secondary, were

rigidly bound to one metal bar on the vehicle roof (Figure 6) while the IMU unit was placed on the top of

the console box between the driver seat and the passenger seat. The lever arm parameters were manually

measured at an accuracy of 0.5 cm.

The trajectory was designed to avoid bridges and narrow road sections to minimize the possible GPS

signal blockages. The maximum baseline length was 5 km in both tests. No reverse vehicle motion

occurred during the two road tests. In each road test, the vehicle first stayed stationary for 5 minutes

close to the base station where more than seven GPS satellites could usually be tracked by both rover

GPS receivers on the roof of the vehicle. After subsequent 30~40 minutes of driving along the selected

trajectory, the vehicle returned back to the start point and remained static for 5 minutes again. The raw

GPS observables including pseudo range, Doppler and carrier phase measurements were collected at

J. Sens. Actuator Netw. 2012, 1

176

1 Hz for all GPS receivers whilst the IMU units were outputting the angular rates and the specific forces

at 100 Hz. The maximum speed of the vehicle was up to 80 km/h. The specifications of two Crossbow

IMU sensors used in the road tests are shown in Table 2. In the following sections, the post-processed

navigation solutions are presented because our goal is to achieve post-processed kinematic positioning

and navigation solutions at an accuracy level of centimeters for the direct geo-referencing in

mobile mapping.

Figure 6. Vehicle snapshot.

Table 2. IMU Specification Data.

 440CA 800CA

Angular Rate Bias Stability

[deg/hour]

<10.0 <3.0

 Angle Random Walk

[deg/sqrt(hour)]

< 4.5 <0.1

Acceleration Bias Stability[mg] <1.0 <1.0

 Velocity Random

Walk

[m/s/sqrt(hour)]

<1.0 <0.5

6.2. Solutions with IMU440CA

The 2D top view of the vehicle trajectory and the velocity profile are given in Figure 7. The attitude

(roll, pitch and heading) profiles are presented in Figure 8.

Figure 7. IMU position and velocity profiles.

J. Sens. Actuator Netw. 2012, 1

177

Figure 8. Attitude profiles.

As shown in Figure 9(a), the loosely coupled GPS-aided inertial integration reduces the inertial

position error down to 2~3 cm. The two biggest spikes in Figure 9(a,b) are due to the sub-meter accuracy

of the C/A differential GPS solution during the GPS carrier phase data gap. With the aid of DGPS

heading solution, the heading solution in the integration reaches an accuracy of 0.5 degree for most of

the time (Figure 9(c)).

Figure 9. The estimated error states with IMU440CA (3-sigma envelope accuracy in blue).

(a) Position Errors. (b) Velocity Errors. (c) Attitude Errors.

(a) (b)

(c)

J. Sens. Actuator Netw. 2012, 1

178

Furthermore, the IMU bias estimates are presented in Figure 10(a,b). The IMU sensor bias on

accelerometer and gyroscope measurements is modeled as the first order Gauss-Markov process. The

correlation time constants and standard deviations of the driving noises are determined by tuning the

results from lab calibration.

Figure 10. The estimated IMU biases with IMU440CA (3-sigma envelope accuracy in

blue). (a) Accelerometer Biases. (b) Gyroscope Biases.

(a) (b)

6.3. Solutions with IMU800CA

For the second road test, the trajectory and all system configurations remained as in the previous road

test except for the replacement of the IMU440CA sensor by an IMU800CA sensor. In order to avoid

duplication of similar plots as from the previous test, only fifteen error states are presented in

Figures 11 and 12, from which the smaller amplitudes of the error states can be observed because of the

superiority of IMU800CA over IMU440CA.

Figure 11. The estimated error states with IMU800CA (3-sigma envelope accuracy in

blue). (a) Position Errors. (b) Velocity Errors. (c) Attitude Errors.

(a) (b)

J. Sens. Actuator Netw. 2012, 1

179

Figure 11. Cont.

(c)

Figure 12. The IMU biases with IMU800CA (3-sigma envelope accuracy in blue).

(a) Accelerometer Biases. (b) Gyroscope Biases.

(a) (b)

6.4. Solution Summary

The accuracies of the position, velocity and attitude solutions are quantitatively summarized in

Table 3 through their mean, standard deviation (STD) and root-mean-square (RMS) based on their error

estimates. As a result, the accuracies of the solutions can be observed from the ―STD‖ column in Table 3.

Table 3. Statistics for error states in loosely-coupled GPS/IMU Kalman filter.

 IMU440 IMU800

 mean STD RMS mean STD RMS

Pos.North (m) −0.004 0.070 0.070 −0.003 0.014 0.014

Pos. East (m) −0.002 0.063 0.063 −0.002 0.015 0.015

Pos. Down (m) −0.001 0.046 0.046 −0.001 0.022 0.022

Vel. North (m/s) −0.001 0.021 0.021 −0.001 0.004 0.004

Vel.East (m/s) −0.002 0.020 0.020 0.000 0.004 0.004

Vel.Down (m/s) 0.000 0.018 0.018 0.000 0.003 0.003

Mis. x (arcmin) 0.174 2.500 2.505 0.013 0.353 0.353

Mis.y (arcmin) 0.054 1.991 1.991 −0.016 0.255 0.255

Mis.z (arcmin) −0.073 2.240 2.241 0.023 0.712 0.712

J. Sens. Actuator Netw. 2012, 1

180

7. Conclusions

Aiming at building a low cost real-time kinematic positioning and navigation system with

Linux/RTAI for the purpose of direct geo-referencing of mobile mapping sensors, a GPS-aided inertial

navigation system using loosely coupled architecture was successfully developed at the York’s EOL. In

addition, the LXRT service was validated in order to simplify the development of the Linux/RTAI

system. For the time synchronization of the data from multiple sensors, GPS time was imported into the

system with the aid of the PPS pulse and the PPS message from the NovAtel GPS unit because of its high

accuracy and convenient accessibility. The results from the road tests further confirmed the success of

our multisensor kinematic positioning and navigation system with Linux/RTAI. As the road tests

demonstrated, the developed system could provide 3D position solutions with 5 cm accuracy and

attitude solutions with 0.5 degree accuracy. In conclusion, Linux/RTAI is a suitable and economic

alternative as a hard real-time operating system for multisensor integrated navigation systems in terms of

hard real-time performance, degree of development difficulty, hardware compatibilities and system

expenses.

Acknowledgments

The authors would like to acknowledge the financial support through research grants provided by the

Natural Sciences and Engineering Research Council (NSERC) of Canada.

References

1. De Agostino, M.; Porporato, C. Development of an Italian low cost GNSS/INS system universally

suitable for mobile mapping. In Proceedings of Position, Location and Navigation Symposium,

2008 IEEE/ION, Monterey, CA, USA, 5–8 May 2008; Volume 5, pp. 53–59.

2. Brown, A.K. GPS/INS (MEMS) uses low-cost MEMS IMU. IEEE Aerosp. Electron. Syst. Mag.

2005, 20, 3–10.

3. Shin, E.H. Accuracy Improvement of Low-Cost INS/GPS for Land Application. M.Sc. Thesis,

Geomatics Engineering Department, University of Calgary, Calgary, AB, Canada, December

2001.

4. Hide, C.; Moore, T.; Smith, M. Adaptive Kalman filtering algorithms for integrating GPS and

low-cost INS. In Proceedings of 2004 IEEE/ION, Position, Location and Navigation Symposium,

Monterey, CA, USA, 26–29 April 2004; Volume 4, pp. 227–233.

5. Hasan, A.M.; Samsudin, K.; Ramli, A; Azmir, R; Ismaeel, S. A review of navigation system

(integration and algorithm). Aust. J. Basic Appl. Sci. 2009, 3, 943–959.

6. Flenniken, W.S. IV., Modeling Inertial Measurement Units and Analyzing the Effect of their

Errors in Navigation Applications. M.Sc. Thesis, Auburn University, AL, USA, 16 December

2005.

7. Demoz, G.-E. Design and Performance Analysis of a Low-Cost Aided Dead Reckoning Navigator.

Ph.D. Dissertation, Stanford University, Stanford, CA, USA, February 2004.

8. Park, M.; Gao, Y. Error Analysis of Low-Cost MEMS based accelerometers for land vehicle

navigation. Presented at ION GPS-2002, Portland, UT, USA, 24–27 September 2002.

J. Sens. Actuator Netw. 2012, 1

181

9. El-Sheimy, N. Emerging MEMS IMU and Its Impact on Mapping Applications. Available online:

http://www.ifp.uni-stuttgart.de/publications/phowo09/220El-Sheimy.pdf (accessed on 18 September

2012).

10. Marchand, A.; Plot, C.; Silly, M. Real-time mobile robot navigation with LINUX/RTAI. In

Proceedings of The 2002 International Conference on Control and Automation, XiaMen, Fujian,

China, 16–19 June 2002; Volume 6, p. 195.

11. Chen, Y.; Sun, K.; Wang, T.; Wei, H. Development and implementation of a real time embedded

control system for machine tools. In Proceedings of the 2nd IEEE/ASME International

Conference, Beijing, China, September 2006; Volume 8, pp. 1–5.

12. Barbalace, A.; Luchetta, A.; Manduchi, G.; Moro, M.; Soppelsa, A.; Taliercio, C. Performance

comparison of VxWorks, Linux, RTAI, and Xenomai in a hard real-time application. IEEE Trans.

Nucl. Sci. 2008, 55, 435–439.

13. Jones, M.T. Anatomy of Real-Time Linux Architectures from Soft to Hard Real-Time, 2008 ed.;

IBM, 15 April 2008. Available online: http://download.boulder.ibm.com/ibmdl/pub/software/dw/

linux/l-real-time-linux/l-real-time-linux-pdf.pdf (accessed on 25 May 2012).

14. Barabanov, M. A Linux Based Real-Time Operating System. M.Sc. Thesis, New Mexico Institute

of Mining and Technology, Socorro, NM, USA, 1 June 1997.

15. Patrick Mourot (Alcatel, France). RTAI Internals Presentation. Available online:

http://www.aero.polimi.it/~rtai/documentation/articles/patric_mourot_rtai_internal_presentation.html

(accessed on 10 October 2011).

16. Aeolean Inc. Introduction to Linux for Real-Time Control. Available online:

http://www.aeolean.com/html/RealTimeLinux/RealTimeLinuxReport-2.0.0.pdf (accessed on 15

January 2012).

17. RTAI API Documentation. Available online: https://www.rtai.org/documentation/magma/html/api/

(accessed on 1 September 2011).

18. Soetens, P. How to port your C++ GNU/Linux application to RTAI/LXRT. Available online:

http://www.isr.uc.pt/~rui/str/rtai_porting.pdf (accessed on 27 February 2012).

19. Woodman, O.J. An Introduction to Inertial Navigation; Technical Report UCAM-CL-TR-696;

University of Cambridge: Cambridge, UK, August 2007.

20. Reis, J.; Sanguino, J.; Rodrigues, A. Impact of satellite coverage in single-frequency precise

heading determination. In Proceedings of IEEE/ION PLANS 2010, Indian Wells, CA, USA, 4–6

May 2010; Volume 5, pp. 592–597.

21. NovAtel Inc. OEM4 Family User Manual, Volume 2, Command and Log Reference. Available

online: http://www.novatel.com/assets/Documents/Manuals/om-20000047.pdf (accessed on 15

January 2012).

22. Ding, W.; Wang, J.; Li, Y.; Mumford, P.; Rizos, C. Time synchronization error and calibration in

integrated GPS/IMU (MEMS) systems. ETRI J. 2008, 30, 59–67.

23. Crossbow Technology, Inc. 440 Series User’s Manual; Document 7430-0131-01. Available online:

http://www.moog-crossbow.com/_Assets/Literature/User_Manuals/440_Series_Inertial_Manual.pdf

(accessed on 11 October 2011).

24. Crossbow Technology, Inc. DMU User’s Manual; Document 7430-0003-01, Rev A; Crossbow

Technology, Inc.: San Jose, CA, USA, March 2002.

J. Sens. Actuator Netw. 2012, 1

182

25. Li, B. A cost effective synchronization system for multisensor integration. In Proceedings of the

17th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION

GNSS 2004), Long Beach, CA, USA, September 2004; Volume 9, pp. 1627–1635.

26. Lee, H.; Lee, J.; Jee, G. Calibration of time synchronization error in GPS/SDINS hybrid

navigation. In Proceedings of the 15th IFAC Symposium on Automatic Control in Aerospace,

Bologna/Forli, Italy, 2–7 September 2001; Volume 9, pp. 223–228.

27. Skog, I.; Handel, P. Time synchronization errors in loosely coupled GPS-aided inertial navigation

system. IEEE Trans. Intel. Transp. Syst. 2011, 12, 1014–1023.

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

