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Abstract: Oxidative stress is involved in different diseases, such as diabetes and neurodegenerative
diseases. The genus Azorella includes about 70 species of flowering plant species; most of them
are commonly used as food and in particular as a tea infusion in the Andean region of South
America in folk medicine to treat various chronic diseases. Azorella glabra Wedd. aerial parts
were firstly analyzed for their in vitro antioxidant activity using different complementary assays.
In particular, radical scavenging activity was tested against biological neutral radical DPPH; ferric
reducing power and lipid peroxidation inhibitory capacity (FRAP and Beta-Carotene Bleaching
tests) were also determined. The Relative Antioxidant Capacity Index (RACI) was used to compare
data obtained by different assays. Then, the inhibitory ability of samples was investigated against
a-amylase and a-glucosidase enzymes involved in diabetes and against acetylcholinesterase and
butyrylcholinesterase enzymes considered as strategy for the treatment of Parkinson’s or Alzheimer’s
diseases. Moreover, the phytochemical profile of the sample showing the highest RACI (1.35) and
interesting enzymatic activities (ICs5p of 163.54 + 9.72 and 215.29 + 17.10 ug/mL in a-glucosidase and
acetylcholinesterase inhibition, respectively) was subjected to characterization and quantification
of its phenolic composition using LC-MS/MS analysis. In fact, the ethyl acetate fraction derived
from ethanol extract by liquid/liquid extraction showed 29 compounds, most of them are cinnamic
acid derivatives, flavonoid derivatives, and a terpene. To the best of our knowledge, this is the first
report about the evaluation of significant biological activities and phytochemical profile of A. glabra,
an important source of health-promoting phytochemicals.

Keywords: Apiaceae; Azorella glabra; DPPH; Beta-Carotene Bleaching; RACI; phenolic characterization;
UHPLC-MS/MS; polyphenols; flavonoids; health-promoting compounds

1. Introduction

Azorella glabra Wedd., also known as Azorella diapensioides or yareta, is an endemic Bolivian species
belonging to the Apiaceae (Umbelliferae) family. In the Andean region of South America, the plants
belonging the genus Azorella are commonly used to treat several chronic diseases in folk medicine [1].
The Azorella genus is rich in diterpenoids, with mulinane and azorellane skeletal, compounds with
a variety of important biological activities [2] that could explain the traditional use of the native
food plant species and health benefits of the infusions. Moreover, in a previous study, A. glabra was
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suggested as the “future in the past” [3] for its dose and time dependent anti-proliferative effect on the
multiple myeloma cells (MM), but is not present in any South American pharmacopoeias. In particular,
the chloroform and n-hexane fractions were the most active and their cytotoxic effect could be attributed
to the greater content of terpenoids. The influence of polarity of the solvents on total polyphenolic,
flavonoid, and terpenoid contents was also reported. In fact, the highest total polyphenolic and
flavonoid contents were reported in fractions obtained with polar solvents. On contrary, the highest
total terpenoid content was reported in non-polar fractions. Further research studies are needed to
explore the biological activities of A. glabra regarding its phytochemical composition to support its
potential effects on the human health.

In this study, the antioxidant activity of A. glabra samples were ascertained by using three
different complementary assays, namely 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), Ferric
Reducing Antioxidant Power (FRAP), and lipid peroxidation by Beta-Carotene Bleaching test
(BCB) in addition to the previously radical scavenging activity against synthetic 2,20-azino-bis(3-
ethylbenzothiazoline-6-sulfonic acid) (ABTS) and physiological superoxide anion (SO) and nitric
oxide (NO) radicals [3]. The oxidative stress has been implicated in different diseases such as
ageing, neurodegenerative disorders (Alzheimer’s disease and Parkinson’s disease), and diabetes [4,5].
For these reasons, we focused our attention also on the investigation of acetylcholinesterase (AChE)
and butyrylcholinesterase (BChE) enzymes inhibition, the two enzymes involved in regulation of ACh
levels in brain, therapeutic targets to cholinergic deficit [4]. Moreover, we evaluated the inhibition
of a-amylase and a-glucosidase enzymes, an effective strategy to lower the levels of postprandial
hyperglycemia typical in diabetic patients [6]. Then, the phytochemical profile was performed by
LC-ESI-MS/MS analysis and the identification and quantification of polyphenols were achieved using
commercially available standards [7]. To the best of our knowledge, this is the first report about the
evaluation of biological activity, including antioxidant, antidiabetic, and anticholinesterase activities,
and phytochemical profile of A. glabra.

2. Results and Discussion

The aerial parts of A. glabra were extracted by exhaustive dynamic maceration (four times for
3 h each) using 96% ethanol [7] with an extraction yield of 9.01%. To our knowledge, this is the first
time that A. glabra was extracted by 96% ethanol, usually other species of the Azorella genus were
extracted by petroleum ether [8,9]. Then, the present compounds in ethanol extract (Ag EtOH) were
separated on the basis of the solvent affinity by liquid/liquid extraction using an increasing solvent
polarity obtaining the extraction yields shown in Table 1, as reported previously [3].

Table 1. Extraction yields of Azorella glabra ethanol extract and its fractions.

Samples Extraction Yield (%)
Ag EtOH 9.01
AgH 31.52
AgC 44,50
AgEA 2.23
AgB 5.66
AgW 16.10

Samples are crude ethanol extract (Ag EtOH), n-hexane fraction (AgH), chloroform fraction (AgC), ethyl acetate
fraction (AgEA), n-butanol fraction (AgB), and water fraction (AgW). Data are expressed as percentage (%).
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2.1. Antioxidant Activity

The measurement of antioxidant activity on foods and plants are performed by more than
one in vitro method in order to establish the antioxidant ability of samples [7]. For this reason,
the antioxidant activity of the ethanol extract of A. glabra and its fractions were analyzed using three
different complementary in vitro antioxidant assays.

The neutral DPPH radical was used to evaluate the radical scavenging activity. The samples were
able to reduce the radical DPPH to the yellow coloured diphenylpicrylhydrazine in a concentration
dependent manner. The AgEA showed the highest radical scavenging activity (Table 2) with 240.33
+ 10.73 mg TE/g value, followed by AgB. Instead, the lowest activity was found in AgC, and AgH
was not active. Highly significant results were reported by Lamorte et al. for the radical scavenging
activity of A. glabra samples against cationic (ABTS) and physiological (superoxide anion) radicals [3].

Table 2. Results of DPPH scavenging activity, Ferric Reducing Antioxidant Power (FRAP), and
p-Carotene Bleaching assay (BCB) of A. glabra samples.

Samples DPPH (mgTE/g) FRAP (mgTE/g) BCB %AA
Ag EtOH 28.17 +2.322 7358 +0.712 26.70 +0.612
AgH nc 18.79 + 0.66 ° 22.50 + 0.65°
AgC 594 +0.27° 1545 +0.44° 2218 £ 1.54°
AgEA 240.33 +10.73 © 410.29 + 5.69 © 34.93 +1.37 ¢
AgB 22491 +4.84 4 318.57 +2.77 4 21.68 + 0.57 P
AgW 4312 +1.23° 95.33 + 3.86 © nc

Samples are crude ethanol extract (Ag EtOH), n-hexane fraction (AgH), chloroform fraction (AgC), ethyl acetate
fraction (AgEA), n-butanol fraction (AgB), and water fraction (AgW). Data are expressed as means + standard
deviation from three experiments; mg TE/g = mg of Trolox Equivalents per gram of dried sample; % AA = percentage
of Antioxidant Activity at initial sample concentration of 1 mg/mL; different superscripts in the same row indicate
significant difference (p < 0.05); nc = not calculable.

The FRAP test was used to evaluate the ferric reducing antioxidant power of samples and AgEA
presented the highest FRAP value (410.29 + 5.69 mg TE/g) followed by AgB (318.57 + 2.77 mg TE/g).
AgC and AgH were again the least active (Table 2).

The inhibition of lipid peroxidation was evaluated by the g-Carotene Bleaching assay (BCB) and
the most active sample was again the AgEA (34.93 + 1.37% AA), whilst the other fractions had similar
BCB values. As expected, there was no BCB activity for the polar AgW fraction (Table 2).

The Relative Antioxidant Capacity Index (RACI) was calculated to integrate the results of the
antioxidant activity obtained by DPPH, FRAP, and BCB assays in order to compare the different
phytocomplex antioxidant ability [3,7]. The results obtained so far agreed with RACI values (Figure 1).
In particular, the RACI evidences the ethyl acetate fraction presented the highest value (1.35), followed
by the butanol fraction (0.74). The AgW fraction presented the lowest index (-0.87) and, therefore,
a relative lack of antioxidant activity.

These antioxidant data are in line with other complementary antioxidant assay, i.e., ABTS [3].
Except Lamorte et al., there are no other studies that reported the antioxidant activity of A. glabra.
Although other species of Azorella, in particular the antioxidant activity of Azorella madreporica aerial
parts, was evaluated [10]. The aerial parts of A. madreporica were extracted with petroleum ether
followed by methanol. Then, the methanolic extract was subjected to Total Polyphenolic Content
(TPC), Total Flavonoid Content (TFC), and DPPH assays. A. madreporica had shown potent antioxidant
property on DPPH radical (ICsy of 96.57 + 1.00 pg/mL) and showed higher inhibition than Ag EtOH
extract obtained in this study (ICsy of 1109.04 + 33.84 pg/mL), which may be due to isoflavonoids
identified by HR-ESI-ToF-MS [10]. These results exemplify how different extraction solvents (ether
and methanol for A. madreporica and ethanol for A. glabra, respectively) influence the various in vitro
protocols used to determine the radical-scavenging activity.
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Figure 1. Relative Antioxidant Capacity Index (RACI) of Azorella glabra samples. Samples are crude
ethanol extract (Ag EtOH), n-hexane fraction (AgH), chloroform fraction (AgC), ethyl acetate fraction
(AgEA), n-butanol fraction (AgB), and water fraction (AgW).

The RACI values illustrated in Figure 1 may explain the high total polyphenol content of the ethyl
acetate and butanol fractions and the correlation between TPC and antioxidant activity in the earlier
study [3]. Moreover, the fractions obtained by polar solvents (ethyl acetate and n-butanol) reported the
highest total polyphenol content, indicating that the majority of polyphenolic compounds in the aerial
parts of A. glabra could be of polar nature [11].

2.2. Determination of Anticholinesterase Activity of A. glabra Samples

The A. glabra samples had a concentration-dependent activity on acetylcholinesterase and
butyrylcholinesterase enzymes (Figure 2). In particular, the AgC and AgH fractions showed a moderate
activity by in vitro AChE assay (ICsp of 30.75 + 0.67 and 99.19 + 6.18 pg/mL), compared with the
positive control galantamine (ICsg of 4.68 + 0.31 ug/mL) (Table 3). BChE enzyme was inhibited only by
Ag EtOH extract, and AgC and AgB fractions that showed butyrylcholinesterase activity weaker than
galantamine (ICsp 16.07 + 1.04 ug/mL). Again, the AgC fraction gave the lowest inhibition concentration
(ICs0 240.28 + 8.91 pug/mL) (Table 3).
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Figure 2. Acetylcholinesterase (AChE) (A) and butyrylcholinesterase (BChE) (B) inhibition activity
of galantamine and Azorella glabra samples. Samples are galantamine, crude ethanol extract (Ag
EtOH), n-hexane fraction (AgH), chloroform fraction (AgC), ethyl acetate fraction (AgEA), n-butanol
fraction (AgB), and water fraction (AgW). Data are mean + standard deviation from three experiments
performed in triplicate.

This is the first report on anticholinesterase activity of A. glabra. In a previous study, the effect
on the AChE enzyme of several terpenes (three lanostane-, two cycloartane-type triterpene, and two
mulinane-type) isolated from Azorella trifurcata was reported. All compounds showed moderate
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inhibitory activity toward the enzyme, which may be due to the presence of acetate groups in these
diterpenes [8].

Table 3. AChE and BChE inhibition by galantamine and Azorella glabra samples expressed as ICsg
values in pug/mL.

Samples AChE Inhibition (ICsp) BChE Inhibition (ICs)
Galantamine 4.68+0312 16.07 +1.042

Ag EtOH 193.81 +13.32P 421.50 + 39.38
AgH 99.19 + 6.18 ne
AgC 30.75 + 0.67 4 240.28 + 8.91°¢
AgEA 21529 +17.10° nc
AgB 113.08 +5.18 € 362.06 + 28.60 °
AgW nc nc

Samples are galantamine, crude ethanol extract (Ag EtOH), n-hexane fraction (AgH), chloroform fraction (AgC), ethyl
acetate fraction (AgEA), n-butanol fraction (AgB), and water fraction (AgW). Enzymatic inhibition not calculable
(nc). Data are mean =+ standard deviation from three experiments performed in triplicate. The concentration of
the sample required to inhibit the activity of the enzyme by 50% (ICsp) in pg/mL was calculated by nonlinear
regression analysis. In each test, the values with the same letter are not significantly different at the p < 0.05 level,
95% confidence limit, according to one-way analysis of variance (ANOVA).

2.3. Potential Antidiabetic Activity of A. glabra Samples

The inhibition of a-amylase and a-glucosidase enzymes is an important strategy in the treatment

of obese and/or diabetic patients. Different concentrations of the A. glabra samples were subjected for
inhibitory activities of both the enzymes. The samples were concentration-dependent and acarbose
was used as positive control (Figure 3).
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Figure 3. a-amylase (A) and a-glucosidase (B) inhibition activity of acarbose and Azorella glabra samples.
Samples are acarbose, crude ethanol extract (Ag EtOH), n-hexane fraction (AgH), chloroform fraction
(AgCQ), ethyl acetate fraction (AgEA), n-butanol fraction (AgB), and water fraction (AgW). Data are
mean + standard deviation from three experiments performed in triplicate.

In a-amylase inhibition assay, only the Ag EtOH reached the ICsq (172.25 + 7.25 ug/mL), which

was higher than acarbose (ICsp of 22.78 + 0.29 pg/mL, Table 4).

Whereas in the a-glucosidase assay, all samples except for AgC and AgW fractions showed

inhibition activity. Moreover, Ag EtOH, AgH, AgEA, and AgB fractions showed ICsy values lower
than acarbose (ICs( of 401.15 + 25.94 pug/mL) and the best of all were the AgH and AgEA fractions
(ICs0 of 159.91 + 5.59 and 163.54 + 9.72 pug/mL, respectively) (Table 4).
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Table 4. a-Amylase and a-glucosidase inhibition by acarbose and Azorella glabra samples expressed as
ICs values in pg/mL.

Samples a-Amylase Inhibition (ICsp) a-Glucosidase Inhibition (ICsq)
Acarbose 22.78 +0.29 2 401.15 +25.94 2
Ag EtOH 17225 +7.25P 207.70 +2.56 ©
AgH nc 159.91 +5.59
AgC nc nc
AgEA nc 163.54 +9.72 b
AgB nc 373.77 +29.842
AgW nc nc

Samples are acarbose, crude ethanol extract (Ag EtOH), n-hexane fraction (AgH), chloroform fraction (AgC), ethyl
acetate fraction (AgEA), n-butanol fraction (AgB), and water fraction (AgW). Data are mean + standard deviation
from three experiments performed in triplicate. Enzymatic inhibition not calculable (nc). The concentration of
the sample required to inhibit the activity of the enzyme by 50% (ICsp) in pg/mL was calculated by nonlinear
regression analysis. In each test, the values with the same letter are not significantly different at the p < 0.05 level,
95% confidence limit, according to one-way analysis of variance (ANOVA).

This is the first report on antidiabetic activity of A. glabra. A previous study on Azorella compacta
had also shown a potent antidiabetic property [12]. The Azorella species has been used as antidiabetic
medicine by the Andean natives. Fuentes et al. in 2005 [12] suggested that the diterpenic compounds
mulinolic acid, azorellanol, and mulin-11,13-dien-20-oic acid isolated from A. compacta are responsible
for the antidiabetic activity in ethnomedicine. It is also possible that the anti-diabetic properties of
A. compacta is due to its ability to increase insulin secretion as mentioned in a review by Prabhakar and
Doble [13].

2.4. Identification and Quantification of Phytochemicals

In order to evaluate the compounds responsible for the various bioactivities examined above,
the sample with the best antioxidant activity and the best enzyme inhibition was subjected to liquid
chromatography-tandem mass spectrometry analysis (LC-MS/MS). The A. glabra ethyl acetate fraction
(AgEA) was therefore chosen for the LC-MS/MS (Figure 4) as it showed the highest antioxidant
activity, the best RACI value, and antidiabetic activity. In other species of Azorella genus were
identified compounds belonging mainly to the class of diterpenoids [8,12], but this is the first report
of phytochemical profile of A. glabra. The profile of AgEA obtained by LC-MS analysis is shown in
Figure 4.

More than 29 compounds were detected and tentative identification of most of them was reached
through accurate mass and fragmentation pattern and aided by the existing literature (Table 5). For the
first time in A. glabra, 11 compounds were identified by comparing their retention times with those of
the available commercial standards (Table S1). In particular, we performed calibration curves for both
identified and used standards. The R? values for all calibration curves were over 0.99.

These compounds are cinnamic acid derivatives (chlorogenic acid (1), chlorogenic acid methyl
ester (6), cynarin isomer (7), 3,5-di-O-caffeoyl quinic acid (10) and 3,4-di-O-caffeoyl quinic acid
(11)), flavones (iso-orientin (4), orientin (5), luteolin-7-O-glucoside (8) and luteolin (15)), flavonol
(quercetin-3-O-glucoside (3)) and a triterpene (oleanolic acid (29)).
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The flavone orientin and the cinnamic acid derivative 3,5-di-O-caffeoyl quinic acid were the
most abundant (104.22 + 4.01 mg/g DW and 44.70 + 4.14 mg/g DW, respectively). The identified
phenolic compounds are known for their antioxidant properties [14-20] that could explain the good
antioxidant activity of ethyl acetate fraction of A. glabra. In particular, flavonoids such as luteolin
and luteolin-glycosides have been reported to have anti-inflammatory and antioxidant activities.
Moreover, plant species containing these compounds are known for their anti-inflammatory properties.
The antioxidant abilities of flavonoids are widely acknowledged. The two antioxidant structural
features of flavonoids are the presence of a B-ring catechol group and of a C2-C3 double bond in
conjugation with an oxo group at C4. Luteolin (15) and its glycosides iso-orientin (luteolin 6-C-glucoside,
4), orientin (luteolin 8-C-glucoside, 5), and cynaroside (luteolin 7-O-glucoside, 8) fulfil these two
structural requirements and the antioxidant activity of these compounds has been related to their
ability to scavenge reactive oxygen and nitrogen species. Moreover, luteolin could be developed as a
cancer chemopreventive agent and be useful in cancer therapy to sensitize tumor cells to the cytotoxic
effects of some chemotherapeutic drugs [21,22].
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Figure 4. Ethyl acetate fraction of Azorella glabra base peak intensity (BPI) chromatogram.

Four compounds were tentatively identified as feruloyl-caffeoyl quinic acid isomers (Table 5) with
mfz 529.13 (12, 13, 14 and 16) and ion fragmentations at m/z 367, 349, 191, 179, 161, and 135 [23,24].
In addition, one compound was tentatively identified as chlorogenic acid glucoside (9) with m/z 515.14
and ion fragmentations at m/z 353, 191, 179, 173, 161, and 135.
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Table 5. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) of ethyl acetate fraction of Azorella glabra.

[M-H]~

[M-H]-Calculated

Peak No. RT (min) Observed m/z iz Molecular Formula MS/MS Tentative Identity mg/g DW References
1 3.17 353.0888 353.0873 C16H1809 191,173, 135,127, 93, 85 Chlorogenic acid 7.12 +0.83 [25]
2 6.48 427.1980 427.1968 Cy1H3,09 367,327, 297, 285, 179, 161, 135, Methyl chlorogenate derivative nq [26]

101, 73, 61, 59

3 6.64 463.0859 463.0877 Cp1HaO12 300, 271, 255, 179, 151 Quercetin-3-O-glucoside 0.07 + 0.00 [26,27]

357,339, 327, 311, 299, 297, 285, L
4 6.68 447.0918 447.0927 Cy1HaoOn 269, 253, 191, 175, 149, 133, 109 Iso-orientin 1322+ 143 [28]

357,339,327, 311, 299, 297, 285, L
5 6.84 447.0910 447.0927 Co1HaoO11 269, 253, 191, 175, 149, 133, 109 Orientin 104.22 + 4.01 [28]
6 6.92 367.1038 367.1029 C17H2009 191, 179, 161, 107 Chlorogenic acid methyl ester 12.33 £ 0.04 [26]
7 7.14 515.1180 515.1190 CasHa4O12 353,179 Cynarin isomer 0.15 = 0.03 [29]
8 741 447.0921 447.0927 Cy1HagOr1 285,151 Luteolin-7-O-glucoside 0.65 % 0.10 [30]
9 7.67 515.1411 515.1401 CpoHpg014 353,191, 179,173,161, 135 Chlorogenic acid glucoside nq
10 7.83 515.1197 515.1190 Cp5H4012 353,335,191, 179, 161, 135 3,5-di-O-caffeoyl quinic acid 4470 +4.14 [26]
11 8.07 515.1209 515.1190 Cp5H4012 353,179,173, 135, 93 3,4-di-O-caffeoyl quinic acid 23.12 + 1.64 [26]

12,13,14,16  8.49,8.86,9.12,9.56 529.1365 529.1346 CagHagO12 367,349,191, 179, 161, 135 Femloyl'ciasfé:eyigumm acid nq [23]
15 9.32 285.0380 285.0399 Cy5H1006 151,133 Luteolin 039 + 0.01 [25]
17 9.98 325.1651 325.1651 Cy7Hys06 281,263, 235, 219, 203, 191, 151, Unknown nq
111, 83,59

584,513,191, 179, 161, 135, 119, .. . I
18 10.55 853.4720 853.4738853.4679  CygH79013C55Hg60g 113,101, 89, 85, 71, 59 Caffeoylquinic acid derivative nq
19 10.97 649.3929 649.3952 C36Hs5010 407,191,129, 113, 85, 75 Unknown nq
20 11.37 691.4073 691.4057 CasHgoO11 631,191, 113, 85, 95 Unknown nq

513, 408, 333, 285, 191, 179, 173,
21 11.87 867.4739 867.4742 Cy5H7, 016 153, 139, 89 Unknown nq
22 14.14 391.1744 391.1757 Cp1Hp07 391, 347, 305, 287, 259, 245, 217, 165 Unknown nq
23 15.17 677.3729 677.3748 C33Hs53014 415, 397,279,179, 161, 119, 101 Unknown nq
24 15.46 504.3098 504.3087 Cy9Hy50;7 279, 242,224,168, 153,79, 59 Unknown nq
25 15.76 426.9764 426.9785 C15HgOq5 407, 387, 293, 283, 255, 217, 81 Unknown nq
26 16.22 480.3083 480.3087 Cy7Hy50;7 255,242,224, 168, 153, 79 Unknown nq
27 16.95 579.3354 579.3381 CpsH5012 269, 255, 89 Unknown nq
28 18.10 553.3193 553.3165 C33Hy607 523,345,97, 84,73 Unknown nq
29 21.16 455.3539 455.3525 C30Hys03 407,377 Oleanolic acid 0.23 +0.05 [31]

8 of 14

Identification of compounds based on m/z, fragmentation pattern and retention time of standards. Quantities of the detected compounds were determined using commercial standards;

ng = not quantified.



Plants 2019, 8, 265 9of 14

3. Materials and Methods

3.1. Chemicals, Reagents, and Equipment

Solvents as ethanol, n-hexane, chloroform, ethyl acetate, n-butanol, hydrochloric acid, glacial
acetic acid, methanol, and phosphoric acid were purchased from Carlo Erba (Milan, Italy). Acetonitrile
and formic acid were purchased from Merck (Wicklow, Ireland).

2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,4,6-tripyridyl-s-triazine (TPTZ), iron (III) chloride
(FeCl3*6H,0), p-carotene, linoleic acid, Tween 20, 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB),
acetylcholinesterase (AChE) from Electrophorus electricus (electric eel, type VI-s, lyophilized
powder, CAS number: 9000-81-1), acetylthiocholine iodide (ATCI), butyrylcholinesterase (BChE)
from equine serum (lyophilized powder, CAS number: 9001-08-5), s-butyrylthiocholine chloride
(BTCC), trizma hydrochloride (Tris-HCI), bovine serum albumin (BSA), potassium phosphate
monobasic, sodium chloride, sodium hydroxide, sodium phosphate, potassium sodium tartrate
tetrahydrate, a-amylase from hog pancreas (CAS number: 9000-90-2), 3,5-dinitrosalicylic acid,
starch, 4-p-nitrophenyl-«-p-glucopyranoside, and a-glucosidase from Saccharomyces cerevisiae
(CAS number: 9001-42-7), were purchased from Sigma-Aldrich (Milan, Italy). Standards as
6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), butylhydroxytoluen (BHT), acarbose,
galantamine, and Leucine-Enkephalin were purchased from Sigma-Aldrich (Milan, Italy) and Merck
(Wicklow, Ireland), respectively. Standards for LC-MS/MS analysis (chlorogenic acid, chlorogenic acid
methyl ester, cynarin isomer, 3,5-di-O-caffeoyl quinic acid, 3,4-di-O-caffeoyl quinic acid, iso-orientin,
orientin, luteolin-7-O-glucoside, luteolin, quercetin-3-O-glucoside and oleanolic acid) were purchased
from Extrasynthese (Genay, France). Water was deionized using a Milli-Q water purification system
(Millipore, Bedford, MA, USA).

All spectrophotometric measurements were done in 96-well microplates or cuvettes on a UV-VIS
spectrophotometer (SPECTROstarNa"® BMG Labtech, Ortenberg, Germany). LC-MS/MS analyses were
performed on a Q-Tof Premier mass spectrometer (Waters Corporation, Milford, MA, USA) coupled to an
Alliance 2695 HPLC system (Waters Corporation, Milford, MA, USA). Mass spectrometry quantification
of the polyphenols was performed using Multiple Reaction Monitoring (MRM) experiments by Waters
Acquity (Waters Corporation, Milford, MA, USA) ultra-high performance liquid chromatography
coupled with tandem mass spectrometry (UHPLC-MS/MS).

3.2. Plant Material and Samples Preparation

A voucher specimen of aerial parts A. glabra was stored at the University of La Paz after the
collection in Bolivia near the Aymaya population/community (18.45° S to 66.46° W; 3750 msnm),
Bustillo province, Potosi department, Bolivia. Samples of the species are found in the herbal medicinal
plants of the National University Siglo XX, Llallagua, Potosi, Bolivia. A total of 140 g of aerial parts
of A. glabra were subjected first to dynamic maceration with 96% ethanol and then to liquid/liquid
extraction, as previously reported by Lamorte et al. in 2018 [3], obtained the initial ethanol extract (Ag
EtOH) and the n-hexane, chloroform, ethyl acetate, n-butanol, and water fractions (AgH, AgC, AgEA,
AgB and AgW, respectively). These six samples were analyzed for their biological activities.

3.3. Antioxidant Activity

3.3.1. Radical Scavenging Activity

The samples of A. glabra were tested for their radical scavenging capacity by in vitro DPPH assay.

The reaction between different sample concentrations (50 pL) able to reduce the radical DPPH
(200 puL) to the yellow colored diphenylpicrylhydrazine was monitored by spectrophotometer at
515 nm after 30 min and quantified as milligrams of Trolox Equivalents per gram of dried sample
(mg TE/g) [7,32,33].
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3.3.2. Ferric Reducing Antioxidant Power Assay (FRAP)

The reduction of the Fe** complex of tripyridyltriazine [Fe(II[)(TPTZ),]*>* to Fe?* complex
[Fe(IT)(TPTZ),]** (225 uL) by antioxidants present in acidic medium of different sample concentrations
(25 uL) was monitored at 593 nm after 40 min at 37 °C and Trolox was used as reference antioxidant
standard (FRAP values were expressed as mg TE/g) [7].

3.3.3. p-Carotene Bleaching Assay (BCB)

This assay was used to evaluate the inhibition of lipid peroxidation. The p-carotene emulsion
(950 pL) was mixed with sample at initial concentration of 1 mg/mL (50 uL) and BHT was used as
positive control. The microplate with 250 uL of solution of each samples was placed at 50 °C for 3 h
and the absorbance was measured at 470 nm at 0/, 307, 607, 90’, 120/, 150’, and 180’. The results were
expressed as percentage of f-carotene bleaching inhibition (% Antioxidant Activity, % AA) [7].

3.4. Determination of Anticholinesterase Activity

The anticholinesterase inhibition of samples was investigated by Ellman’s reaction [4]. In the
in vitro assays, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) catalyze the hydrolysis
of acetyl- and butyryl-thiocholine, two alternative analogs of natural substrate acetylcholine.
The quantification of free sulthydryl groups was performed by 5,5'-dithio-bis-2-nitrobenzoic acid
(DTNB) and the absorbance was measured at 405 nm for 2 min. The galantamine, a drug used to treat
Parkinson’s and Alzheimer’s diseases, was used as positive control. The results were expressed on the
basis of the concentration of the sample required to inhibit the activity of the enzyme by 50% (ICsg) in
ug/mL calculated by nonlinear regression analysis.

In particular, in AChE inhibition in vitro assay, different concentrations of sample (0.10-1000
ug/mL), buffer B (50.00 mM Tris-HCI, pH 8.00 containing 0.10% BSA), 3.00 mM DTNB, and 15.00
mM acetylthiocholine iodide were mixed and the reaction was started by adding 0.18 U/mL of
AChE enzyme.

The BChE inhibition in vitro assay was performed in a similar way by using 15 mM
butyrylthiocholine iodide as substrate and 0.10 U/mL of BChE enzyme [4].

3.5. Antidiabetic Activity

The enzymes involved in postprandial hyperglycemia are the a-amylase enzyme, which breaks
down large and insoluble starch molecules into absorbable molecules and then in maltose, and the
a-glucosidase enzyme that catalyzes the end step of digestion of starch and disaccharides. For this
reason, the inhibitors of a-amylase and a-glucosidase enzymes were used in diabetic patients and the
inhibitory ability of samples against both enzymes was screened.

3.5.1. a-Amylase Inhibition

Different concentrations of each sample (0.50-300 png/mL) were mixed to a-amylase enzyme from
hog pancreas and incubated for 10 min at 25 °C. After pre-incubation, a substrate solution of 1%
starch solution was added to the reaction mixture that was again incubated for 10 min at 25 °C. Then,
the reaction was stopped by the yellow-orange 3,5-dinitrosalicylic acid color reagent and the vials
were incubated for 10 min at 100 °C. Then, distilled water was added to the reaction mixture and
the absorbance was measured at 540 nm as described by Milella et al. [6,34]. The acarbose, a clinical
antidiabetic drug, was used as positive control and the results were expressed as ICsp in pg/mL on the
basis of the concentration of the sample required to inhibit the activity of the enzyme by 50% calculated
by nonlinear regression analysis.
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3.5.2. a-Glucosidase Inhibition

The ability of samples to inhibit the a-glucosidase enzyme was assessed using a previously
reported procedure [6,34]. Different concentrations of sample (1-1600 pg/mL), phosphate buffer,
4-p-nitrophenyl-«-p-glucopyranoside, and a-glucosidase enzyme were mixed and incubated at 37 °C
for 10 min. Then, the release of glucose and p-nitrophenol (yellow) by a-glucosidase enzyme was
monitored spectrophotometrically at 405 nm. Again, acarbose was used as positive control and the
results were expressed as ICsp in pg/mL.

3.6. Identification and Quantification by Liquid Chromatography Mass Spectrometry

The characterization of ethyl acetate of A. glabra was carried out on a Q-Tof Premier mass
spectrometer (Waters Corporation, Milford, MA, USA) coupled to an Alliance 2695 HPLC system
(Waters Corporation, Milford, MA, USA) and the quantification of compounds was used a Waters
Acquity (Waters Corporation, Milford, MA, USA) ultra-high performance liquid chromatography
coupled with tandem mass spectrometry (UHPLC-MS/MS) as described previously [7]. Electrospray
mass spectra data were acquired on a negative ionization mode for a mass range m/z 100 to m/z 1000.
In particular, an Atlantis T3 C18 column was used (Waters Corporation, Milford, USA, 100.00 x 2.10
mm; 3.00 um particle size) at 40 °C. The mobile phases were 0.10% aqueous formic acid (solvent A)
and 0.10% formic acid in acetonitrile (solvent B). The stepwise gradient from 10% to 90% solvent B was
applied at flow rate of 300 wL/min for 25 min. Cone voltage and capillary voltage were set at 30 V and
3 kV, respectively. Argon was used as collision gas and the collision induced fragmentation (CID) of
the analytes was achieved using 12 to 30 eV energy. The quantification of present compounds was
performed on a Waters Acquity HSS T3 C18 column (2.10 x 100.00 mm; 1.80 um particle size) using
water containing 0.10% formic acid (mobile phase A) and acetonitrile containing 0.10% formic acid
(mobile phase B). The following gradient program was carried out: 0-2.50 min 2% B, 2.50-3.00 min 10%
B, 3.00-7.50 min 15% B, 7.50-8.50 min 35% B, 8.50-9.50 min 98% B, and 9.50-10.00 min 2% B at a flow
rate of 0.50 mL/min. The injection volume for all the samples and the standards was 3.00 pL. All the
standards in the concentration ranging from 0.01 to 50.00 ug/mL were dissolved in 80% methanol.
The Multiple Reaction Monitoring (MRM) quantitative method was developed for each of the standard
compound using the Waters Intellistart software, and the quantifications of the data were carried out
using the Waters TargetLynx™ Software (Waters Corporation, Milford, MA, USA) [35]. The ionization
source conditions were as follows: capillary voltage 3 kV, cone voltage 35 V, source temperature 150 °C,
desolvation temperature 350 °C, desolvation gas flow 200 L/h, cone gas flow 50 L/h, and collision gas
flow 0.10 mL/min.

3.7. Statistical Analysis

The data were expressed as mean + standard deviation (SD) at least three independent experiments
performed in triplicate. The correlation among used assays was verified by the calculation of p values
by one-way analysis of variance (ANOVA) using GraphPad Prism 5 Software (San Diego, CA, USA).
Only p values of 0.05 or less were considered significant. The R? values for all calibration curves were
over 0.99.

4. Conclusions

The biological activities demonstrated for A. glabra samples in this study might partially justify
its ethnobotanical uses in Bolivian populations. In particular, the phytochemical profile of ethyl
acetate fraction of A. glabra revealed the presence of compounds with antioxidant, anti-inflammatory,
anti-tumoral activities [21,22]. In addition, it was previously reported that aerial parts of A. glabra
reduced the cell viability, induced the apoptosis, and arrested the cell cycle on multiple myeloma cells
in GO/G1 phase [3].
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In conclusion, the combination of A. glabra extract, a “health food,” with common drugs may offer
a significant advantage for therapeutic efficacy in several treatments as diabetes, neurodegenerative
diseases, and cancer and it may have economic implications in the health and pharmaceutical fields.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/8/8/265/s1, Table
S1: LC-Q-Tof chromatograms showing the retention times of standard compounds mix used for the identification
and quantification of various polyphenols and a terpene in the ethyl acetate fraction of Azorella glabra Wedd.
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