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Abstract: Ex situ seed conservation of banana crop wild relatives (Musa spp. L.), is constrained
by critical knowledge gaps in their storage and germination behaviour. Additionally, challenges
in collecting seeds from wild populations impact the quality of seed collections. It is, therefore,
crucial to evaluate the viability of seeds from such collecting missions in order to improve the value
of future seed collections. We evaluate the seed viability of 37 accessions of seven Musa species,
collected from wild populations in Papua New Guinea, during two collecting missions. Seeds from
one mission had already been stored in conventional storage (dried for four months at 15% relative
humidity, 20 ◦C and stored for two months at 15% relative humdity, −20 ◦C), so a post-storage test was
carried out. Seeds from the second mission were assessed freshly extracted and following desiccation.
We used embryo rescue techniques to overcome the barrier of germinating in vivo Musa seeds. Seeds
from the first mission had low viability (19 ± 27% mean and standard deviation) after storage for
two months at 15% relative humidity and −20 ◦C. Musa balbisiana Colla seeds had significantly
higher post-storage germination than other species (p < 0.01). Desiccation reduced germination
of the seeds from the second collecting mission, from 84 ± 22% (at 16.7 ± 2.4% moisture content)
to 36 ± 30% (at 2.4 ± 0.8% moisture content). There was considerable variation between and (to a
lesser extent) within accessions, a proportion of individual seeds of all but one species (Musa ingens
N.W.Simmonds) survived desiccation and sub-zero temperature storage. We identified that seeds
from the basal end of the infructescence were less likely to be viable after storage (p < 0.001); and made
morphological observations that identify seeds and infructescences with higher viability in relation to
their developmental maturity. We highlight the need for research into seed eco-physiology of crop
wild relatives in order to improve future collecting missions.
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1. Introduction

Crop wild relatives (CWRs) possess genetic material useful for improving crops in an increasingly
challenging context [1–3]. They comprise a large untapped genepool of alleles potentially useful for
breeding [4]. Examples from banana CWRs include improved drought tolerance [5] and resistance to
several diseases [6,7]. At the same time, many CWRs are threatened with extinction [8,9] making their
conservation imperative for both biodiversity and food security [10,11]. Effective plant conservation
employs complementary in situ and ex situ strategies [12,13]. Such an approach is notably encouraged
for CWR conservation [14,15]. Accordingly, ambitious efforts to collect and conserve many CWRs
ex situ have recently been made [16–20]. However, CWRs, and banana CWRs (Musa spp. L.) in
particular, are poorly represented in ex situ collections [21].

Banana CWRs are diploid wild species whose fruits contain many dark coloured seeds. Edible
bananas, selected to avoid seeds in the fruit pulp, can be diploid, triploid or tetraploid. There are around
80 species in the genus Musa [22,23], and over 1000 edible banana cultivars [24,25]. The management of
banana germplasm is co-ordinated in a global network of 31 collections containing over 6600 accessions
of in vitro or field plants [26]. Only 163 of these accessions are CWRs. Moreover, of these, 122 are of
the two most important banana CWRs (Musa acuminata Colla and M. balbisiana Colla), the other 41
accessions include 33 Musa species. Additionally, there are 131 Musa seed collections of only seven
species stored in seed banks [27]. This means many species are only represented by a single genotype
and for many wild banana species, no accessions exist. The diversity of banana CWRs in ex situ
conservation is therefore highly constrained and expansion of the inter and intra-specific diversity of
the collection is clearly needed.

Musa are pioneers or early successional tall herbs of tropical to subtropical rainforests. Native
distribution area ranges from Southeast Asia to Pacific regions [22]. Papua New Guinea (PNG),
the world’s most floristically diverse island [28], is an important centre for both wild banana and
cultivar diversity [29–32]. Sixteen wild Musa taxa occur in PNG [33]. Several collecting missions
have been made in PNG to characterise and collect both cultivar and CWR germplasm [34–38]. These
include seed collections, two of which we evaluate here.

Ex situ conservation using seeds can be a highly effective way of conserving the genetic diversity of
plant populations [39,40]. This is useful for further conservation activities, phenotyping and breeding.
Furthermore, conservation using seed is a relatively cost effective method of ex situ conservation [41].
In order to make high quality seed collections of wild species, understanding of seed development and
storage behaviour are crucial [42]. Seed storage behaviour can classically be categorised into three
groups. The majority of seeds are easily dried (to 2–5% MC) and stored at sub-zero temperatures, these
are orthodox seeds [43]. Secondly, recalcitrant seeds do not survive drying to below 20–30% moisture
content and are sensitive to low temperatures [43]. Finally, seeds that do not fit well into these binary
categories are often called intermediate, and show partial sensitivity to drying and cold storage in
particular [44]. Seeds of recalcitrant and intermediate species should be stored cryogenically, whereas
orthodox seeds may be stored conventionally (at −20 ◦C) following desiccation [45].

For wild species, and especially banana CWRs, critical knowledge gaps exist in how best to
collect, store and germinate their seeds. For Musa, only six species have been assessed for their
storage behaviour, results of which are inconclusive [46–52]. Additionally, germination of seeds is
notoriously inconsistent and dormancy poorly understood [53–55]. Embryo rescue techniques are
therefore commonly used to germinate seeds in breeding programmes [56]. Together, these critical
knowledge gaps hamper storage and access to banana genetic material [54].
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Substantial challenges associated with collecting seeds from wild species impact the quality of
seed collections [57]. Non-uniform seed development across a population, low seed numbers and
sub-optimal post-harvest handling may be problematic [57–60]. Post-harvest handling is difficult
because it is often not possible to control the temperature and humidity of seeds on collecting missions,
e.g., whilst in a vehicle or when moving from place to place. Furthermore, there are significant practical
challenges in collecting seed material from populations of wild species, the location of which may be
remote, inaccessible and previously unknown. Evaluation of material from actual collecting missions
can provide useful concrete evidence of these particular challenges, and lessons can be learnt to
improve the quality of collections in the future.

In this study, we make use of seeds from two recent collecting missions to PNG. Seeds from one
mission were already stored in Meise Botanic Gardens seed bank (called ‘batch 1’, and described by
Eyland et al. [38]); the others were collected during the course of this investigation (called ‘batch 2’).
By evaluating seed viability of these collections, we address some of the issues and knowledge gaps
described, by answering the following questions: (1) What is the viability of Musa seeds stored in Meise
Botanic Gardens seed bank (for two months at 15% relative humidity (RH), −20 ◦C)? (2) Do seeds of
some Musa species have higher viability after storage than others? (3) Do seeds from different parts
of the infructescence have higher viability after storage than others? (4) How does desiccation affect
seed viability? (5) Is it possible to predict storage behaviour of Musa seeds based on their physical
properties? (6) Does seed maturity affect viability during dry storage? We use in vitro embryo rescue
techniques to quantify viability. This provides the most reliable estimate of viability and removes
dormancy constrains that limit germination in Musa seeds [61–63].

2. Results

2.1. Viability Evaluation of Seeds Stored in the Seed Bank

2.1.1. Overall Viability

The post-storage viability of batch 1 seeds (already stored in Meise Botanic Gardens seed bank)
was markedly low with considerable variance between the accessions (Figure 1A). Across all accessions
and hands, germination was on average 19 ± 27% (mean and standard deviation used hereafter; empty
seeds are excluded in the percentages). In the present study, we use the term accession to mean a
seed collection from a single individual plant including all the fruits of an infructescence. The term
bunch refers to an infructescence. A bunch can be subdivided into hands, these are groups of fruits
from the former clusters of flowers subtended by one bract [64]. Embryos that showed no reaction
were 73 ± 29%. Other embryonic reactions, callus formation and embryo darkening without further
outgrowth, were minimal (respectively, 0.2 ± 1.2%, and 3 ± 9%). Microbial contamination of the sample
was 4 ± 16%. Overall, 24 ± 23% of seeds contained no identifiable embryos.
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Figure 1. (A) Germination responses of embryos rescued from 29 accessions of Musa species following
drying for 4 months at 15% relative humidity 20 ◦C and storage for 2 months at 15% relative humidity
−20 ◦C. ‘Hand position’ refers to the position in the infructescence of the hand from which seeds
were collected, with ‘1’ being closest to the basal end of the bunch (n = 23 ± 10 seeds). (B) Predicted
probability of five embryo rescue outcomes of Musa acuminata subsp. banksii seeds extracted from
different hand positions in the infructescence. Probabilities based on the multinomial logistic regression
model of the response of seeds from 50 hands (representing 13 accessions; n = 30 seeds for each hand).
Shaded areas are 95% standard errors of the estimated regression coefficients.

2.1.2. Effect of Species

Musa balbisiana Colla seeds (accessions #2 and #3), showed significantly higher germination than
other species after storage (p < 0.01), in parallel with less embryos showing no reaction. This is
demonstrated by the multinomial logistic regression (MLR) model (Table S1A), whereby the log
odds of germination against an increase in no reaction is 0.865, but for all other species, log odds are
negative. This is despite one of the three M. balbisiana accessions (accession #1) having no viability.
One M. schizocarpa accession also showed high viability (accession #29, 90%), in contrast to the other
three (accessions #26–28).

2.1.3. Effect of Position in the Infructescence

Musa acuminata subsp. banksii seeds from hands with a higher number, i.e., that were more recently
pollinated, had embryos that were significantly more likely to germinate after storage (p < 0.001,
Figure 1B, Table S1B); again this was concurrent with a reduced likelihood of no reaction.

2.2. Effect of Desiccation

2.2.1. Overall Effect of Desiccation

Seeds of batch 2 were tested before and after desiccation. Before desiccation (16.7 ± 2.4% moisture
content (MC)), germination was on average 84 ± 22% (Figure 2A). After seven days desiccation
(to 2.4 ± 0.8% MC), germination decreased to 36 ± 30%. As embryos dried, their percentage without
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any sign of germination increased from 3 ± 7% to 55 ± 27%. Again, there was considerable variance
between accessions. Accession #37, M. balbisiana, was excluded from the analysis as the initial MC was
an outlier compared to all the others (35% MC).Plants 2020, 9, x FOR PEER REVIEW  5 of 22 
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Figure 2. (A) Embryo rescue outcomes of Musa seeds (batch 2) before desiccation at 16.7± 2.4% moisture
content (‘Wet’), and after desiccation for seven days in a desiccator to 2.4 ± 0.8% moisture content
(‘Dry’). Accession and hand numbers are included above each chart. Seeds were germinated using
embryo rescue and results recorded 28 days after transfer to the growth medium (n = 10). (B) Predicted
probability of embryo rescue results according to the moisture status of seeds. Plot is on predicted
values of the multinomial logistic regression model coefficients in Table S1C, data in Figure 2A. 95%
standard errors shown.

2.2.2. Desiccation Tolerance and Species

Viability after desiccation differed by species. The M. acuminata subsp. banksii and M. schizocarpa
accessions showed the highest germination after desiccation (55 ± 7%, 54 ± 29%, respectively).
M. maclayi accessions had the lowest viability after desiccation (3 ± 6%). The MLR model based on
drying as a factor showed a significant effect on germination in relation to no reaction (p < 0.001,
Figure 2B, Table S1C). Additionally, seeds in wet condition were also more likely to darken and be
contaminated (p < 0.001, p < 0.01, respectively). In the model, there is clear interchange of embryos
that germinate with those that show no reaction (Figure 2B).

2.3. Prediction of Seed Storage Behaviour

Predicted seed storage behaviour (using the method of Hong and Ellis [65] and Ellis et al. [66]),
identified that accessions straddled both intermediate and orthodox categories (Figure 3). Nine of the
11 accessions were predicted to be intermediate and two orthodox. The accessions predicted to be
intermediate exceeded the threshold for weight rather than moisture content (apart from accession #37,
M. balbisiana, previously identified as an outlier with high MC). There was no correlation between
predicted seed storage behaviour and post-desiccation germination. Only seeds from batch 2 were
used, as moisture content measurement of seeds before desiccation is required by the model.
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Figure 3. Predicted storage of behaviour of Musa accessions (batch 2) using the diagnostic key of Hong
and Ellis [65] and Ellis et al. [66]. Area A includes accessions predicted to have intermediate storage
behaviour, accessions in area B are predicted to have orthodox storage behaviour. Accessions are
coloured according to the germination percentage of seeds after seven days desiccation to 2.4 ± 0.8%
moisture content. Moisture content is calculated on the fresh weight basis (‘fwb’). Seeds were
germinated using embryo rescues and assessed 28 days after transfer to growth medium.

2.4. Dry storage and Maturity

2.4.1. Effect on Viability

Two M. acuminata subsp. banksii accessions were selected from batch 1. Accession #4 was from
a less mature and accession #11 from a more mature bunch according to observations in the field.
Seeds were tested before and during dry storage (contained within a paper bag, stored in a humidity
controlled room at 15%RH, 20 ◦C). Seeds had a mean moisture content of 11.2 ± 2.7% before drying
(Figure 4A). After seven days drying, moisture content reduced to 6.6 ± 2.5%. Moisture content
remained about the same with further drying time, so that after six months moisture content was
6.5 ± 2.35%. Differences in moisture content between the accessions were not statistically significant.
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Figure 4. (A) Moisture content during dry storage, calculated on fresh weight basis (‘fwb’). Seeds from
a mature and an immature accession of Musa acuminata subsp. banksii were used. Seeds were dry
stored at 15%RH, 20 ◦C for up to 168 days. (B) The effect of dry storage on embryo rescue outcomes.
Outcomes recorded 28 days after the transfer of each embryo to growth medium (n = 48).

The mature seeds (accession #11) had much higher initial germination rates than the immature
(accession #4), 91.3% and 16.3%, respectively (Figure 4B). Embryos from both accessions reduced in
germination after seven days drying, to 28.3% for the mature accession and to 9.1% for the immature
accession. For the mature seeds, this level of germination remained about the same with further drying
time, so that after 6 months of drying, germination was 29.2%. Embryos from the immature accession
continued to reduce in germination with further drying time, so that after 6 months dry storage,
germination was negligible (2.4%). The proportion of embryos that germinated was notably reduced
and exchanged to a correspondingly larger proportion of embryos that displayed no germination
reaction, and to a lesser extent, darkening. Contamination also increased with time of drying for the
immature seeds.

2.4.2. Effect on Morphology

Observations from magnified images of the selected M. acuminata subsp. banksii accessions showed
apparent under-developed seed coats in the less mature seeds. The different layers of the seed-coat
integuments are evident rather than fused, they are also lighter in colour (Figure 5). During drying,
these layers were observed to separate. Additionally, there is a noticeably greater effect of desiccation
on the structure of the endosperm and shape of the embryo. Less mature seeds display increased
airspaces in the endosperm on desiccation. Embryos of the less mature seeds show greater loss of
structure during desiccation.
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Figure 5. Photographs of immature and mature bunches and their seeds of two Musa acuminata subsp.
banksii accessions. Seed images taken before and after 1 month drying in a dry room (15% relative
humidity, 20 ◦C). Seed images taken on a Keyence VHX5000 at 150 x magnification.

3. Discussion

3.1. Key Findings

This assessment of seed storability of banana CWR seeds from PNG collecting missions illustrates
some of the challenges involved in making high quality collections of wild species for ex situ
conservation. In particular, this assessment demonstrates some of the difficulties involved in making
seed collections of wild species and how critical knowledge gaps impact the value of such collections.
Our evaluation shows substantial loss of seed viability during seed banking which can be attributed to
variable levels of desiccation tolerance. There was considerable variation between accessions, and some
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species (M. balbisiana and to a lesser extent M. schizocarpa and M. acuminata subsp. banksii) maintained
higher viability during storage compared to others.

3.2. Desiccation Sensitivity

The low germination rates (19%) of seeds that were stored in the seed bank (batch 1), suggests
a problem with maintaining the viability of collections in conventional storage (15%RH, −20 ◦C).
However, as this was a viability assessment of seeds already stored, it is not possible to draw specific
conclusions as to why viability is low: seeds may have had low initial viability or lost viability
during transport, for example. By testing batch 2 seeds both before and after desiccation, it is
clear that desiccation sensitivity is a major contributor to loss in viability. On average, these seeds
reduced germination from 84% to 36% during rapid desiccation (from 17% to 2.4% moisture content).
We therefore surmise that loss of viability is primarily a result of sensitivity to rapid desiccation.
Further research is needed to fully understand whether loss in viability is caused by desiccation per se,
or whether speed of desiccation is an important contributing factor.

3.3. Seed Storage Behaviour

Variation in our results, with respect to seed storage classification, is in line with previous studies.
For instance, several studies demonstrate desiccation sensitivity where seeds lose viability at 6%
MC [46] or, for extracted embryos, to 10–15%MC [50,51,67]. Other studies found that seeds tolerate
drying, but do not state to what moisture content [47,48].

High viability of a few accessions stored under very low moisture and sub-zero temperature in
the present study, suggests that (at least for M. balbisiana) orthodox storage class is likely. For others,
our results suggest that intermediate storage classification may be appropriate, as significant proportions
of seeds lost viability on desiccation and freezing. Musa storage behaviour is, therefore, at the threshold
between orthodox and intermediate storage classes, as illustrated by results of the predictive model
(Figure 3). It should be noted, however, that for all species (apart from M. ingens), a proportion of seeds
survived desiccation, or even desiccation and sub-zero storage. Storage class was, therefore, variable
within an accession, and orthodox behaviour of at least a small proportion of seeds was possible,
if rare. Whilst storage classification is helpful, a continuum of storage behaviour is known to exist [68],
even within the same genus or species, depending on when and where seeds were collected [45,69–72].
In the present study, a continuation in desiccation tolerance is evident within the same accession and
even from fruits in the same hand.

3.4. Variation between Infructescences

3.4.1. Species and Climate

Differences in post-storage viability were greater between-infructescences (from different maternal
plants), than within-infructescences (from hands of the same plant, Figure 1A). This may be related
to differences in seed storage behaviour at the species level, to the maturity level of the whole
infructescence or perhaps the microclimate [73]. Viability levels were consequently strongly linked to
the fruit-bearing plant.

In batch 1, M. balbisiana seeds showed significantly higher post-storage viability than the other
species. This species is characterized by a wide, yet often introduced, distribution across the tropics
and subtropics. Notably, M. balbisiana is not considered a native species to PNG [74,75], but rather
has its native distribution in the more seasonal subtropical Northern Indo-Burmese region [76].
By contrast, the other wild banana species studied are native to the Equatorial wet to moist ecoregions
of PNG. As such, M. balbisiana, has also shown to have high leaf wax content that contributes to
drought tolerance [5] and is therefore probably better adapted to seasonal changes in precipitation
and temperature than the Musa species native to PNG [33,74,75]. This then suggests that within the
whole genus, there may well be a range of desiccation tolerance levels possibly according to species
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distributions. It should, however, be caveated that our observation is based on only a small number
of samples and a wider survey should be carried out for further conclusions. Nonetheless, it is well
known that there is a correlation between the bioclimatic distribution of a plant and seed storage
behaviour: higher annual precipitation is positively correlated with recalcitrance [77]. Interestingly,
differences in precipitation in the native region of the Musa species examined here are in fact greater
when only the precipitation in the driest quarter of the year is considered, rather than for annual
precipitation (see Figure S1). We therefore suggest that the precipitation in the driest quarter might
possibly have a stronger correlation to seed storage behaviour for Musa than annual precipitation, as the
possible impact of a dry season may be masked in seemingly high precipitation regions. We therefore
propose that Musa seeds collected from species adapted to more pronounced dry seasons may have
better desiccation tolerance and therefore better survive storage. However, further research is required
in this area.

3.4.2. Seed Maturity

We identified physical properties that were seemingly linked to the level of seed maturity at the
time of harvest. Larger fruits with softer pulp texture and seeds with a more powdery endosperm were
considered to be more mature. Seeds from the bunch categorised as more mature in the field had greater
embryo rescue germination percentages, both before and after dry storage (15%RH, 20 ◦C), compared to
the seeds identified from the less mature bunch. In the laboratory, it was observed that the less mature
seeds had higher initial moisture content that reduced to a greater extent, and an under-developed
seed coat: a light brown inner integument as opposed to dark brown to black, that was less well
fused with the outer integument (Figure 5). The small sample size notwithstanding, the importance of
seed maturity for desiccation tolerance is consistent with current understanding of the development
of desiccation tolerance during late seed maturation [73,78,79]. Desiccation tolerance is acquired at
‘mass maturity’ after maximum dry weight is achieved and the vascular connection between the
maternal plant and seed is terminated [80]. Following this, seed moisture content equilibrates with
the environment prior to dispersal. Often this is described as the ‘point of natural dispersal’ [60].
The difficulty for improving the quality of seed collections is how to translate theory into practice,
particularly for seeds that are contained within large pulpy fruits like bananas.

Regarding seeds that were collected from field collections, Simmonds [47] found that, for maximum
in vivo germination, M. balbisiana seeds should be collected ‘mature’. Unfortunately, he did not define
what ‘mature’ meant in this instance. However, he detected a window of six weeks whereby high
germination can be achieved (>80%), four weeks before and two weeks after maturity. Additionally,
he found that fruit of M. acuminata should be collected green or yellow (rather than black or rotten) to
achieve high germination. Furthermore, Uma et al. [81] found that at 70% maturity (full maturity being
110 days after (self-)pollination) ‘Pisang Jajee’ (a M. acuminata genotype) embryos were discernible and
endosperms had converted from a liquid to semi-solid state; this also coincided with thickening of
the integuments. They also found that seeds, in order to germinate, should be at least 90% mature,
and immature embryos were more likely to produce calluses.

Collecting mature seeds during collecting missions is much more challenging than from field
germplasm collections. Collectors must access bunches before they are consumed and seeds are
dispersed by birds and mammals [82–84]. Humans also harvest wild bananas for food, construction
and artistry [37,85]. It is therefore important to be able to identify fruits that contain seeds that are
mature enough to be desiccation tolerant, without knowing flowering times, whilst they may not have
yet attracted frugivores. Based on our results, we suggest that seeds should have powdery endosperms
and well-formed integuments with fused layers, without which many seeds will be lost during storage;
however, clearer definitions should be developed for collectors.

It may also be possible to improve desiccation tolerance and longevity of seeds by using a treatment
that mimics late maturation on the plant, as has been shown for other species [78,86–88]. Indeed, in one
study [89], Simmonds found that seeds from ‘ripe’ and ‘over-ripe’ bananas that were dried in the fruit
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at a temperature similar to what may be found on the plant (in an oven at 45 ◦C), germinated better
than seeds that were not dried in this manner. Assessing and furthering seed maturity whilst avoiding
dispersal is clearly a key factor in improving the quality of future banana seed collecting.

3.5. Variation within Infructescences

Heterogeneity of maturity within an infructescence has been highlighted as a cause for variable
desiccation tolerance within seed accessions of other wild species [57,60]. We observed a small but
significant within-infructescence effect, in that seeds from the male bud end of the infructescence
(seeds from flowers that were more recently pollenated) were around 15% more likely to germinate
(post-storage) than the peduncle basal end (Figure 1B). This, perhaps surprising, effect may be caused
be caused by variation in seed-vigour or seed-aging, discussed below.

It is well known for other species, that there are differences in physical and physiological properties
in seed-vigour within the same infructescence [90]. For species of temperate regions variation is often
correlated with seasonality [91–93]. In tropical species, the effect of climate on seed properties is not
well known. However, pollen, seed set and germination success of banana seeds (during breeding
programmes) have been found to correlate with climatic conditions [94,95]. Alternatively, seed-vigour,
including the ability to tolerate stress, deteriorates according to temperature and moisture [71].
When seeds are kept in the fruit for relatively long periods of time, for example, during collecting
missions, seed-aging can occur. This can potentially influence the ability of seeds to withstand the
stress of desiccation later on. As seeds from basal hands are produced first, when they are harvested
they are already in a more advanced state: fruit may soften quicker and have higher moisture content,
and the exocarp may be rotting. This all means that aging is more likely to occur if they are then kept in
the fruit during the remainder of the trip and until they are transported to the laboratory (see Figure S2
for a photograph of the fruits of batch 1 after transit to Belgium). This could explain why the older
seeds within a bunch may display lower desiccation tolerance. However, as this effect was relatively
small compared to the overall maternal effect, it seems that the within-bunch maturity appears at least
to have less of an effect than the maturity of the whole bunch.

3.6. Limitations and Assumptions

3.6.1. Embryo Rescue

We used embryo rescue techniques to estimate viability in the present study. Whilst this is the best
current method for estimating Musa seed viability, there are limitations and assumptions that should
be stated. Firstly, the purpose of a viability measure is to estimate the proportion of seeds that are
capable of developing into seedlings or plants [42]. Embryo rescue ‘short-cuts’ some of the constraints
that could limit this process of in vivo germination. For instance, if an embryo germinates in vitro,
it does not necessarily mean that it is capable of developing into a seedling or plant. For this to happen
the embryo must also push off the seed micropyle cap and develop roots that can access the soil.
We accounted for this in our analysis by categorising separately embryos that did not develop fully
formed shoots, but rather formed calluses or showed no growth but darkening of the embryo. Secondly,
embryo rescue evaluation, in our method, is at 28 days; however, it is possible that germination may
be slow and only is evident after this period. According to the literature, 28 days should normally be
enough time [61,62,96], but it is an assumption that, at this point in time, the germination process is
concluded for all embryos. Finally, the conclusions of this study are based on the assumption that
embryos showing no germination reaction are in fact dead. However, it is possible that desiccation does
not kill the embryo, but rather causes a deep level of physiological dormancy that is not removed by
excision from the rest of the seed. To account for this, we carried out tetrazolium tests on embryos that
showed no germination reaction on embryo rescue. These embryos showed no staining. This indicates
that embryo rescue produces the maximum measure of viability.
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3.6.2. Conservation and Research Material

Whilst the benefit of using seeds from collecting missions allows results to be impactful for future
missions, limitations are also introduced by using such material. One of the main limitations we
faced was the limited availability of seeds for research. This inevitably constrains the interpretation of
results (hence the large amount of deviation) because sample sizes and replicates were small. Seed
numbers were limited for two reasons. One, because it is difficult to access seed material in suitable
time periods from third parties, despite relevant treaties [97]. Two, because there are conflicting
demands for material. There is an expectation and requirement for seeds to be placed into storage
‘for conservation’. This may conflict with availability of adequate material for research into how best to
store and germinate seeds. Our results highlight the need for seed collecting for research purposes in
addition to, and ideally prior to, collecting missions whose primary purpose is conservation. In practice,
as here, these two processes often run concurrently.

4. Materials and Methods

4.1. Study Region

The study region was between Latitude 2◦ to 8◦ South, and Longitude 141◦ to 151◦ East. Seeds
were collected in the Papua New Guinean provinces of Morobe, Madang and Sandaun on the island
of New Guinea, and the province of West New Britain on the island of New Britain (Figure 6).
These locations are in the tropical and subtropical moist broadleaf forest biomes [98]. Mean annual
precipitation and mean annual temperature, at the collecting locations are 2695 ± 562 mm and
24.9 ± 1.9 ◦C, respectively (averages for years 1970–2000) [99].
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4.2. Plant Material

4.2.1. Accessions

Overall, 37 Musa seed accessions were used in this study. Accessions were from a total of seven
species: Musa balbisiana Colla, M. acuminata subsp. banksii (F. Muell.) N.W. Simmonds, M. boman
Argent, M. ingens N.W. Simmonds, M. lolodensis Cheesman, M. peekelii Lauterb, M. schizocarpa N.W.
Simmonds (Table 1).

Table 1. Details of seed collections.

Batch Accession Species Province Latitude Longitude Date Collected

1 1 M. balbisiana Morobe S 07◦03′23′′ E 146◦34′56′′ 14/05/2019
1 2 M. balbisiana Morobe S 07◦07′35′′ E 146◦36′57′′ 14/05/2019
1 3 M. balbisiana Madang S 04◦41′49′′ E 145◦36′49′′ 17/05/2019
1 4 M. acuminata subsp .banksii Morobe S 06◦43′34′′ E 146◦42′40′′ 14/05/2019
1 5 M. acuminata subsp .banksii Morobe S 06◦43′34′′ E 146◦42′40′′ 14/05/2019
1 6 M. acuminata subsp .banksii Morobe S 07◦13′42′′ E 146◦36′32′′ 14/05/2019
1 7 M. acuminata subsp .banksii Morobe S 07◦13′42′′ E 146◦36′32′′ 14/05/2019
1 8 M. acuminata subsp .banksii Morobe S 06◦47′14′′ E 146◦47′00′′ 15/05/2019
1 9 M. acuminata subsp .banksii Morobe S 06◦46′04′′ E 146◦46′46′′ 15/05/2019
1 10 M. acuminata subsp .banksii Madang S 04◦41′31′′ E 145◦36′60′′ 17/05/2019
1 11 M. acuminata subsp .banksii Sandaun S 02◦43′58′′ E 141◦15′20′′ 20/05/2019
1 12 M. acuminata subsp .banksii Sandaun S 03◦09′53′′ E 141◦21′57′′ 21/05/2019
1 13 M. acuminata subsp .banksii Sandaun S 03◦09′51′′ E 141◦18′18′′ 21/05/2019
1 14 M. acuminata subsp .banksii Sandaun S 02◦55′56′′ E 141◦25′09′′ 21/05/2019
1 15 M. acuminata subsp .banksii Sandaun S 02◦42′17′′ E 141◦05′36′′ 22/05/2019
1 16 M. acuminata subsp .banksii Sandaun S 02◦42′46′′ E 141◦05′45′′ 22/05/2019
1 17 M. boman Sandaun S 03◦01′46′′ E 141◦19′18′′ 21/05/2019
1 18 M. boman Sandaun S 02◦48′36′′ E 141◦23′44′′ 21/05/2019
1 19 M. boman Sandaun S 03◦09′38′′ E 141◦02′22′′ 21/05/2019
1 20 M. ingens Morobe S 06◦48′03′′ E 146◦46′24′′ 15/05/2019
1 21 M. ingens Morobe S 06◦47′14′′ E 146◦47′00′′ 15/05/2019
1 22 M. lolodensis Sandaun S 03◦01′46′′ E 141◦19′18′′ 21/05/2019
1 23 M. peekelii Madang S 05◦09′44′′ E 145◦44′51′′ 16/05/2019
1 24 M. peekelii Madang S 04◦55′07′′ E 145◦45′51′′ 18/05/2019
1 25 M. peekelii Madang S 04◦55′07′′ E 145◦45′51′′ 18/05/2019
1 26 M. schizocarpa Madang S 04◦44′17′′ E 145◦38′60′′ 17/05/2019
1 27 M. schizocarpa Sandaun S 02◦44′19′′ E 141◦21′11′′ 19/05/2019
1 28 M. schizocarpa Sandaun S 02◦43′58′′ E 141◦15′20′′ 20/05/2019
1 29 M. schizocarpa Sandaun S 02◦37′02′′ E 141◦00′52′′ 22/05/2019
2 30 M. acuminata subsp .banksii Madang S 05◦11′58′′ E 145◦39′30′′ 16/10/2019
2 31 M. acuminata subsp .banksii Madang S 05◦11′58′′ E 145◦39′30′′ 16/10/2019
2 32 M. maclayi West New Britain S 05◦33′54′′ E 150◦47′29′′ 03/10/2019
2 33 M. maclayi West New Britain S 05◦33′54′′ E 150◦47′29′′ 03/10/2019
2 34 M. maclayi West New Britain S 05◦33′54′′ E 150◦47′29′′ 03/10/2019
2 35 M. maclayi West New Britain S 05◦33′54′′ E 150◦47′29′′ 03/10/2019
2 36 M. schizocarpa Madang S 05◦11′58′′ E 145◦39′30′′ 16/10/2019
2 37 M. balbisiana Madang S 05◦11′58′′ E 145◦39′30′′ 15/10/2018

4.2.2. Seed Batches

Seeds were collected during two field missions to Papua New Guinea. Batch 1 was collected in
May 2019, at the end of the wet season, and included 29 accessions, described by Eyland et al. [38].
Batch 2 was collected in October 2019, at the start of the wet season and contained eight accessions
(Table 1).

4.3. Seed Collection, Field Evaluation and Transportation

Seeds were collected from wild populations that occurred either in primary or secondary forests.
At the time of collecting, seed maturity was assessed by dissecting approximately 10 seeds per
bunch and examining the embryos and endosperms. Seeds were considered mature when embryos
were capitate in shape (mushroom-like) and endosperms were powdery as opposed to wet or milky.
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Only bunches with seemingly mature seeds were collected (although, some bunches proved to be not
completely mature, see results). Each bunch was photographed on site. Hands were removed from the
bunch and numbered according to position, with 1 being at the basal end, i.e., they were produced first.
Hands were placed in paper bags, which were then placed in cardboard boxes for storage during the
remaining field mission. Accessions were then transported to Belgium for extraction. Transportation
was initiated within one week of the end of the two-week collecting mission and took approximately
one week to complete by aeroplane. During shipping, temperatures were greater than 0 ◦C and less
than 25 ◦C. Fruits were therefore received within four weeks of collecting in the field.

4.4. Seed Processing

4.4.1. Extraction

Seeds were extracted by peeling the epicarp and crumbling or squashing the endocarp and
removing seeds by hand. Excess fruit pulp was removed by washing in running water if necessary.
In case fruits were hard, they were soaked in water for 24 h prior to seed extraction. It took a week to
extract all the seeds from batch 1, and one day for the seeds of batch 2. Seeds were maintained under
ambient laboratory conditions (approximately 60–80% relative humidity, 20 ◦C) for a maximum of
seven days whilst all extractions were completed, this also allowed removal of excess water gained
during washing. Moisture content of a subset of three accessions of batch 1 seeds and all accessions of
batch 2 seeds was measured after extractions were completed (see Section 4.4.2 for method).

4.4.2. Moisture Content Measurement

Moisture content (MC) was calculated on a fresh weight basis (FWB) using the formula:

MC(%) =
( f resh weight− dry weight)

f resh weight
× 100

Seeds were weighed in plastic boats, dried at 70 ◦C for three days, and re-weighed. The MC
of seeds was then calculated. Seeds were dried whole, as seeds coats were previously assessed as
water permeable (our own data not shown and see [100]). Our own previous results also showed that
embryo moisture content was 2% higher than whole seeds for non-desiccated seeds (at 10%MC) and
3%MC higher after desiccation (to 3%MC). Whole seeds were used here because accurately measuring
the moisture content of embryos requires many samples that were not available because of their small
size. Three replicates of 10 seeds were used to assess moisture content unless otherwise stated.

4.4.3. Storage

For storage in the seed bank at Meise Botanic Gardens, Belgium, seeds were further dried for
four months at 15%RH and 20 ◦C, and then placed in cold storage at 15%RH and −20 ◦C sealed
in aluminium envelopes. Seeds were in cold storage for two months prior to viability evaluation.
The moisture content of seeds was taken prior to transfer to cold storage.

4.5. Viability Evaluation of Seeds Stored in the Seed Bank

We used embryo rescue techniques to evaluate viability [61–63]. This is the most effective measure
of Musa seed viability compared to whole seed germination [61,62,96] and the tetrazolium chloride
test [101] (Simon Kallow, pers. obs.).

We evaluated the viability of batch 1 seed accessions that had been stored in the Meise Botanic
Gardens cold storage for two months. No pre-storage viability evaluation had been made. The MC of
a subset of three accessions was assessed on removal from storage.

For embryo rescue, seeds were sterilised by soaking them in 96% ethanol for 3 min, followed
by 20 min in 1% NaOCl (diluted commercial bleach 5%), containing 1 drop of detergent per 100 mL.
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Seeds were then rinsed three times in sterile water. Embryos were extracted from seeds using a sterile
forceps and scalpel by making an incision in the seed coat next to the micropyle with the scalpel and
by manipulating the seed with scalpel and forceps until the testa split open exposing the endosperm
and embryo; embryos were then removed by careful manipulation. Embryos were transferred onto
autoclaved half MS medium [102] in tubes with the haustorium in contact with medium and the
embryonic axis upwards. All procedures were carried out in a laminar flow cabinet. Tubes containing
embryos were incubated in the dark at 27 ◦C for 14 days, after which they were put in a growth
chamber for an additional 14 days (24 h photo-period, 27 ◦C, 50 µE m−2 s−1 illumination provided
by 36 W Osram cool-white fluorescent tubes). Six possible observations were recorded after 28 days:
empty (no embryo, identified during excision), contamination, no reaction, callus formation, darkening
and germination. Musa embryos are regarded as non-dormant when cultured in vitro [61–63,96,103],
so seeds showing no reaction during this period were considered dead. Embryos that form calluses or
that darken are considered alive but unlikely to regenerate into seedlings. An average of 23 ± 10 seeds
from an average of 3 hands were tested for 29 accessions. Seed availability for this evaluation was
highly constrained.

4.6. Effect of Desiccation

Following the results of the viability evaluation of stored seeds (Section 2.1), batch 2 was collected.
We assessed the effect of desiccation on the eight accessions included, using embryo rescue (as previously
described). This was done before desiccation and then after seven days of enforced desiccation. Seeds
were desiccated by placing them on plastic boats suspended over silica gel sealed in a desiccator.
The environment in the desiccator was approximately 2.4% RH and 20 ◦C. Ten seeds per accession
were used both before and after extraction. Moisture content was measured for each accession before
and after desiccation using ten seeds.

4.7. Prediction of Seed Storage Behaviour

Seed mass and initial moisture content was used to predict seed storage behaviour according to
the model of Hong and Ellis [65] and Ellis et al. [66]. For this, seeds with a 1000 seed weight of less
than 2500 g and a moisture content of less than 22% are predicted to have orthodox storage behaviour.
Seeds with higher mass and moisture content (>4000 g and >40%MC) are predicted to be recalcitrant.
Seeds in-between these limits are predicted to be intermediate. Only seeds in batch 2 were used for this
prediction as fresh seed moisture content is a requirement. Seeds were weighed within seven days of
extraction whilst maintained in ambient conditions (60–80%RH and 20 ◦C) to remove excess moisture
gained during extraction. Five replicates of 50 seeds were weighed and the mean of this was used to
calculate 1000 seed weight for each accession. Moisture content was measured as described above.
Moisture content and mass for each accession was then plotted in a scatter chart.

4.8. Survival during Dry Storage

4.8.1. Effect of Maturity

Two M. acuminata subsp. banksii accessions from batch 1 were selected from a seemingly more
mature (accession #11) and a less mature bunch (accession #4). Maturity level was identified during
collecting. The seemingly mature bunch had darker fruit colour and softer pulp texture, as well as more
powdery endosperm compared to the less mature bunch (Figure 5). Subsample seeds were selected
across all hands and mixed, so that the seeds used reflected the entire accession. For these selected
accessions, embryo rescue was carried out after extraction as described above, and then after 1 week, 1,
3 and 6 months of dry storage in a paper bag stored in a dry room (15%RH, 20 ◦C). Forty eight seeds
were used from each accession at each time point. The MC of seeds of each accession at each time
point described was measured.
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4.8.2. Effect on Morphology

Seeds from the selected M. acuminata subsp. banksii accessions (#4 and #11) were dissected and
photographed at the same time points and conditions described above. A digital microscope (Keyence
VHX5000) was used at 150–200 x magnification. Ten seeds were used per accession, condition and
time point.

4.9. Statistical Analysis

Counts from the categorised outcomes of the embryo rescue tests were transformed into lists
where each embryo’s reaction was a nominal outcome. These data were then used to build multinomial
logistic regression (MLR) models to analyse the log-odds of the embryo rescue outcome category
using the nnet R package [104]. Maximum models were reduced by comparing Akaike information
criterion (AIC) and carrying out the likelihood ratio test. Effects plots were produced from the models
by predicting and then plotting data using the effects R package [105]. Statistics were carried out in
R v 3.6.2 [106].

5. Conclusions

The aim of this study was to assess the viability of banana seeds collected during two collecting
missions in order to inform ex situ conservation of banana CWRs. (1) We found that in general Musa
seeds collected in PNG and stored in the seed bank had low viability. (2) There was considerable
variation between accessions, Musa balbisiana seeds had significantly higher post-storage viability
than other species. (3) Variation within accessions, according to the position in the infructescence,
was significant, with seeds of M. acuminata subsp. banksii from the basal end having lower viability
after storage than from the male bud end. (4) Freshly extracted seeds lost much of their viability
during desiccation. (5) Predictions of seed storage behaviour based on physical properties indicate
that Musa seeds are at the threshold of orthodox and intermediate classification; this is in keeping
with our embryo rescue results. (6) M. acuminata subsp. banksii seeds, identified in the field as more
mature, had higher viability before and during dry storage than less mature seeds, but this level was
also reduced after dry storage.

This assessment of seed viability demonstrates the importance of advancing understanding of the
seed storage behaviour of CWRs. In particular, we show how the ecology and adaption of species and
the development of their seeds in time effects the viability of seeds collected for storage.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/9/1243/s1,
Figure S1: (A) Annual precipitation, and (B) precipitation of the driest quarter (three-month period), across the
native distribution of the species evaluated in this study. Data extracted from WorldClim v2.0 based on occurrence
records of species (data compiled by A. Mertens). Green dots displays means. Figure S2: Batch 1 fruits during
processing after arrival at Meise Botanic Gardens, Belgium. Fruits are separated according to hand position on
the bunch. Table S1: Multinomial logistic regression coefficients in log-odds (logits) and standard deviations in
parentheses. (A) Embryo rescue outcome of batch 1 post storage. (B) Embryo rescue outcome of post-storage
Musa acuminata subsp. banksii accessions in batch 1 according to hand position (1 being at the basal peduncle end
of the infructescence). (C) Embryo rescue outcome of seeds from batch 2 after drying in a desiccator for seven
days, a factor with two levels (‘Wet’ and ‘Dry’). Embryo rescue outcome categorised after 28 days. Stars designate
significance levels for p values * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001.
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