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Abstract: Despite its popularity, the development of an embedded real-time multisensor 

kinematic positioning and navigation system discourages many researchers and developers 

due to its complicated hardware environment setup and time consuming device driver 

development. To address these issues, this paper proposed a multisensor kinematic 

positioning and navigation system built on Linux with Real Time Application Interface 

(RTAI), which can be constructed in a fast and economical manner upon popular hardware 

platforms. The authors designed, developed, evaluated and validated the application of 

Linux/RTAI in the proposed system for the integration of the low cost MEMS IMU and 

OEM GPS sensors. The developed system with Linux/RTAI as the core of a direct 

geo-referencing system provides not only an excellent hard real-time performance but also 

the conveniences for sensor hardware integration and real-time software development. A 

software framework is proposed in this paper for a universal kinematic positioning and 

navigation system with loosely-coupled integration architecture. In addition, general 

strategies of sensor time synchronization in a multisensor system are also discussed. The 

success of the loosely-coupled GPS-aided inertial navigation Kalman filter is represented 

via post-processed solutions from road tests. 

Keywords: embedded; Global Position System (GPS); Inertial Navigation System (INS); 

Inertial Measurement Unit (IMU); multisensor integrated navigation; real-time; Linux; 
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1. Introduction 

Since the late 1990s, the use of the GNSS (Global Navigation Satellite Systems) aided inertial 

navigation in mobile mapping industry has revolutionarily changed the way how to geo-reference the 

geo-spatial data. This is well known as direct geo-referencing technology in the field of Geomatics. 

However, the high expenses of the high-end inertial measurement units (IMU) and the commercial hard 

real-time operating system (RTOS) greatly hinder many researchers and engineers from their activities 

in the navigation area. This paper presents a fast and economical solution for the development of the core 

component of the direct geo-referencing multisensor system: a low cost kinematic positioning and 

navigation system focusing on the real-time data acquisition and the post-processing GPS-aided inertial 

integrated navigation solution. 

In comparison with the high-end IMU unit in the commercial navigation systems, the low cost 

Micro-Electro-Mechanical Systems (MEMS)-based IMU is more attractive in practice. The error 

modeling and inertial sensor integration algorithms for the MEMS-based IMUs have been discussed for 

years [1–8]. Technically, with aiding sensors such as GPS receivers or odometers, the rapid-growing 

navigation solution errors in a low cost land vehicle system can be constrained within a level of  

meters [9]. In terms of the RTOS, numerous low cost systems employ an open and free soft real-time 

Linux system as a compromised economical alternative. Nevertheless, the strict hard real-time 

requirement more or less limits its usage in a kinematic positioning and navigation system which needs 

to collect and process the sensor data strictly within a specified amount of time. Inspired by the 

successful precedents in [10,11], a low cost kinematic positioning and navigation system based on 

Linux/RTAI integrating the low cost MEMS-based IMU and OEM GPS sensors was designed and 

developed in the Earth Observation Laboratory (EOL) at York University. RTAI, as one of the main 

real-time Linux variants, has demonstrated its competitive hard real-time performance vs. other 

commercial counterparts in many industrial applications [12]. Another advantage of RTAI with the 

LXRT (Linux Real Time) feature is that the development cost and time can greatly be reduced. Refer  

to [13] for the definition of the soft and hard real-time systems. 

This paper presents a panoramic view of the low cost multisensor kinematic positioning and 

navigation system featuring Linux/RTAI along with system hardware platform, real-time operating 

system, software framework, time synchronization strategies and post-processing GPS-aided inertial 

integrated navigation algorithms for direct geo-referencing purposes. Following the introduction, the 

system hardware platform is introduced in Section 2. After the Linux/RTAI software package is 

summarized in Section 3, Section 4 describes the generic software architecture of a multisensor 

positioning and navigation system involving multiple GPS receivers and one IMU unit. Multiple time 

synchronization strategies are discussed in Section 5. Finally, Section 6 presents two road tests with their 

setup and our goal solutions: the post-processed kinematic positioning and navigation solutions at an 

accuracy level of centimeters based on the loosely-coupled GPS-aided inertial integrated 

navigation architecture. 

2. Navigation Hardware System  

In general, the control unit in a kinematic positioning and navigation system dealing with massive 

data traffic and heavy computation load requires multi-tasking capability, accurate timing, powerful 
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CPU, and flexible sensor accessibility. Fortunately, all of above requirements are no longer barriers for 

modern personal laptops and desktops capable of hundreds of times faster computing performance than 

the control unit in an old navigation system.  

The positioning and navigation system developed in the EOL lab at York University consists of a 

MEMS IMU and two OEM GPS receivers together with the third GPS receiver as a base station, which 

is currently being extended to integrate two digital cameras for research in visual simultaneous 

localization and mapping (SLAM) and visual odometry. The prototype of our integrated navigation 

system was developed on both a Dell personal laptop and a mini control board system with Intel Atom 

CPU. The laptop model is Dell XPS 1,530 with 2.2 GHz Core-2-Duo T7500 processor and an 

express-card serial adapter is installed to provide two extra serial ports. A Jetway motherboard 

(NF94-270-LF) equipped with 1.6 GHz Intel Atom N270 CPU is the second platform with a power 

consumption as low as 15 Watt. This control board has rich peripheral interfaces including four RS232 

serial ports, four USB 2.0 ports, one Parallel port, one LAN port, and one1 PCI expansion slot. On both 

platforms, Ubuntu Linux (10.04 LTS) with Real Time Application Interface (RTAI 3.8.1) was installed 

as their operating system. 

Moreover, a navigation system needs to work under a hard real-time operating system environment 

since it has to handle multiple tasks within a certain time constraint to avoid time latency. In Section 3 

the Linux/RTAI real-time system is investigated for its application on our low cost navigation system. 

3. RTAI Linux 

3.1. Real Time Linux  

Michael [14] first developed the real-time feature into the Linux system with the concept design and 

implemented RTLinux in 1996. His work was acquired by Wind River in 2007 and converted into the 

commercial Wind River Linux. Another main real-time Linux variant is RTAI independently developed 

by DIAPM (Dipartimento di Ingegneria Aerospaziale—Politecnico di Milano) in 2000 [15]. There have 

been many successful RTAI applications implemented on computer numerical control machines in the 

manufacturing industry. Linux/RTAI is used in our system because it is free and well maintained by the 

RTAI team. Refer to website: www.rtai.org for more details about its development. 

3.2. Principles and Real Time Performance 

Like all other hard real-time operating systems, RTAI runs with a pre-emptive task scheduler that is 

different from the non pre-emptive task scheduler in Linux. Three striking characteristics of RTAI also 

need to be pointed out. First, the RTAI micro kernel guarantees that higher execution priority is assigned 

to the hard real-time RTAI tasks than that to the Linux tasks by intercepting and redistributing all 

interrupts and signals. Second, RTAI avoids uncontrolled hard disk I/O time which can become 

disastrous for the real-time module while doing virtual memory swapping. Third, RTAI also provides 

real-time inter-process communication (IPC) methods such as pipe, message box, etc. Refer to [16] for 

more details about the real-time Linux implementation.  

In order to evaluate the hard real-time performance, RTAI comes with the test suites (user space 

applications) that output several critical real-time kernel indices such as timer latency, task switching 

time and so on. For different hardware platforms, these indices might vary. One sample result of the 
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RTAI timer latency test in the Jetway mini control board is shown in Figure 1 below, in which the 

column ―ovl max‖ presents the worst latency measurement during the test. Usually, a system with 

excellent timing accuracy has the ―ovl max‖ less than 15–20 s. Refer to [12] for more discussions about 

the real-time performance among various operating systems. 

Figure 1. Real Time Application Interface (RTAI) Timer latency test result. 

 

3.3. Task Management 

By default, a RTAI task is registered as a soft real-time task [14]. The behaviors of a soft real-time 

RTAI task is exactly the same as a Linux thread except its communication capability with other RTAI 

hard/soft real-time threads/modules. In order to achieve the superior execution priority to all other Linux 

tasks, all tasks with hard real-time requirements need to be registered as hard real-time RTAI tasks as 

opposed to the soft real-time RTAI tasks under the RTAI system.  

Figure 2 shows that a RTAI scheduler and a Linux scheduler exist in parallel. By modifying the 

interrupt dispatcher, the RTAI scheduler seizes a higher priority than the Linux scheduler does while 

handling the peripherals’ interrupts (hard external interrupt, timer, signal, message, etc.) [15]. After the 

corresponding RTAI tasks finish their work, the RTAI scheduler hands over the CPU to the Linux 

scheduler. So, the existence of hard real-time RTAI tasks is transparent for all other Linux programs. 

This architecture not only allows our system to take the advantages of all existing Linux features it also 

balances the distribution of CPU power on the Linux programs and the real-time RTAI tasks. 

Figure 2. RTAI architecture (Adapted from [15]).  

 

 

## RTAI latency calibration tool ## 

# period = 100000 (ns)  

# avrgtime = 1 (s) 

# do not use the FPU 

# start the timer 

# timer_mode is oneshot 

 

RTAI Testsuite - KERNEL latency (all data in nanoseconds) 
RTH|    lat min|    ovl min|    lat avg|     lat max|    ovl max|   overruns 
RTD|      -1148|      -1148|       -713|       7395|       7395|          0 

RTD|      -1065|      -1148|       -703|       4598|       7395|          0 

RTD|       -930|      -1148|       -741|       7350|       7395|          0 

RTD|      -1028|      -1148|       -722|      10582|      10582|          0 

RTD|      -1043|      -1148|       -702|       8557|      10582|          0 

RTD|      -1088|      -1148|       -730|       6795|      10582|          0 

RTD|      -1148|      -1148|       -754|       8340|      10582|          0 

RTD|      -1178|      -1178|       -755|       6600|      10582|          0 

RTD|      -1088|      -1178|       -780|       5003|      10582|          0 

 

RTD|      -1103|      -1178|       -778|       6210|      10582|          0 

RTD|      -1110|      -1178|       -732|       5895|      10582|          0 

RTD|       -938|      -1178|       -757|       2213|      10582|          0 

RTD|       -930|      -1178|       -792|       6353|      10582|          0 

RTD|      -1125|      -1178|       -764|       7118|      10582|          0 

RTD|      -1013|      -1178|       -706|       9817|      10582|          0 

RTD|       -930|      -1178|       -775|       2273|      10582|          0 

RTD|      -1080|      -1178|       -722|       1620|      10582|          0 

RTD|       -945|      -1178|       -729|       1193|      10582|          0 

RTD|      -1065|      -1178|       -689|       8490|      10582|          0 

RTD|       -930|      -1178|       -705|      12660|      12660|          0 

RTD|      -1118|      -1178|       -714|      10012|      12660|          0 
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3.4. LXRT Service/Module  

LXRT service is a special software module of RTAI allowing the implementation of a hard real-time 

thread/module under the user space environment. A hard real-time RTAI module is usually coded as a 

kernel module in order to access the hardware and be executed with hard real-time performance. 

However, the system may crash simply due to one careless instruction from the real-time module in the 

kernel space. As a main advantage of LXRT, a real-time RTAI module can be realized under the user 

space LXRT environment and also use all the application programming interface (API) available in the 

user space [17]. In addition, one can employ the luxury of a user space graphic debugger to debug the 

hard real-time module without worrying about the system crash. Moreover, it is very convenient to 

convert a Linux application into a RTAI/LXRT application because only a few lines of the source codes 

are needed. Refer to [17,18] for details about the LXRT and its realization in the Linux/RTAI.  

In theory, a LXRT hard real-time module consumes a few more microseconds than a traditional hard 

real-time module does. However, because the influences of the time latency at the microsecond level are 

insignificant for the land vehicle kinematic positioning and navigation system, a user space LXRT module 

can be a full substitute for the RTAI kernel module in terms of its functionality and performance. More 

discussions about the effect of the time latency on the final navigation solutions can be seen in Section 5. 

4. Navigation System Software Architecture 

4.1. Navigation System Framework  

To simplify the software structure of the positioning and navigation system dealing with two 

processing modes (the real-time mode and the post-processing mode), we propose one unified software 

architecture with its two different concrete realizations. The developed integrated navigation system 

provides three main software modules: data collector, navigator (processor) and the data buffer. Figure 3 

presents the software architecture of the navigation system. 

Figure 3. Software architecture of navigation system. 
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In the real-time mode, both the data collector and the navigator deal with the sensor data directly from 

the hardware under the hard real-time environment. On the other hand, the data collector in the 

post-processing mode reads the sensor measurements from the file and the navigator/processor is 

executed without concerning the time constraint. Consequently, the inertial navigator in the 

post-processing mode will not consider the time delay in the feedback correction for the IMU systematic 

errors due to the lag of the Kalman filter execution. However, this time delay has to be taken into account 

as an extra source of the process noises for the inertial navigator in real-time mode. Section 4.2 has more 

details about the loose-coupled inertial navigator. 

In the unified system structure, both of the GPS receivers and the IMU unit (data collectors) 

periodically (e.g., at 1 Hz and 100 Hz) transmit sensor data to the data collectors. At the same time, the 

navigator or processor can retrieve and process the raw measurements whenever necessary. The data 

collectors and the navigators exchange the sensor data through the data buffers such that a clear system 

structure is maintained. Namely, one data collector module is created for each sensor to collect the 

sensor measurements and transmit them into a dedicated data buffer which manages the synchronized 

data access requested by any other threads. The solved GPS solution or the INS solution is then stored in 

a solution buffer for any further usage.  

4.2. GPS and Inertial Navigator 

In our system, the measurements from the GPS receivers and the IMU unit are blended by using the 

loosely-coupled GPS-aided inertial navigation architecture (Figure 4). Depending on the processing 

mode, the pseudo range, Doppler and carrier phase observations from the primary GPS receiver in 

conjunction with or without those from the base station are used to estimate the position and velocity of 

the vehicle. Besides, the observables from the primary and secondary GPS receivers on the vehicle are 

used to determine the heading of the vehicle. Because the MEME-based IMU sensors are rigidly 

strapped to the platform, the INS mechanization is executed with the strapdown inertial navigation 

strategy [19] to generate the navigation solutions using the IMU measurements. Next, the differenced 

solutions between the synchronized GPS solutions and the INS mechanization solution are then treated 

as aiding measurements in the loosely-coupled GPS-aided inertial navigation Kalman filter. The 

discussion of the four major modules in the loosely-coupled system (Figure 4) is given below. 

Figure 4. Loosely-coupled Global Position System (GPS)-aided inertial navigation architecture. 
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4.2.1. Inertial Mechanization 

The INS mechanization [19] is the essential algorithm to calculate the position, velocity and attitude 

of the vehicle relative to the target coordinate system. Through angular rate measurements, the attitude 

angles of the vehicle represented by the direction cosines matrix (DCM) are solved. Similarly, the 

velocity could be propagated through specific force measurements. Finally, the position is updated based 

on the solved attitude and velocity of the vehicle. Refer to [19] for more details about the strapdown INS 

mechanization for the MEMS-based IMU. 

4.2.2. GPS Navigator 

The GPS navigator has different realizations in two processing modes. In the post-processing mode, 

the GPS navigator is actually a Kalman filter with the position-velocity-acceleration (PVA) state model 

with the jerk vector as the process noise vector. It generates the 1 Hz GPS positioning solution of the 

primary GPS with respect to the base GPS station by using their dual frequency (L1/L2) measurements 

including the pseudo range, Doppler and carrier phase observations. However, in the real-time mode, the 

GPS navigator in our system can only produce the 1 Hz carrier phase smoothed pseudorange single point 

positioning solutions for now due to lack of communication devices for the transmission of the base 

station information. 

4.2.3. GPS Heading Processor 

The heading processor in Figure 3, as an independent GPS heading Kalman filter with the 

position-velocity (PV) state model for the three baseline components between the primary and the 

secondary GPS receivers, is able to estimate the (1 Hz) headings epochwise by using the L1 C/A and 

carrier phase measurements from the primary and secondary GPS receivers. With a baseline length of 

1.780 m between the primary and secondary GPS receivers, the accuracy of the heading estimate can be 

expected to be better than half a degree. In both of the GPS Kalman filters, the LAMBDA method was 

implemented to fix the floated ambiguities and subsequently produce the fixed baseline solution [20]. 

4.2.4. Inertial Navigator 

The developed loosely coupled GPS-aided inertial navigation engine (Inertial navigator) runs its 

Kalman filter based on the phi-angle inertial navigation error model to estimate the position, velocity 

and attitude errors together with the accelerometer and gyro biases in its 15-state vector whilst the 

differences between the synchronized 1 Hz GPS and 1 Hz inertial navigation solutions including 

positions, velocities and headings are used as the measurements in the loosely-coupled integrated 

navigation Kalman filter. In turn, estimates of the IMU errors are used to correct the raw IMU 

measurements to form a closed-loop system. Therefore, synchronizing the sensor is of paramount 

importance to ensure the correct estimation of the error states in the Kalman filter. 

4.3. Data Collector and Associated Data Buffers  

The prototype of our integrated navigation system integrated only one IMU unit (Crossbow MEMS 

NAV440 or IMU800CA) and two NovAtel GPS receivers. The real-time data collector module was 
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designed to run in the asynchronous mode in order to efficiently respond to the incoming data while the 

data collector in post-processing mode runs in the periodical poll (request-reply) mode without concerning 

the time. Each sensor data collector manages its own measurements through one internal data buffer. The 

communication between modules is conducted through reading and writing the data buffers. 

To avoid any data corruption and ensure I/O on the same data block in the multiple threads 

environment, the data buffer is implemented with a mutual exclusive data access (MUTEX) protection 

mechanism based on the producer-consumer design pattern. It is noted that the size of the buffer (number 

of blocks) is fixed and large enough to handle the peak data traffic so that the problematic run-time 

memory allocation and memory release operations are prevented. Thus, the system can gain a higher 

data I/O speed without concern for notorious memory leak.  

5. Time Synchronization in Multisensor Data Acquisition 

5.1. General 

Time synchronization is to tag the acquired data of multiple sensors with a time stamp in the same 

time frame, which is essential for kinematic positioning and navigation. In nature, we may use the local 

computer time frame as the default time frame for all sensors. However, the clock oscillator in the 

computer suffers from potential drift so that its long term instability cannot satisfy the requirement of a 

high-accuracy timing system. Furthermore, the navigation module has to present the final navigation 

solution in an absolute/universal time frame. Consequently, we need to find a stable external clock 

source with high resolution and long term stability. By periodically synchronizing the local computer 

time with the high accuracy external clock, the magnitude of the clock drift and instability in local 

computer can be minimized and becomes ignorable. 

Nowadays the GPS time is a popular time frame for multisensor integrated navigation systems 

because the high-accuracy 1 Hz PPS hard signal can be easily retrieved from a GPS unit, for example,  

50 ns accuracy from the NovAtel GPS OEM unit. Physically, the 1 Hz PPS signal (Figure 5) as the 

timing signal is nothing but a square wave (pulse) with 1 ms width [18]. The absolute GPS time 

corresponding to the left dropping edge is conveyed in the special PPS message dispatched from the GPS 

receiver. Subsequently, the GPS time for data acquired from other sensors can be computed as follows:  

where Tsensor is the sensor data time stamp in the GPS time frame, tlocal is the local computer time stamp 

in the sensor data packet, tPPS is the local computer time stamp for 1 Hz PPS pulse, and TPPS is the time 

stamp in the GPS time frame corresponding to the 1 Hz PPS.  

Figure 5. PPS signal and message diagram (Adapted from [21]).  

 

PPSPPSlocalsensor TttT   (1)  
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In general, two tasks need to be completed for the time synchronization: GPS time import into our 

system whenever the GPS time is available and time tagging the sensor data using GPS time. 

5.2. GPS Time Import 

In our navigation system, a global variable named ―PPS_struct‖ is normally updated at 1 Hz, for 

instance, in order to maintain the relationship between the true GPS time and the synchronous local 

computer time. Through interpreting the 1 Hz PPS signal using both the local computer time and the 

GPS time, the GPS time import is accomplished and the clock drift is restrained. Two different methods 

for two different hardware platforms are given below in this section respectively. 

5.2.1. Mini Control Board 

On the Jetway mini control board platform, the PPS signal is hardwired into the pin #10 of the parallel 

port to trigger the interrupt IRQ7, whose handler retrieves the current local computer time using the 

Linux system API function ―clock_gettime‖ and assigns it into the variable ―PPS_struct‖. This time 

stamp with a lag of a few tens of microseconds due to the interrupt response delay (10~30 s) is the most 

accurate representation of the PPS signal in the local computer frame. The GPS time of the PPS signal is 

then captured through the RS232 serial port later (e.g., about 20 ms with NovAtel OEM GPS receivers). 

Herein lies the connection between the GPS time and the computer time.  

5.2.2. Dell Laptop XPS1530 

As the Dell laptop XPS1530 does not have accessibility to the external hardware interrupt, the 1 Hz 

PPS hard signal is directly hardwired into the CTS pin of a dedicated RS232 serial port in the 

express-card serial port adapter. Instead of passively waiting for the PPS interrupt signal, the PPS hard 

signal is actively detected by periodically reading the electronic signal level on the CTS pin triggered by 

a 50 s RTAI timer. Because the jitter of the RTAI timer (the duration change of a timer period) is 

approximately 30 s~50 s, the GPS time import using the serial port can achieve an accuracy of 100 s, 

which is practically good enough for our low cost kinematic positioning and navigation system 

according to the analysis in Section III of [22]. For a land vehicle, the effect of the maximum jerk of  

4 m/s
3 on the predicted state vector in the Kalman filter is too small to bias the final navigation solution 

because the product of the timing error and the jerk of a moving vehicle is ten times smaller than the 

absolute magnitude of the system innovation in the loosely-coupled GPS-aided integrated Kalman filter. 

As a result, the error in the final navigation solution could become numerically ignorable. For the same 

reason, that timing error can also be ignored in the INS mechanization module. 

5.3. Sensor Data Time Stamp 

In the second stage of time synchronization, a time stamp for the sensor measurement needs to be 

tagged at the exact time instant when the sensor measurements are taken. This job has been done in the 

GPS receivers for all GPS measurements while it has to be taken by the control unit for all IMU data 

acquired either from a RS232 serial port or the analog signal pins. Without loss of generality, only the 

time synchronization solution for the Crossbow MEMS IMU units is discussed here. Two types of 
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measurements are supported with the Crossbow MEMS IMU sensors: continuous analog signal and 

digital data packet. In both situations, the time delay due to data acquisition and transmission has to be 

taken into account.  

According to the Crossbow DMU (Dynamic Measurement Unit) manuals [23,24], the digital data 

packet mode will sequentially experience three stages: sampling (T1), processing (T2) and transferring 

(T3). Whereas the sensor data are presented immediately on the analog output pins after the processing 

step (T2) is over when a Crossbow DMU is working in the continuous analog signal mode. The analog 

output has a time delay of 2.3 ms with the 400 Hz output rate while the scaled digital packet has a time 

delay of 6.4 ms with the working frequency 156 Hz (Table 1).  

Table 1. IMU300 Series, IMU400 Series and VG300CB Timing (Data from [24]).  

Operating Mode Sampling Processing Transferring Total delay Max Rate  

Voltage 0.8 ms 0.5 ms 4.7 ms 6.0 ms 166 Hz 

Scaled 0.8 ms 0.9 ms 4.7 ms 6.4 ms 156 Hz 

VG(VGX only) 0.8 ms 1.5 ms 5.2 ms 7.5 ms 133 Hz 

Analog Output 0.8 ms 1.5 ms - 2.3 ms 400 Hz 

 

In our low cost system, the initial local computer time stamps are assigned to the packets when the 

digital IMU data are acquired from the serial port. In theory, three strategies can be used for further 

calibration of these initial time stamps: hardware alignment [25], software processing [26,27] and online 

correction with known constants. In our system, the known timing error constant (Table 1) is directly 

applied to the initial time stamp of the raw IMU measurements according to the same analysis of the 

timing error presented in the Section 5.2.2. 

6. Road Tests and Results 

6.1. System Setup 

With the development of the low-cost GPS-aided inertial navigation system at York’s EOL 

laboratory, a number of road tests have been performed. The results from two latest road tests with 

Crossbow IMU400CA and IMU800CA respectively are presented in this section. One Leica GPS1200 

receiver located at the start location was configured as the static base station. Another two NovAtel 

OEM GPS receivers, an OEM4 in the front as primary and an OEM3 in behind as secondary, were 

rigidly bound to one metal bar on the vehicle roof (Figure 6) while the IMU unit was placed on the top of 

the console box between the driver seat and the passenger seat. The lever arm parameters were manually 

measured at an accuracy of 0.5 cm. 

The trajectory was designed to avoid bridges and narrow road sections to minimize the possible GPS 

signal blockages. The maximum baseline length was 5 km in both tests. No reverse vehicle motion 

occurred during the two road tests. In each road test, the vehicle first stayed stationary for 5 minutes 

close to the base station where more than seven GPS satellites could usually be tracked by both rover 

GPS receivers on the roof of the vehicle. After subsequent 30~40 minutes of driving along the selected 

trajectory, the vehicle returned back to the start point and remained static for 5 minutes again. The raw 

GPS observables including pseudo range, Doppler and carrier phase measurements were collected at  
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1 Hz for all GPS receivers whilst the IMU units were outputting the angular rates and the specific forces 

at 100 Hz. The maximum speed of the vehicle was up to 80 km/h. The specifications of two Crossbow 

IMU sensors used in the road tests are shown in Table 2. In the following sections, the post-processed 

navigation solutions are presented because our goal is to achieve post-processed kinematic positioning 

and navigation solutions at an accuracy level of centimeters for the direct geo-referencing in 

mobile mapping. 

Figure 6. Vehicle snapshot. 

 

Table 2. IMU Specification Data. 

  440CA 800CA 

Angular Rate Bias Stability 

[deg/hour] 

<10.0 <3.0 

 Angle Random Walk  

[deg/sqrt(hour)] 

< 4.5 <0.1 

Acceleration Bias Stability[mg] <1.0 <1.0 

 Velocity Random 

Walk 

[m/s/sqrt(hour)] 

<1.0 <0.5 

6.2. Solutions with IMU440CA  

The 2D top view of the vehicle trajectory and the velocity profile are given in Figure 7. The attitude 

(roll, pitch and heading) profiles are presented in Figure 8. 

Figure 7. IMU position and velocity profiles. 
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Figure 8. Attitude profiles. 

 

 

As shown in Figure 9(a), the loosely coupled GPS-aided inertial integration reduces the inertial 

position error down to 2~3 cm. The two biggest spikes in Figure 9(a,b) are due to the sub-meter accuracy 

of the C/A differential GPS solution during the GPS carrier phase data gap. With the aid of DGPS 

heading solution, the heading solution in the integration reaches an accuracy of 0.5 degree for most of 

the time (Figure 9(c)). 

Figure 9. The estimated error states with IMU440CA (3-sigma envelope accuracy in blue). 

(a) Position Errors. (b) Velocity Errors. (c) Attitude Errors. 

   

(a)                (b) 

 

(c) 
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Furthermore, the IMU bias estimates are presented in Figure 10(a,b). The IMU sensor bias on 

accelerometer and gyroscope measurements is modeled as the first order Gauss-Markov process. The 

correlation time constants and standard deviations of the driving noises are determined by tuning the 

results from lab calibration. 

Figure 10. The estimated IMU biases with IMU440CA (3-sigma envelope accuracy in 

blue). (a) Accelerometer Biases. (b) Gyroscope Biases. 

  
(a)            (b) 

6.3. Solutions with IMU800CA  

For the second road test, the trajectory and all system configurations remained as in the previous road 

test except for the replacement of the IMU440CA sensor by an IMU800CA sensor. In order to avoid 

duplication of similar plots as from the previous test, only fifteen error states are presented in  

Figures 11 and 12, from which the smaller amplitudes of the error states can be observed because of the 

superiority of IMU800CA over IMU440CA. 

Figure 11. The estimated error states with IMU800CA (3-sigma envelope accuracy in 

blue). (a) Position Errors. (b) Velocity Errors. (c) Attitude Errors. 

  
(a)            (b) 
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Figure 11. Cont. 

 
(c) 

Figure 12. The IMU biases with IMU800CA (3-sigma envelope accuracy in blue).  

(a) Accelerometer Biases. (b) Gyroscope Biases. 

    

(a)          (b) 

6.4. Solution Summary  

The accuracies of the position, velocity and attitude solutions are quantitatively summarized in  

Table 3 through their mean, standard deviation (STD) and root-mean-square (RMS) based on their error 

estimates. As a result, the accuracies of the solutions can be observed from the ―STD‖ column in Table 3. 

Table 3. Statistics for error states in loosely-coupled GPS/IMU Kalman filter. 

 IMU440 IMU800 

 mean STD RMS mean STD RMS 

Pos.North (m) −0.004 0.070 0.070 −0.003 0.014 0.014 

Pos. East (m) −0.002 0.063 0.063 −0.002 0.015 0.015 

Pos. Down (m) −0.001 0.046 0.046 −0.001 0.022 0.022 

Vel. North (m/s) −0.001 0.021 0.021 −0.001 0.004 0.004 

Vel.East (m/s) −0.002 0.020 0.020 0.000 0.004 0.004 

Vel.Down (m/s) 0.000 0.018 0.018 0.000 0.003 0.003 

Mis. x (arcmin) 0.174 2.500 2.505 0.013 0.353 0.353 

Mis.y (arcmin) 0.054 1.991 1.991 −0.016 0.255 0.255 

Mis.z (arcmin) −0.073 2.240 2.241 0.023 0.712 0.712 
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7. Conclusions  

Aiming at building a low cost real-time kinematic positioning and navigation system with 

Linux/RTAI for the purpose of direct geo-referencing of mobile mapping sensors, a GPS-aided inertial 

navigation system using loosely coupled architecture was successfully developed at the York’s EOL. In 

addition, the LXRT service was validated in order to simplify the development of the Linux/RTAI 

system. For the time synchronization of the data from multiple sensors, GPS time was imported into the 

system with the aid of the PPS pulse and the PPS message from the NovAtel GPS unit because of its high 

accuracy and convenient accessibility. The results from the road tests further confirmed the success of 

our multisensor kinematic positioning and navigation system with Linux/RTAI. As the road tests 

demonstrated, the developed system could provide 3D position solutions with 5 cm accuracy and 

attitude solutions with 0.5 degree accuracy. In conclusion, Linux/RTAI is a suitable and economic 

alternative as a hard real-time operating system for multisensor integrated navigation systems in terms of 

hard real-time performance, degree of development difficulty, hardware compatibilities and system 

expenses.  
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