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Abstract: Geranyl diphosphate synthase (GPPS) is a plastid localized enzyme that catalyzes the
biosynthesis of Geranyl diphosphate (GPP), which is a universal precursor of monoterpenes.
Wintersweet (Chimonanthus praecox L.), a famous deciduous flowering shrub with a strong floral scent
character, could have GPPS-like homologs that are involved in monoterpenes biosynthesis, but it
remains unclear. In the present study, five full-length GPPS and geranylgeranyl diphosphate synthases
(GGPPS) genes were identified in the wintersweet transcriptome database. The isolated cDNAs
showed high protein sequence similarity with the other plants GPPS and GGPPS. The phylogenetic
analysis further classified these cDNAs into four distinct clades, representing heterodimeric GPPS small
subunits (SSU1 and SSU2), homodimeric GPPS, and GGPPS. Analysis of temporal expression revealed
that all genes have the highest transcript level at the full-open flower stage. From tissue-specific
expression analysis, CpGPPS.SSU1 and CpGGPPS1 were predominantly expressed in petal and
flower, whereas CpGPPS.SSU2, GPPS, and GGPPS2 showed a constitutive expression. Additionally,
the subcellular localization assay identified the chloroplast localization of SSUs and GGPPSs proteins,
and the yeast two-hybrid assay showed that both CpGPPS.SSU1 and CpGPPS.SSU2 can interact with
the GGPPS proteins. Taken together, these preliminary results suggest that the heterodimeric GPPS
can regulate floral scent biosynthesis in wintersweet flower.
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1. Introduction

The floral scent is one of the main features that define the aesthetic value of cut flowers and
ornamental plants [1]. It is made up of the specialized metabolites of plants, which enable them
to interact with their environment by attracting pollinators and repelling pests, such as herbivores,
pathogens, and parasites [2]. The floral scent is the composite of different volatile organic compounds
(VOCs), which mainly include terpenoids, phenylpropanoids, benzenoid compounds, and fatty acid
derivatives [3]. Moreover, the content and composition of VOCs vary among species and contribute
to their distinct fragrance [4]. Overall, terpenoids account for a range of secondary metabolites with
numerous volatile constituents, which are derived from two interconvertible five-carbon (C5) precursors
(isopentenyl diphosphate (IPP) and its allylic isomer, dimethylallyl diphosphate (DMAPP)) [5].
These C5-isoprene building units are produced from two independent pathways: (1) the mevalonic
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acid pathway, which leads to the formation of sesquiterpenes; and (2) the methylerythritol phosphate
(MEP) pathway, which contributes to the biosynthesis of monoterpenes and diterpenes [6].

In the MEP pathway, DMAPP and IPP molecules are condensed (head to tail) by the geranyl
diphosphate synthase (GPPS), resulting in the formation of geranyl diphosphate (GPP) which is
a universal precursor of monoterpenes. In several plant species, GPPSs have been characterized
as heterodimeric and homodimeric forms [7,8]. Structurally, the heterodimeric GPPS is composed
of one large subunit (LSU) and a small subunit (SSU) [9–11]. The LSU of heterodimeric GPPS
shares high sequence similarity (50–75%) with the geranylgeranyl diphosphate synthases (GGPPS)
and possess prenyltransferase activity, producing GGPP and often lower levels of GPP and FPP,
while the SSU shares only 22–38% sequence similarity with the GGPPS and have no prenyltransferase
activity [9]. The interaction of LSU with SSU causes a shift in the composition and content of the
product, which normally favors the formation of GPP as compared to the activity displayed by the LSU
alone. The homodimeric GPPS is catalytically active and produces GPP as a product [9,12,13]. Recent
studies have shown the involvement of both homodimeric and heterodimeric GPPSs in monoterpenes
formation in different plant species, such as Antirrhinum majus, Humulus lupulus, Clarkia breweri,
Phlaenopsis bellina, Arabidopsis thaliana, and Mangifera indica [9,13–17]. Except for monoterpenes,
there are also few reports which support the participation of homodimeric GPPS and heterodimeric
GPPS in gibberellin and carotenoid biosynthesis in tomato and red pepper, respectively [7,18].

Wintersweet (Chimonanthus praecox L.) is a diploid (2n = 22) deciduous flowering shrub and
ornamental plant, which belongs to the family Calycanthaceae. It is native to China and has been
cultivated as a garden and potted plant for the past 1000 years [19]. Moreover, its unique time
to flower (November to March), distinct soothing scent, and prominent yellow color of flower
enhance its ornamental values and make it a popular landscape, as well as a cut flower plant [19].
The scent of wintersweet flower is mainly dominated by volatile monoterpenoid, sesquiterpenoid,
and benzenoid compounds [20]. However, less is known about their biosynthesis-related molecular
mechanism(s). To date, only CpFPPS (farnesyl diphosphate synthase) and CpSAMT (salicylic
acid carboxyl methyltransferase) have been investigated [21,22]. In addition, Tian et al. [23] used
transcriptome and proteome approaches to identify potential genes responsible for differences in
terpenoids and benzenoid compounds between wintersweet cultivars and suggested that GPPS might
play an important role in regulating floral fragrance.

The present study aimed to screen all the potential unigenes as candidate CpGPPS/GGPPS
genes from the transcriptome database of wintersweet plants [23] and further characterized these
genes through expression analysis in wintersweet, followed by subcellular localization and protein
interaction assays.

2. Results

2.1. Isolation of cDNAs Encoding CpGPPS/GGPPS

From the floral cDNA library of the C. praecox plant, eight cDNAs were found to be annotated as
GPPS/GGPPS, of which five cDNAs had full-length open reading frames (ORF). Blast (blastp) results
of these ORFs against the NCBI (https://www.ncbi.nlm.nih.gov/), TAIR (https://www.arabidopsis.
org/index.jsp), and Sol genomics (https://solgenomics.net/) databases showed that three cDNAs
(c81471, c64849, and c90672) have high sequence similarity with the known GPPS.SSU1, GPPS.SSU2,
and homodimeric GPPS proteins from other plants, respectively (Table S1). Moreover, the remaining
two cDNA (c80517 and c51170) are similar to the GGPPS protein.

2.2. Sequence Comparison, Gene Structure, and Phylogenetic Analysis

Multiple protein sequence alignment of the GPPS/GGPPS-like genes was performed with the
MEGA 7 software. The results showed that the amino acid sequence of c90672, c80517, and c51170
contain the two highly conserved aspartate-rich regions [(FARM (DDX2–4D) and SARM (DDxxD)]
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(Figure S1C,D; Table 1), while c64849 has only a FARM motif (Figure S1B; Table 1). Moreover,
the amino acid sequence of c81471 has none of these substrate binding motifs (Figure S1A; Table 1).
Further comparison identified the two conserved CxxxC motifs in both c81471 and c64849 and one
such motif in c80517 and c51170 similar to other plants (Figure S1A,B,D; Table 1). However, c90672 is
free from the CxxxC motif, similar to other characterized homomeric GPPSs (Figure S1C; Table 1).

Table 1. Characteristics of CpGPPS/GGPPS genes.

Gene/ cDNA Name ORF Length
(aa)

Theoretical
pI Value

Molecular
Weight (kDa)

In Silico
Subcellular
Localization
Prediction

Conserved Motif

CpGPPS.SSU1/c81471 306 7.07 33.00 Chloroplast CxxxC, CxxxC
CpGPPS.SSU2/c64849 341 5.75 37.60 Chloroplast CxxC, DDX(2–4)D, CxxxC

CpGPPS/c90672 428 5.85 46.84 Mitochondria DDX(2–4)D, DDxxD
CpGGPPS1/c80517 377 6.47 40.85 Chloroplast CxxxC, DDX(2–4)D, DDxxD
CpGGPPS2/c51170 384 5.97 41.39 Chloroplast CxxxC, DDX(2–4)D, DDxxD

For evolutionary relationship analysis, GPPS/GGPPS sequences from various plant species were
retrieved and used to build the phylogenetic tree. CpGPPS/GGPPS genes were classified into the four
distinct clades, representing GPPS.SSU1, GPPS.SSU2, homodimeric GPPS, and GGPPS (Figure 1A).
Moreover, GPPS.SSU1, GPPS.SSU2 and homodimeric GPPS contained one gene in each clade, while the
GGPPS clade contained two genes (c80517 and c51170). Gene structure analysis displayed that c81471,
c64849, c80517, and c51170 are intron-free genes, while c90672 contains 12 exons and 11 introns
(Figure 1B). Based on their molecular characteristics these sequences were named CpGPPS.SSU1,
CpGPPS.SSU2, CpGPPS, CpGGPPS1, and CpGGPPS2 (Table 1).

The ORFs of CpGPPS.SSU1, CpGPPS.SSU2, CpGPPS, CpGGPPS1, and CpGGPPS2 encode predicted
proteins of 306, 341, 428, 377, and 384 amino acids with a molecular weight of 33.00 kDa, 37.60 kDa,
46.84 kDa, 40.85 kDa, and 41.39 kDa and theoretical isoelectric point (pI) of 7.07, 5.75, 5.85, 6.47, and 5.97,
respectively (Table 1).

2.3. Spatiotemporal Expression Pattern of CpGPPS/GGPPS Genes

In plants, the formation of VOCs is a spatially and developmentally regulated phenomenon [4,24,25].
The transcript level of CpGPPS/GGPPS genes was examined using real-time quantitative polymerase
chain reaction (qRT-PCR) in various plant tissues, including the stamen, pistil, petal, flower, and leaf.
Relative expression levels of all the CpGPPS/GGPPS genes were compared with reference to the
relative expression of CpGGPPS2 in the stamen. All the CpGPPS/GGPPS genes showed variation in
the spatial expression intensities. Among the five genes, CpGPPS.SSU1 and CpGGPPS1 showed the
highest transcript, followed by CpGPPS, CpGPPS.SSU2, and CpGGPPS2. In detail, CpGPPS.SSU1 and
CpGGPPS1 genes were highly expressed in the petal and flower but had low expression levels in the
leaf, pistil, and stamen. Moreover, CpGPPS.SSU2, CpGPPS, and CpGGPPS2 were expressed in all the
examined tissues, with high transcript levels in the petal (Figure 2).

The temporal expression analysis of CpGPPS/GGPPS genes in flowers revealed that all genes had
the lowest expression levels in stage 1 (Figure 3). Moreover, the expression levels of all CpGPPS/GGPPS
genes, except CpGGPPS2 genes, increased gradually and reached a peak in stage 4, whereas their
expression levels were significantly decreased in stage 5 (Figure 3). Interestingly, a prominent change
in the temporal expression profile was observed for CpGPPS.SSU1 and CpGGPPS1 genes. Their level
of expression was significantly increased in stage 4, which was approximately 245- and 35-time higher
than that of stage 1, respectively (Figure 3).
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Figure 1. Phylogenetic and gene structure analysis of the wintersweet geranyl diphosphate synthase 
(GPPS)/geranylgeranyl diphosphate synthase (GGPPS). (A) The phylogenetic tree was generated by 
the neighbor-joining method using the MEGA 7.0, after alignment of deduced amino acid sequences 
by ClustalW. Numbers in the nodes are the bootstrap support values from 1000 replicates. The 
accession numbers are given in parenthesis. (B) Schematic genomic structure of CpGPPS/GGPPS 
genes. The green box represents the exon and the black lines between them denote intron. The dark 
orange box represents the untranslated region. 

The ORFs of CpGPPS.SSU1, CpGPPS.SSU2, CpGPPS, CpGGPPS1, and CpGGPPS2 encode 
predicted proteins of 306, 341, 428, 377, and 384 amino acids with a molecular weight of 33.00 kDa, 
37.60 kDa, 46.84 kDa, 40.85 kDa, and 41.39 kDa and theoretical isoelectric point (pI) of 7.07, 5.75, 5.85, 
6.47, and 5.97, respectively (Table 1).  

Figure 1. Phylogenetic and gene structure analysis of the wintersweet geranyl diphosphate synthase
(GPPS)/geranylgeranyl diphosphate synthase (GGPPS). (A) The phylogenetic tree was generated by
the neighbor-joining method using the MEGA 7.0, after alignment of deduced amino acid sequences by
ClustalW. Numbers in the nodes are the bootstrap support values from 1000 replicates. The accession
numbers are given in parenthesis. (B) Schematic genomic structure of CpGPPS/GGPPS genes. The green
box represents the exon and the black lines between them denote intron. The dark orange box represents
the untranslated region.
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Figure 3. Temporal expression profile of CpGPPS.SSU1, CpGPPS.SSU2, CpGPPS, CpGGPPS1,
and CpGGPPS2 in different developmental stages of the wintersweet flower. Different lowercase
letters on bars indicate significant differences among tissues at p < 0.05 based on HSD post-hoc test. S1:
Closed bud with green petals, S2: Closed bud with yellow petals, S3: Partial open flower, S4: Open
flower but not pollinated, S5: Senescent flower.

2.4. Subcellular Localization of CpGPPS/GGPPS Genes

In silico study indicated the presence of putative transit peptide in CpGPPS.SSU1, CpGPPS.SSU2,
CpGGPPS1, and CpGGPPS2 proteins with the chloroplast localization, while the CpGPPS protein was
found to be localized in the mitochondria (Table 1). To validate, protein sequences of CpGPPS.SSU1,
CpGPPS.SSU2, CpGGPPS1, CpGGPPS2, and CpGPPS were fused to the N-terminus of the PRI101-EGFP
vector, and these recombinant vectors were transiently expressed into the Nicotiana benthamiana
leaves. Through microscopy, the green fluorescent protein (GFP) fluorescence signals of CpGPPS.SSU1,
CpGPPS.SSU2, CpGGPPS1, and CpGGPPS2 were detected in the chloroplasts, whereas CpGPPS-GFP
fusion protein fluorescence signals were detected in the mitochondria (Figure 4).
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form a heterodimer, we performed the yeast 2 hybrid (Y2H) assay. The result revealed that yeast cells 
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Figure 4. Subcellular localization of CpGPPS.SSU1, CpGPPS.SSU2, CpGPPS, CpGGPPS1, and CpGGPPS2
in the N. benthamiana leaves. GFP signals from the adaxial leaf surface were observed by using a
confocal laser scanning microscope. GFP, green fluorescence image; Autofluorescence, chlorophyll
autofluorescence image; Merge, overlay of GFP and autofluorescence.

2.5. CpGPPS.SSU1 and CpGPPS.SSU2 Interaction with GGPPS

To validate if the CpGPPS.SSU1 and CpGPPS.SSU2 can interact with the GGPPS/GPPS.LSU to
form a heterodimer, we performed the yeast 2 hybrid (Y2H) assay. The result revealed that yeast cells
carrying the plasmid pairs BD-CpGPPS.SSU1 + AD-CpGGPPS2, BD-CpGPPS.SSU2 + AD-CpGGPPS2,
BD-CpGPPS.SSU2 + AD-AtGGPPS11 and the positive control plasmid pair grew and turned blue
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on the QDO/X medium, indicating that the testing plasmid pair could interact and activate the
reporter genes in the GAL4 system. On the other hand, yeast cells harboring the plasmid pairs,
namely BD-CpGPPS.SSU1 + AD-CpGGPPS1, BD-CpGPPS.SSU2 + AD-CpGGPPS1, BD-CpGPPS.SSU1
+ AD-AtGGPPS11, BD-CpGPPS.SSU1 + AD-empty, and BD-CpGPPS.SSU2 + AD-empty plasmid
pairs and negative control could not grow and did not show any interaction on the QDO/X medium
(Figure 5).
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Figure 5. Interaction of CpGPPS.SSUs with CpGGPPSs and AtGGPPS11. (A) Key: 1, BD-CpSSU1
+ AD-empty; 2, BD-CpSSU1 + AD-CpGGPPS1; 3, BD-CpSSU1 + AD- CpGGPPS2; 4, BD-CpSSU1 +

AD-AtGGPPS11; 5, BD-Lam + AD-Rec-T (negative control); 6, BD-53 + AD-Rec-T (positive control); 7,
BD-CpSSU2 + AD-CpGGPPS1; 8, BD-CpSSU2 + AD-CpGGPPS2; 9, BD-CpSSU2 + AD- AtGGPPS11; 10,
BD-CpSSU2 + AD-empty. (B) The CpGPPS.SSUs were fused with the DNA binding domain (BD) of
PGBKT7 and GGPPSs were fused with the activation domain (AD) of the PGADT7 vector. Yeast strain
AH109 co-transformed pairwise with both binding and activation vectors and spotted on the minimal
synthetic dropout (SD) medium without leucine and tryptophan. (C) Yeast strains relative to those
in the left panel were spotted on the SD medium lacking adenine, histidine, leucine, and tryptophan
supplied with X-α-Gal.

3. Discussion

Short-chain prenyl diphosphate synthases are enzymes of the isoprenoid pathway that use IPP
and DMAPP to produce central intermediates in the isoprenoid metabolism. Short-chain prenyl
diphosphate synthases are represented by three enzymes: GPPS, FPPS, and GGPPS [26]. Isolation
and functional characterization of GPPSs from different plant species have confirmed the existence of
homodimeric and heterodimeric forms, which are comprised of two similar subunits and one GPPS.SSU
with one GPPS.LSU, respectively [15]. From the wintersweet transcriptome database [23], we isolated
five transcripts that were annotated as GPPS/GGPPS-like genes: one homodimeric GPPS (CpGPPS), two
GPPS small subunits (CpGPPS.SSU1, CpGPPS.SSU2), and two GGPPS (CpGGPPS1, and CpGGPPS2)
sequences (Table 1). Subsequent sequence analysis indicated that homodimeric CpGPPS and both
CpGGPPSs have two conserved aspartate-rich motifs, containing FARM (DD(X)2–4D) and SARM
(DDXXD) (Figure S1C,D; Table 1), which are essential for catalysis and substrate binding [27]. However,
CpGPPS.SSUs lack one or both of these motifs (Figure S1A,B; Table 1). Besides, the CxxxC motif is
needed for physical interaction between both subunits of heterodimeric GPPS [13–15]. In the present
study, two CxxxC motifs were found in CpGPPS.SSUs and one motif in CpGGPPSs (Figure S1A,B,D;
Table 1), which is consistent with the previous findings from other plant species.

The scent of the wintersweet flower is composed of different volatile compounds, of which
α-linalool is the most abundant monoterpene volatile compound, accounting for about 36% of the
wintersweet floral scent [28]. Moreover, the formation of monoterpenes possesses tissue specificity
and is often related to the maturity of a given tissue [29,30]. The wintersweet flower develops a strong
and specific fragrance during flower opening [31]. Further, wintersweet flowers contain the maximum
number of scent-emitting nectaries at the fully opened flower stage. Dominantly, the maximum number
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of scent-emitting nectaries resides on petals during flower development [32]. In the present study,
CpGPPS/GGPPS genes were expressed in all tested tissues, with varying levels (Figure 2). Namely,
the CpGPPS.SSU1 and CpGGPPS1 were highly expressed in the petal and flower, suggesting that these
genes could have an important role in scent-producing tissues. Temporal expression analysis revealed
that all CpGPPS/GGPPS genes, except CpGGPPS2, showed the maximum expression at fully opened
flower stage, followed by reduction at the senescence stage (Figure 3). These expression profiles are
consistent with the finding of Xiang et al. [21], who reported that the C. praecox L. ‘H29’ flowers had
the maximum monoterpene contents at the partially opened (58.06%) and fully opened stage flowers
(57.89%), followed by a sudden decline at senescence (9.44%). Overall, these results suggest that the
spatiotemporal expression of CpGPPS.SSU1 and CpGGPPS1 is strictly confined to the scent-emitting
tissues with a good association to monoterpene contents. Moreover, Chen et al. (2015) reported the
constitutive expression of AtGPPS.SSU2 and found its involvement in monoterpene biosynthesis [16].
This finding indicates that we cannot neglect the role of CpGPPS.SSU2 in scent biosynthesis in the
wintersweet flower and suggest further investigations.

All genes/enzymes involved in the MEP pathway are known to have a transit peptide for their
plastid targeting. The subcellular localization experiments in Catharanthus roseus and Litsea cubeba
displayed the plastidial localization of GPPS/GGPPS [12,18,33]. On the other hand, there are few reports
which support the mitochondrial, cytosolic, and endoplasmic reticulum localization of this pathway’s
genes [26]. In the present study, the subcellular localization assay revealed that CpGPPS.SSU1,
CpGPPS.SSU2, CpGGPPS1, and CpGGPPS2 proteins have strong GFP signals in the chloroplast region
similar to the previous findings of GPPS.SSU1 from A. majus, GPPS.SSU2 from C. annuum and GGPPSs
from A. thaliana [14,26]. However, the GFP fluorescence of CpGPPS protein was not observed in the
chloroplast, likely because it is localized in the mitochondria (Figure 4), consistent with the previous
result of homodimeric GPPS in C. roseus [12]. These results support the chloroplast localization of
CpGPPS.SSU1 and CpGPPS.SSU2 genes, further suggesting the functional involvement of these genes
in monoterpene biosynthesis and metabolism.

In the heterodimeric GPPS gene, LSU is active and functional itself, while SSU is inactive and
needs to interact with the LSU for functioning [9,12]. Through Y2H assay, both the CpGPPS.SSU1
and CpGPPS.SSU2 showed interaction with CpGGPPS2. Moreover, CpGPPS.SSU2 also interacted
with the AtGGPPS11 (Figure 5). These results support the possibility of heterodimeric GPPS
existence in the wintersweet plant and warrant speculation that the SSU of heterodimeric GPPS
could have a role in modifying or accelerating the product specificity of LSU or GGPPS. These
assertions are consistent with previous suggestions. For instance, following the bacterial genetic
complementation assay, when LiGPPS.SSU1 and LiGPPS.SSU2 were individually co-transformed with
catalytically active LiGGPPS, both SSU interacted and reduced the carotenoid contents [34]. Moreover,
when AmGPPS.SSU1 was transformed in tobacco, it act as a modifier and increases the GPP, as well as
monoterpene biosynthesis, at the expense of GGPP-derived compounds, i.e., gibberellins, chlorophyll,
and carotenoids [14]. On the other hand, MpGPPS.SSU1 act like an accelerator when overexpressed
in tobacco, as it promotes shoot branching and early flowering by an elevated content of cytokinin
and gibberellin. Wang et al. [18] reported that the virus-induced gene silencing of CaSSU2 led to a
reduction in carotenoid content in red pepper fruit. However, the knowledge about this phenomenon
remains unknown in wintersweet. In the future, all CpGPPS/GGPPS candidate genes need to be further
investigated by exploiting techniques such as in vitro enzymatic assays and genetic transformation to
obtain deeper insights.

4. Materials and Methods

4.1. Plant Material and Sampling

A healthy and vigorous wintersweet plant (C. praecox L. ‘H29’) was selected as the study material.
The experimental plant was grown under natural field conditions in the campus of Huazhong
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Agricultural University (Wuhan, China). Flower samples were collected at five developmental stages
(stage 1 to stage 5), from bud development to senescence (Figure 6). In detail, flower developmental
stages were characterized with the following distinct morphological characters: Closed bud with green
petals (stage 1), closed bud with yellow petals (stage 2), partial open flower (stage 3), open flower but
not pollinated (stage 4), and senescent flower (stage 5). For spatial expression analysis, the leaf, open
flower, stamen, pistil, and petal samples were collected. All samples were immediately frozen in liquid
nitrogen and stored at −80 ◦C for further use.Plants 2020, 9, x FOR PEER REVIEW 10 of 13 
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4.2. Database Mining and Sequencing of CpGPPS cDNAs

The GPPS/GGPPS sequences of A. thaliana and L. cubeba were used as a query to blast against the
C. praecox genome database (unpublished), and the floral transcriptome database [23] to retrieve all
the putative CpGPPS/GGPPS protein sequences from wintersweet. A blastp analysis of the retrieved
CpGPPS/GGPPS protein sequences was carried out by searching against the NCBI (https://www.ncbi.
nlm.nih.gov/), Sol genomics (https://solgenomics.net/), and TAIR (https://www.arabidopsis.org/index.
jsp) databases to find their homologs in other plant species. The largest ORF of CpGPPS/GGPPSs
were amplified using the high-fidelity DNA polymerases (Vazyme, China) with gene-specific primers
(Table S2). PCR was performed in a 50-µL reaction mixture comprising phanta max superfidelity DNA
polymerases (11.5 µL, 1 unit/µL), forward and reverse primer (each 2.5 µL, 10 µM/µL), cDNA template
(2 µL, 1 µg/µL) and ddH2O (31.5 µL) was subjected to the following PCR instructions: 95 ◦C for 5 min,
and 35 cycles of 95 ◦C for 30 s, 60 ◦C for 30 s, 72 ◦C for 45 s, and a final extension of 72 ◦C for 7 min.
The amplicons were purified using the Tiangel Midi Purification Kit (Tiangen, China) and cloned into
a pEASY-T1 cloning vector (Transgen, China) for sequencing. The consistent sequencing results of
each CpGPPS/GGPPSs were used for subsequent analysis.

4.3. Bioinformatics Analysis

The ORF of CpGPPS/GGPPSs were identified using the online tool ‘ORF finder’ (http://www.
ncbi.nlm.nih.gov/gorf/gorf.html). Molecular weight and pI values of the putative proteins were
predicted with the ExPASy tool (http://web.expasy.org/compute_pi/). The NCBI conserved domain tool
(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) was used to identify the functional domains.
TargetP 1.1 server (http://www.cbs.dtu.dk/services/TargetP/), ChloroP (http://www.cbs.dtu.dk/services/
ChloroP/) and PSORT (http://psort.hgc.jp/) systems were used to predict the signal peptides and
subcellular localization. Multiple sequence alignment of CpGPPS/GGPPS sequences, as well as
the phylogenetic tree, was constructed using the MEGA 7 software, following the neighbor-joining
method [35]. Gene structure was predicted using an online GSDS tool (http://gsds.cbi.pku.edu.cn/;
Hu, et al. [36]).

4.4. RNA Extraction and qRT-PCR

Total RNA was extracted from different samples using the Hipure plant RNA purification kit
(Magen Biotech, China), following the manufacturer’s instructions. One microgram of high-quality
RNA was used to synthesize the first strand of cDNA using TransScript One-Step gDNA Removal
and cDNA Synthesis SuperMix (TransGen Biotech, China). qRT-PCR was performed in the 10-µL
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reaction mixture comprising 5 µL of SYBR® Premix Ex Taq™ II mix (Takara, Dalian, China), 0.3 µL
of primer (forward and reverse each; the final concentration of 10 µM), 3.9 µL of ddH2O, and 0.5 µL
of cDNA template with a final concentration of 300 ng/µL. The reactions were carried out using a
Quant studio 7 flex real-time system (Applied Biosystems Life Technologies, New York), following the
manufacturer’s protocol. The reaction was started with an initial incubation at 50 ◦C for 2 min and
95 ◦C for 5 min, then subjected to 40 cycles of 95 ◦C for 10 s, 60 ◦C for 20 s, and 72 ◦C for 20 s. qRT-PCR
was performed in three biological replicates, and each biological replicate consisted of three technical
replicates. Moreover, β-actin was used as a housekeeping gene to normalize the relative expression of
target genes. Relative gene expression was analyzed following the 2–∆∆CT method [37].

4.5. Subcellular Localization

For protein localization, we generated the green fluorescent fusion protein in frame with
Sma1/EcoR1 cloning sites of the PRI101-EGFP vector driven by CaMV 35S promoter. The coding
sequence of CpGPPS/GGPPSs were amplified (without stop codon) from C. praecox cDNA using
gene-specific primers (Table S2). Amplified fragments were fused with the 5′ end of the GFP sequence
to generate a cassette comprising of 35S-CpGPPSs-EGFP. The resulting constructs of CpGPPSs-EGFP
fusion were sequenced to confirm the protein fusions. All the constructs were then transferred into
A. tumefaciens strain (GV3101+p19) by a freeze-thaw method. Transformed Agrobacterium clone
was grown in LB medium until the OD600 value reached 0.4–0.6 and was then used to infiltrate the
leaves of 3–5-week-old N. benthamiana plants. The suspension solution was infiltrated on the lower
surface of leaves using a 1-mL sterile needleless syringe, followed by a dark period for two days [38].
After 2–3 days of infiltration, the fluorescence signal of the GFP was examined at 488 nm under a
confocal microscope (TCS-SP8, Leica, Germany).

4.6. Yeast 2-Hybrid Assay (Y2H)

The truncated versions of CpGPPS.SSU1, CpGPPS.SSU2, CpGGPPS1, CpGGPPS2, and AtGGPPS11
without the predicted plastid target peptide were amplified and sequenced using the gene-specific
primers (Table S2). The amplified fragments of CpGPPS.SSU1 and CpGPPS.SSU2 were cloned in
frame with the binding domain (GAL4) of the pGBKT7 (bait) vector, while CpGGPPS1, CpGGPPS2,
and AtGGPPS11 were introduced in frame with the activation domain (GAL4) of the PGADT7 (prey)
vector to use in protein interaction evaluation. The respective pairs of bait and prey vectors were
co-transformed into the yeast strain (AH109) by the LiAc/DNA/PEG method, following the Yeast
Protocols Handbook from Clontech (http://www.clontech.com). Co-transformed AH109 cells were
cultured on the synthetic dropout (SD) media without Leu and Trp, and the interaction/activation of
two proteins was studied on the SD media lacking Leu, Trp, His, and Ade.

4.7. Statistical Analysis

The data were evaluated by the HSD post-hoc test in the ANOVA program of Statistix 8.1 (Florida,
USA). Different lowercase letters on bars indicate significant differences at p < 0.05.

5. Conclusions

Five GPPS/GGPPS genes (CpGPPS.SSU1, CpGPPS.SSU2, CpGPPS, CpGGPPS1, and CpGGPPS2)
were isolated in wintersweet flower. qRT-PCR results showed that the expression of CpGPPS.SSU1
was predominantly confined to the fragrance-producing tissues and was upregulated during flower
development, indicating important roles in floral volatile emission. In addition, the present data
confirm that both CpGPPS.SSUs can interact with GGPPS-like proteins, and localization experiments
further support the presence of chloroplast localized heterodimeric GPPS in the wintersweet flower.
Collectively, the present data warrant consideration of heterodimeric GPPS.SSU as a target for the
manipulation of floral scent production. Further studies will better define the modes of regulation and
confirm the roles of heterodimeric GPPS in wintersweet flower scent production.

http://www.clontech.com
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