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Abstract: Chelidonium majus L. is a medicinal plant well-known as a valuable source of isoquinoline
alkaloids, which has a variety of pharmacological properties including anti-viral and anti-bacterial
effects. However, considerable intraspecific bio-morphological variability in C. majus complicates
raw material identification and verification. For the first time, we have brought into cultivation
five populations of C. majus subsp. majus originated from different regions, and performed their
agro-morphological, microanatomical and molecular cytogenetic characterization. All examined
populations produced high seed (18.6–19.9 kg/ha) and raw material (0.84–1.08 t/ha) yields; total alkaloid
contents were within 0.30–0.38%. Nevertheless, significant differences in plant morphology and
yield-contributing traits were observed. The performed microanatomical analysis of leaves and
flowers in double- and normal-flowered plants revealed micro-diagnostic features (including tissue
topography, types of stomata, laticifers, structure of leaf mesophyll, hairs, sepals and petals) important
for identification of C. majus raw materials. The analysis of chromosome morphology, DAPI-banding
patterns, FISH mapping of 45S and 5S rDNA and also chromosome behavior in meiosis allowed us
to identify for the first time all chromosomes in karyotypes and confirm relative genotype stability
of the studied plants. Our findings indicate that the examined C. majus populations can be used in
further breeding programs.

Keywords: Chelidonium majus L. subsp. majus; bio-morphology; phytotomy of leaves and flowers;
meiosis; karyotype; fluorescence in situ hybridization (FISH)

1. Introduction

Herbal medicine is considered to be an effective alternative to chemical medicine. Wild and
introduced medicinal plants are used as a source of raw materials for obtaining a lot of effective
remedies. Currently, about forty percent of medicines comprise herbal active ingredients, and the
demand for medicinal herbs continues to increase [1,2].

Greater celandine, Chelidonium majus L. (Papaveraceae), is a valuable medicinal plant which is
widely distributed in Europe and Asia and also introduced in Northern America. C. majus is a plant of
great interest for its wide use in folk medicine and also in official phytotherapy. This species is known
to synthesize a broad range of secondary metabolites which provide its therapeutic properties [3].
The most common group of these secondary metabolites are isoquinoline alkaloids (1–2% in the
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herb and 2–4% in the roots), including chelidonine, berberine, sanguinarine, coptisine, chelerythrine
and protopine [4]. Besides, C. majus contains flavonoids, saponins, vitamins (e.g., vitamin A and C),
mineral elements, sterols, and acids and their derivatives [5]. Pharmacological properties ascribed to
C. majus include anti-bacterial [6], anti-inflammatory [7], anti-viral [8], anti-fungal [9], anti-protozoal
and radioprotective [10], hepatoprotective [11], natriuretic and antidiuretic and also anti-alzheimer
effects [12]. In recent years, an anti-cancer potential of various C. majus alkaloids including chelidonine,
sanguinarine, berberine, chelerythrine and coptisine, has been demonstrated, and the interest in Greater
celandine as a natural crude drug has increased significantly [4,13–16]. In particular, the methanol
extract of C. majus and the coptisine alkaloid showed strong cytotoxicity against human colon
carcinoma [17]. In addition, C. majus is used to produce a semi-synthetic drug NSC-631570 called
Ukrain that was shown to exhibit selective toxicity towards malignant cells and promoted as a potential
anti-cancer agent [18,19]. Recently, the molecular mechanisms of alkaloid synthesis in C. majus have
been investigated based on de novo transcriptome sequencing of leaf and root tissues using Illumina
technology [20].

Until 1982, the genus Chelidonium L. was considered to be monotypic with C. majus L. as the only
species. Later, based on studies of the species cytotaxonomy and distribution areas, this genus was
divided into two species: C. majus L. (2n = 12) native to Europe, northern Africa and western Asia,
and C. asiaticum (Hara) Krahulc. (2n = 10) native to eastern Asia [21–23]. Alongside the differences
in chromosome numbers and distribution areas, these species are slightly different morphologically.
C. asiaticum is hairier, with narrower and sharper leaf lobes compared to C. majus. Besides, within
C. majus, two subspecies: C. majus L. subsp. majus (distributed in Europe) with more laciniate lobes
of leaves and C. majus L. subsp. grandiflorum (DC.) Printz (native to South Siberia and China) were
distinguished [21]. Molecular phylogenetic studies of Papaveroideae based on DNA sequences of
chloroplast rbcL and matK and also nuclear ITS regions indicated that the members of Chelidonieae
formed a strongly supported monophyletic clade in the current tree [24]. Recently, the whole
chloroplast genome of C. majus has been sequenced, and these data could be useful for further study of
the phylogenetic relationships within the family Papaveraceae [25].

Due to a wide geographical distribution of greater celandine, considerable variability in
morphological, biochemical and other characters was observed [26–28]. Specifically, in different
Chelidonium samples, the species identification and therefore, validation of raw materials,
are complicated by a significant variability of morphological characters, which depends on edaphic,
climatic and other environmental conditions. For adequate investigation of intra- and inter-population
variability of greater celandine, a complex of diagnostic characters for assessments of raw materials
should be used [29].

Moreover, currently available karyological data on Chelidonium are based on simple monochrome
staining of chromosomes, and for C. majus, only basic number of chromosomes and their sizes (ranged
from 2 to 7 µm in different reports) have been determined to date [21,30,31]. The application of modern
molecular cytogenetic techniques will make it possible to obtain the additional information about
structural organization of the C. majus genome that could be useful for breeding efforts focused on
developing new valuable cultivars.

In the present study, for the first time, we have brought into cultivation five samples of
C. majus subsp. majus originated from different regions, and performed their agro-morphological,
microanatomical and molecular cytogenetic characterization. This approach aimed to estimate the
intraspecific variability essential for potential breeding programs and also reveal new diagnostic
characters of C. majus raw materials.
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2. Results

2.1. Agro-Morphological Peculiarities

The growing period of the C. majus plants lasted for 173–178 days (from April to September).
Plants of the studied populations were highly resistant to the local winter conditions (approximately
ranged from 3 to −20 ◦C). The number of overwintered plants in the newly introduced samples was
comparable to the control (90–96%).

The examined C. majus plants were up to 80 cm high with branched and sparsely pubescent stems
and green alternately placed leaves (Figure 1).
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multi-seeded, pod-shaped and elongated (4–4.5 cm long) (Table 1). The seeds are shiny, ovate and 
dark brown. All parts of the plant except flowers contain yellow-orange latex. 

Table 1. Plant vegetative parameters in the studied C. majus populations. 

Plant Vegetative Parameters 
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Number of flower spikes 10.7 ± 0.7 8.0 ± 0.5 10.6 ± 0.6 9.8 ± 0.6 11.7 ± 0.9 

Figure 1. Chelidonium majus plants and inflorescences in the control normal-flowered (K 171-1) and
double-flowered (K 211) populations. Plants in the rosette growth stage: (a) K 171-1, (b) K 211; flowering
plants: (c) K 171-1, (d) K 211; inflorescences: (e) K 171-1, (f) K 211.

The basal (rosette) leaves had long petioles and pinnatodentate leaflets with 5–7 lobed segments
(Figure 1a,b). The apical leaves had short petioles and leaflets with 3–5 lobed segments (Figure 1c,d).
The plants produced umbellate inflorescences with 2–6 flowers (Figure 1c,d). Normal-flowered plants
had four bright yellow petals and two whitish sepals (Figure 1e). Plants of the double-flowered
sample (K 211) had 24.6 ± 1.56 petals in a flower and differed in flower morphology compared to the
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normal-flowered samples (Figure 1e,f; Table 1). Fruits were multi-seeded, pod-shaped and elongated
(4–4.5 cm long) (Table 1). The seeds are shiny, ovate and dark brown. All parts of the plant except
flowers contain yellow-orange latex.

Table 1. Plant vegetative parameters in the studied C. majus populations.

Plant Vegetative Parameters
Accession Number

K 171-1
Control K 211 K 176 K 117-18 K 223-14

Number of flower spikes 10.7 ± 0.7 8.0 ± 0.5 10.6 ± 0.6 9.8 ± 0.6 11.7 ± 0.9

Number of flowers per plant 121.5 ± 7.2 118.0 ± 7.0 120.5 ± 7.2 117.5 ± 6.3 125.5 ± 6.7

Flower diameter, cm 1.43 ± 0.08 1.58 ± 0.08 1.44 ± 0.08 1.37 ± 0.07 1.49 ± 0.06

Number of petals in a flower 4.0 ± 0.0 24.6 ± 1.56 4.0 ± 0.0 4.0 ± 0.0 4.0 ± 0.0

Number of seeds per fruit 50.2 ± 3.5 51.0 ± 3.6 50.1 ± 3.2 48.2 ± 3.1 51.2 ± 3.2

Length of fruits, cm 4.5 ± 0.3 4.0 ± 0.2 4.3 ± 0.2 4.2 ± 0.2 4.4 ± 0.3

Seed yield, kg/ha 18.6 ± 1.4 19.1 ± 1.7 18.2 ± 1.5 17.5 ± 1.5 19.9 ± 1.7

Values are represented as the mean value ± standard deviation.

Plants in the studied C. majus populations were not significantly different in several morphological
features, including number of flower spikes, number of flowers per plant, flower diameter, number of
seeds per fruit and length of fruits (Table 1).

At the same time, the examined plant populations differed in the mean value of plant height,
which was higher in the control K 171-1 and K 223-14 samples compared to the other samples (K 176,
K 117-18 and K 211). Plants of both K 171-1 and K 223-14 samples also had the increased length of
basal and apical leaves (Figure 2).
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Figure 2. Bio-morphological traits of plants in the studied Chelidonium majus populations. Plant height
(cm), length of apical and basal leaves (cm), total alkaloid content calculated as chelidonine (%), weight
of 1000 seeds (g), number of leaves and yield of air-dried grass (t/ha) (the vertical axis) in the studied
samples (the horizontal axis).
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Table 2. List of the studied samples of C. majus.

Accession Number Origin Developmental Characteristics

K 171-1
control

Moscow region, RF
(55◦33′52′′ N, 37◦35′30′′ E) normal-flowered

K 211 Moscow region, RF
(55◦33′52′′ N, 37◦35′30′′ E) double-flowered

K 176
Prioksko-Terrasny Nature

Reserve, RF
(54◦54′53′′ N, 37◦34′19′′ E)

normal-flowered

K 117-18 Petrozavodsk region, RF
(61◦50′57′′ N, 34◦19′54′′ E) normal-flowered

K 223-14 Minsk region, Belarus
(54◦33′57′′ N, 29◦09′17′′ E) normal-flowered

Plants of the double-flowered sample (K 211) displayed decreased length of apical leaves, number
of leaves and number of flower spikes compared to plants of the control (K 171-1) sample having the
same origin (Moscow region) as well as the other C. majus samples from other regions (Figure 2).

The mean values of yields of air-dried grass varied from 0.84 to 1.08 t/ha, and the control sample
(K 171-1) had the highest yield (1.08 ± 0.11 t/ha). Also, the plants of this sample produced the most
leaves (76.50± 4.75) (Figure 2). Values of seed yields were rather high in all populations (Table 2). At the
same time, plants of the studied C. majus samples differed in the value of weight of 1000 seeds which
was higher in samples K 171-1 (control), K 176 and K 117-18 compared to K 211 and K 223-14 (Figure 2).

Besides, plants of the examined C. majus samples differed in total alkaloid contents which ranged
from 0.30% to 0.38%. The samples K 171-18 and K 176 had higher total amount of alkaloids (0.38 ± 0.02
and 0.36 ± 0.01) compared to the control (0.31 ± 0.01) (Figure 2).

2.2. Microanatomical Analysis of Leaves and Flowers

A microscopic analysis of leaves and flowers was performed in plants of double-flowered (K 211)
and control normal-flowered (K 171-1) samples. In both C. majus samples, cells of the leaf epidermis
had flexuous configuration, especially on the lower part of a leaf. In cells of the lower epidermis,
the anomocytic stomata, surrounded by 4–7 (more rarely, 3–8) epidermal cells, were observed. In some
places, radiate folds of the cuticle were revealed (Figure 3a,b). On tops of the crenate teeth, where leaf
veins converged, epidermal cells were nipple-shaped and also large water stomata were found
(Figure 3b). Spongy cell tissue formed intercellular space (aerenchyma tissue). Leaf veins had
lactiferous cells with yellowish-brown granular contents (Figure 3c,d). On the lower leaf epidermis,
along the veins, simple long pluricellular (up to 20 cells) thin-walled hairs were observed, which were
often overwound, crumpled or had few collapsed cells (Figure 3e,f). In plants of the double-flowered
population, fewer hairs were observed compared to the control.

In flowers of both double-flowered and control samples, sepal epidermis had longwise elongated
cells with straight or slightly flexuous walls. Along the veins subjacent the sepal, lactiferous cells were
revealed. In examining of a petal, longwise elongated epidermal cells with straight or slightly flexuous
walls and yellowish-brown contents were observed. Outside the petal, large anomocytic stomata were
detected. Besides, water stomata were found on top of the sepal (Figure 3g,h).
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Figure 3. Micro-morphology of the epidermis of leaves and flowers in plants of the control
normal-flowered (K 171-1) and double-flowered (K 211) populations of Chelidonium majus. Cells of
the lower epidermis of a leaf: (a) K 211, cell with stomata (arrows) (magnification ×200), (b) K 171-1,
cell with stomata (arrows) and crenate teeth with nipple-shaped cells (arrow heads) (×400). Lactiferous
cells (arrows) observed along a leaf vein (×400): (c) K 211, (d) K 171-1. Simple long pluricellular hairs
(arrows) on the leaf epidermis: (e) K 211, (f) K 171-1 (×200). Top of a sepal with water stomata (arrows)
(×400): (g) K 211, (h) K 171-1.
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2.3. Chromosome Structure

Analysis of meiosis in maternal pollen cells of the examined C. majus samples indicated 98.41%
regular meiotic chromosome behavior with normal chromosome disjunction and six bivalents (6II) at
metaphase I (M-I) (Figure 4a). Besides, few chromosome associations (trivalents and quadrivalents)
and also univalents lying outside the metaphase plate (on the side of the plate or at the cellular
poles) were revealed (Figure 4b–f). At anaphase I (A-I) and anaphase II (A-II), 97.83% of cells of
the studied samples had normal chromosome disjunction (6:6). However, several abnormalities
(chromosome lagging, bridges, fragments, chaotic disjunction, unequal distribution of genetic material,
etc.) were also observed (Figure 4g,h). At the tetrad stage, normal tetrads (97.76%) as well as few
polyads (pentads and hexads) and misoriented tetrads were detected (Figure 4i). The cumulative
percentage of microsporocytes with meiotic abnormalities observed in the studied C. majus samples
was negligible (2.17%).
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Figure 4. Chromosome behavior during meiosis observed in the studied Chelidonium majus plants:
(a) M-I, 6II, (b) M-I, several chromosomes are localized outside the metaphase plate, (c) M-I, 4II + 1IV,
(d) M-I, 2II + 2IV, (e) M-I, 5II + 2I, (f) M-I, 5II + 1I, (g) A-I, chromosome lagging, (h) A-I, chromosome
bridges and chromosome lagging, (i) pentad.

Karyotypes of the studied C. majus plants contained six metacentric and submetacentric
chromosome pairs (2n = 2x = 12) including three satellite chromosomes pairs. Chromosome lengths
ranged from 4.5 to 6.5 µm. The satellite chromosomes had similar morphology with the secondary
constriction located in the pericentromeric region of the short arms. Large DAPI-bands were observed
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in the pericentromeric and terminal regions, while small and middle-sized bands were located in the
intercalary regions of chromosomes. DAPI-staining produced a characteristic pattern on each C. majus
chromosome pair, though individual variations in DAPI-banding patterns were revealed (Figure 5).
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In all examined C. majus karyotypes, clusters of 45S rDNA were revealed in the secondary
constriction regions of satellite chromosome pairs 1, 4 and 6, and 5S rDNA sites were detected in
the median regions of the long arms of chromosome pairs 3 and in the pericentromeric regions of
the long arms of chromosome pair 4. Also, in some individuals, size heteromorphism of 45S rDNA
clusters between homologous chromosomes was observed (shown, in particular, in chromosome
pair 4 in the K 176 karyotype). Besides, in karyotypes of sample K 171-1, a minor polymorphic 5S
rDNA locus was revealed in the pericentromeric regions of satellite chromosome pair 6 (Figure 5).
Based on chromosome morphology, DAPI-banding patterns and distribution of 45S and 5S rDNA loci,
all chromosome pairs in karyotypes were identified and chromosome idiograms of plants from each
studied C. majus populations were constructed (Figure 5).
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3. Discussion

Bio-morphological characterization is one of the most universal and available approaches to
estimate the plant intraspecific diversity [32]. Every plant genotype has definite traits including
plant height, length and width of leaves, size and shape of flowers and fruits, trichome morphology,
and color of leaves, seeds, flowers and fruits, which are used for identification of species, cultivars
or hybrids, as well as verification of their homogeneity and stability [33]. In this respect, plants in
the studied C. majus populations were not significantly different in several morphological features,
including number of flower spikes, number of flowers per plant, flower diameter, number of seeds
per fruit and length of fruits. At the same time, the studied populations differed in lengths of basal
and apical leaves, which were longer in plants of the control K 171-1 and K 223-14 samples. Besides,
the examined plants had longer fruits (4–4.5 cm) compared to the earlier described data (3 cm) [3].
The detected morphological variations were probably due to considerable intra- and inter-population
variability in bio-morphological characters which could be related to genome plasticity facilitating
wide geographical distribution of this species [26–28].

We also found that the value of plant height in the studied C. majus samples was less (up to 80 cm
high) if compared with the data reported earlier (up to 100 cm high) [3]. Moreover, the examined
populations were significantly different in plant height, which was higher in samples K 171-1 and
K 223-14 compared to the other three populations. An optimal value of plant height is considered to
be an important agronomic trait which contributes to a high yield as short plants are more resistant
to lodging than tall ones. Currently, breeding efforts for many medicinal plants are aimed to growth
limitation of lateral meristems in joints of a plant stem, and in this connection, short-stemmed
populations can be useful for the further breeding process [34].

In the present study, plants of double-flowered morphotypes were revealed within the
normal-flowered C. majus population (K 171-1) and then cultivated as a separate population
(K 211). It was previously shown that double-flowered plants could appear spontaneously within
normal-flowered populations due to the impact of natural or artificial mutagenic factors [35,36].
According to our observations, double-flowered C. majus plants were short-stemmed, had high
fertility rate and produced viable seeds and stable yields. These characteristics indicated that they
could be used as potential genetic resources in breeding programs with a view to developing new
ornamental cultivars.

Several characters, including length of growing seasons, winter hardness and seed productivity,
indicate how the recently introduced plants have adapted to the regional environments and growing
conditions [37]. In the present study, the vegetation period of the examined C. majus plants lasted
from April to September (173–178 days long) and did not exceed the average length of a growing
season for agricultural crops (200–220 days) observed in the local (Moscow) region [38]. Besides,
the studied C. majus plants were highly resistant to winter conditions (90–96% of overwintered plants).
Agronomic characterization of the studied C. majus populations indicated that they were rather high
yielding. All examined C. majus populations demonstrated high yield potentials for producing both
seeds (18.6–19.9 kg/ha; 48.2–51.2 seeds per fruit) and raw materials (0.84–1.08 t/ha).

Isoquinoline alkaloids are considered to be pharmacologically relevant substances of C. majus [39].
It is known that alkaloid contents in different individual plants (and even in parts of plants) are not
stable [40]. These differences can depend on genotype (chemotype), plant age, plant part, developmental
stage or environmental conditions [41]. The examined C. majus samples were different in total alkaloid
contents which ranged from 0.30% to 0.38%. Two samples (K 171-18 and K 176) had higher contents of
alkaloids (0.38% ± 0.02% and 0.36% ± 0.01%, respectively) compared to the control (0.31% ± 0.01%).
Nevertheless, according to the requirements of the Pharmacopoeia of RF on C. majus [42], the total
contents of alkaloids calculated as chelidonine should not be less than 0.2%. All studied C. majus
populations complied with these requirements, which might be indicative of the high quality of these
raw materials.
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The identification and estimation of quality of C. majus raw materials are especially important
for its medicinal use. The microscopic authentication is considered to be one of the most important
methods for the standardization and quality control of drug raw materials. Particularly, a microscopic
analysis is applied for accurate identification and/or determination of a level of contamination in
a plant sample [43]. Besides, structural features of the epidermis of leaves and flowers are often
used as the verification standard in harvesting of the aboveground phytomass [44,45]. In this regard,
the important diagnostic characters for identification of plant raw materials include shapes of the
epidermal cells, structure of leaf mesophyll, sepals and petals, presence and types of stomata, presence
and structure of hairs and glands, presence of water stomata, crystal inclusion, secretory cells and
laticifers [45]. Isoquinoline alkaloids are the components of latex which is produced in all parts of
C. majus plants, except flowers. Latex is stored in the special secretory cells called laticifers. According
to Pharmacopoeial monographs, presence of articulate laticifers with yellowish content is used as an
authentication microscopic mark in powdered herb [40,42,46].

In the present study, we performed for the first time a microscopic examination of the epidermis
of leaves and flowers in double-flowered (K 211) and control normal-flowered (K 171-1) C. majus plants.
We revealed a number of common features in their internal structure, which characterize this medicinal
plant and could be used for raw material identification. Particularly, these common micro-diagnostic
features of C. majus plants included tissue topography (curvilinear thin-walled cells of epidermis),
anomocytic types of stomata, presence of water stomata and laticifers, peculiarities in structure of leaf
mesophyll, sepals and petals, and also types and structure of hairs on the lower leaf epidermis. At the
same time, in plants of the double-flowered population, we observed fewer specific hairs on the lower
leaf epidermis if compared with the control. These differences could also be a manifestation of the
intraspecific bio-morphological variability described earlier [26–28].

The analysis of chromosome behavior during meiosis is an effective tool for detection of different
chromosome abnormalities at gametogenesis, which can further result in pollen sterility and decrease
seed production. This approach makes it possible to identify the most stable plant genotypes which
can be used as genetic resources in further breeding programs [47].

In microsporocytes of the examined C. majus plants, normal meiotic segregation patterns (bivalents,
6:6) were observed, though few univalents, trivalents and quadrivalents were also detected. As the
result of such disorders, cells with different chromosome abnormalities (chromosome lagging, bridges,
fragments, chaotic disjunction, unequal distribution of genetic material, etc.) could appear at the
following stages of meiosis. Such chromosome aberrations can be related to the spindle assembly
defects and result in formation of gametes with unbalanced chromosome number [48]. At the tetrad
stage, normal tetrads were observed, though we also revealed several pentads and misoriented
tetrads which were probably associated with defects in achromatic spindle orientation [49]. The above
mentioned meiotic abnormalities were detected in many plant species [50,51]. They are considered to
be related to some genetic [52,53] and/or environmental [54–56] factors. Such chromosomal disorders
can result in sterility of gametes and low percentage of pollen viability [57]. In the studied C. majus
populations, however, the percent of microsporocytes with meiotic abnormalities was insignificant,
indicating the relative genotype stability of the examined plants.

Currently available data on the C. majus karyotype show that it contains twelve metacentric and
submetacentric chromosomes, including one pair of satellite (SAT) chromosomes [21,30,31]. However,
these reports provided different information about the sizes of its chromosomes: 2–3 µm [31] and
5–7 µm [30]. This can be related to differences in methods used for preparation of metaphase
chromosome spreads from root meristem, which resulted in different levels of chromosome
condensation. At the same time, the comprehensive examination of C. majus chromosomes with the use
of molecular markers has not previously been conducted, though data on its transcriptome sequencing
have already been obtained [20]. In the present study, for the first time, we have studied the karyotype
of C. majus subsp. majus with the use of FISH with 45S and 5S rDNA. Besides, we analyzed chromosome
DAPI-banding patterns displaying (after FISH) AT-rich heterochromatin stains in chromosomes of
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vascular plants. This approach is considered to be a useful tool to reveal chromosome structural
variations among populations [58]. Eukaryotic 45S and 5S rRNA genes are clustered in tandem repeats
which can localize in one or several chromosome pairs. Due to the fact that rRNA genes are highly
conserved, rDNA clusters are easily mapped by FISH on chromosomes in different species and widely
used as chromosomal markers in plant karyological studies [59].

At the same time, detailed analysis of karyotypes of plant species having small-sized chromosomes
needs special approaches. In view of this, during the stage of chromosome preparation from
root meristem, we applied nonspecific DNA intercalator 9-AMA, which was shown to inhibit the
chromosome condensation process and facilitate the accumulation of metaphase cells with long
chromosomes [60]. As a result, the obtained C. majus karyotypes contained chromosomes ranging
from 4.5 to 6.5 µm (depending on the chromosome condensation level). Chromosome DAPI-banding
patterns were used as an additional parameter for the identification of the homologous chromosomes.
Visual analysis showed that these patterns were specific to each chromosome pair though low intra-
and inter-individual variability in presence and sizes (intensity) of DAPI-bands was also observed.
Polymorphism on chromosome DAPI-banding patterns (AT-rich heterochromatin chromosome regions)
is considered to be related to structural peculiarities of chromosomes [61].

In all studied C. majus karyotypes, the FISH procedure revealed 45S rDNA loci in three chromosome
pairs, 1, 4 and 6. The size heteromorphism of 45S rDNA clusters observed between homologous
chromosomes of some individuals can be related to different activity of NORs in these chromosomes,
which was also detected in other species of plants and animals [36,62]. Major 5S rDNA clusters were
revealed on two chromosome pairs, 3 and 4. Besides, in karyotypes of plant population K 171-1,
a minor polymorphic 5S rDNA locus was revealed in the pericentromeric region of SAT chromosome
pair 6. It was demonstrated earlier that the number of 5S rRNA gene copies could vary in different
plant ecotypes, and those changes could be related to plant genome plasticity [63,64]. At the same
time, considerable chromosome abnormalities including aneuploidy or chromosome rearrangements
were not detected in plants of the examined C. majus populations, which is indicative of a relative
stability of their karyotypes. The constructed chromosome karyograms can be useful for karyotype
comparisons in different C. majus populations as well as for further comparative karyological studies
of taxa within the genus Chelidonium, important for verification of their phylogenetic relationships.

4. Materials and Methods

4.1. Plant Material

In the present study, we used seeds of five samples of C. majus subsp. majus originated from
different regions (Table 2) and obtained from the seed collection of All-Russian Scientific Research
Institute of Medicinal and Aromatic Plants, Moscow region, Russia. These plant samples were cultivated
in the fields of the Botanic Garden of the All-Russian Institute of Medicinal and Aromatic Plants
during three successive experimental seasons (summer 2017–summer 2019). The indigenous C. majus
population K 171-1 was used as a control. In 2016, double-flowered C. majus plants spontaneously arose
within the normal-flowered (control) population, and seeds of those (double-flowered) plants were
collected. Then, the double-flowered plant population was cultivated as a separate sample (K 211).

At late April 2017, seeds of samples K 171-1, K 211, K 176, K 117-18 and K 223-14 were planted on
the open-field trial plots having a randomized block design. Total and accounting areas of the plots
were 8.4 and 3.6 m2 respectively, with four-fold replication.

The soil cover of the trial plots was represented by sod-podzolic (moderately podsolized) silt loams
(80–100 cm) underlain by moraine deposits. The plough-layer (22–23 cm) was brownish-grey and had
crumbly structure and sandy loam soil composition. The content of healthy water-stable aggregates
(>0.5 mm) was 40–50%. The soils of the trial plots had the following nutritional characteristics:
humus content—2.1%, pH 5.5, the content of mobile phosphorus (P2O5)—52 mg/kg and exchangeable
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potassium (K2O)—87 mg/kg. In primary cultivation, fertilizer treatment with N30P30K30 was performed
according to the standard techniques described earlier [65].

4.2. Bio-Morphological Characterization

Plant vegetative parameters including: plant height, number of flower spikes, number of flowers
per plant, flower diameter, number of petals in a flower, number of seeds per fruit and length of fruits,
length of apical and basal leaves, number of leaves, yield of grass and seeds were determined at four
phenological growth stages: leaf development, flower-bud formation, flowering and fruit maturity
according to the standard techniques [66]. At least 50 plants were analyzed from each population.
In each vegetation period, the yield of grass (raw material) was cut using one-cut harvest method at the
stage of flowering. The yield of seeds was harvest at the stage of fruit maturity [67]. The statistical data
analysis was performed using standard functions of Microsoft Excel 2013. In April, plant resistance to
winter low temperatures was determined as a number of live plants at the beginning of growth of
basal rosette leaves in spring.

4.3. Chemical Composition of the Grass

Plant raw material (herbs of C. majus cut at the stage of plant flower maturity) was ground
into a powder. Total alkaloid content in plant raw material was determined according to the State
Pharmacopoeia of the Russian Federation with the use of Agilent Technology 6890N gas chromatograph
(Agilent Technology, Santa Clara, CA, USA) [42].

4.4. Chromosome Spread Preparation

Mitotic chromosome spreads were prepared from plant root meristem with the use of DNA
intercalator 9-aminoacridine (9-AMA) according to the technique developed previously [60]. Plant
seeds were germinated on the moist filter paper in Petri dishes at room temperature (RT). Root tips
(of 0.5–1 cm long) were excised and stored for 16–20 h in ice-cold water with 1 µg/mL of 9-aminoacridine
(9-AMA) (Sigma, St. Louis, MO, USA) to inhibit chromosome condensation process and accumulate
mitotic divisions. Then, the root tips were fixed in Carnoy’s fixative (ethanol:acetic acid (3:1)) for 48 h
at 4 ◦C. Before squashing, the roots were transferred into 1% acetocarmine solution in 45 % acetic acid
for 15 min. The cover slips were removed after freezing in liquid nitrogen. The slides were dehydrated
in 96 % ethanol and stored at −20 ◦C until use.

For meiotic chromosome preparation, young flower buds (2–5 mm long) were fixed in Carnoy’s
fixative for 3–4 h at 4 ◦C. The fixed buds were transferred into 1% acetocarmine solution in 45% acetic
acid for 15–20 min at RT. On the slide, anthers were taken out of the flower buds, cut with a preparation
needle in a drop of 45% acetic acid and covered with a cover glass. Then, spread preparations were
prepared. After freezing in liquid nitrogen, the cover glasses were removed. Then the slides were
dehydrated through a graded ethanol series and air dried. Alternatively, the slides were stored in 96%
ethanol at −20 ◦C until use.

4.5. FISH Procedure

For FISH, the following probes were used:
1. pTa71 containing a 9 kb long DNA sequence of common wheat, including 18S-5.8S-26S (35S)

ribosomal DNA (rDNA) [68].
2. pTa794 containing a 420 bp long DNA sequence of wheat, including 5S rDNA [69].
These DNA probes were labeled directly with SpectrumAqua and SpectrumRed fluorochromes

(Abbott Molecular, Wiesbaden, Germany) respectively, by nick translation according to the
manufacturer’s protocol. The FISH procedure was performed as previously described [70]. After
overnight hybridization, the slides were washed in 0.1 × SSC at 50 ◦C for 5 min, 2 × SSC at 37 ◦C for
10 min, 2 × SSC at RT for 5 min and 1 × PBS at RT for 3 min. Then the slides were dehydrated through
a graded ethanol series and air dried.
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4.6. DAPI Counterstaining

After meiotic spread preparation and FISH procedures, chromosome slides were counterstained
with 0.1 µg/mL DAPI (4′,6-diamidino-2-phenylindole) (Serva, Heidelberg, Germany) dissolved in
Vectashield mounting medium (Vector laboratories, Peterborough, UK).

4.7. Analysis of Chromosomes

Chromosomal slides were examined using an Olympus BX-61 epifluorescence microscope
(Olympus, Tokyo, Japan). Chromosome images were captured with a monochrome charge-coupled
device camera (Cool Snap, Roper Scientific, Inc., Tucson, AZ, USA). Then, they were processed with
Adobe Photoshop 10.0 (Adobe, Birmingham, AL, USA) software. At least 15 metaphase plates and 100
meiotic cells (10 plants) were analyzed for each sample. Identification of mitotic chromosomes was
performed based on the morphology and distribution of revealed chromosome markers. In karyograms,
chromosome pairs were set in the decreasing order of size.

4.8. Microanatomical Analysis of Leaves and Flowers

Epidermal peel preparation from leaves and flowers of C. majus samples was performed according
to the standard technique [71]. The sample preparations were analyzed using an Altami BIO 2 LED
biological microscope equipped with a. 3.1MP digital eyepiece USB camera (Altami, St. Petersburg,
FL, USA). The images were processed with Adobe Photoshop CS3 (Adobe, Birmingham, AL, USA)
software. At least 15 images for each sample of C. majus were examined.

5. Conclusions

The performed comparative agro-morphological, anatomical and molecular cytological
investigation of five introduced samples of C. majus subsp. majus allowed us to estimate the intraspecific
variability. At the same time, plants of the studied populations were not significantly different in most
vegetative parameters or in micro-morphology of the epidermis of leaves and flowers. Moreover,
chromosome aneuploidy and considerable chromosome rearrangements in their karyotypes were not
detected. The analysis of chromosome behavior in meiosis also confirmed the relative genotype stability
for the studied plants. Our findings indicate that plants of the newly introduced populations were
adapted to the local environments: they retained a stable karyotype, possessed high yield potential,
had agro-morphological differences, and therefore, they can be used in breeding programs with a view
to further introduction and developing new valuable cultivars. The revealed micro-diagnostic features
of leaflets and flowers, including tissue topography, anomocytic types of stomata, presence of water
stomata and laticifers, peculiarities in structure of leaf mesophyll, sepals, petals and hairs, can be used
for identification of C. majus raw materials.
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