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Abstract: Restoration is essential for supporting key ecosystem functions such as aboveground
biomass production. However, the relative importance of functional versus taxonomic diversity in
predicting aboveground biomass during restoration is poorly studied. Here, we used a trait-based
approach to test for the importance of multiple plant diversity attributes in regulating aboveground
biomass in a 30-years-old restored subtropical forest in southern China. We show that both taxonomic
and functional diversities are significant and positive regulators of aboveground biomass; however,
functional diversity (FD) was more important than taxonomic diversity (species richness) in controlling
aboveground biomass. FD had the strongest direct effect on aboveground biomass compared with
species richness, soil nutrients, and community weighted mean (CWM) traits. Our results further
indicate that leaf and root morphological traits and traits related to the nutrient content in plant
tissues represent the existence of a leaf and root economic spectrum, and the acquisitive resource use
strategy influenced aboveground biomass. Our results suggest that both taxonomic and FD play a
role in shaping aboveground biomass, but FD is more important in supporting aboveground biomass
in this type of environments. These results imply that enhancing FD is important to restoring and
managing degraded forest landscapes.

Keywords: plant functional diversity; plant taxonomic diversity; biodiversity-ecosystem functioning;
soil nutrients; ecological restoration

1. Introduction

Forest ecosystems are essential for capturing atmospheric carbon, which is then deposited in
above- and below-ground biomass [1]. The woody bole and branches where a substantial portion
of atmospheric carbon is stored form this aboveground biomass [2]. Landscape-level distribution of
aboveground biomass has been well documented [3] but the fundamental mechanisms of producing and
retaining aboveground biomass, particularly in restored forest ecosystems is less explored. Logically,
aboveground biomass is expected to increase during secondary succession [4] but the time required
to reach the maximum level of aboveground biomass might vary across forest ecosystems [5]. The
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variation of aboveground biomass might be influenced by several factors including environmental
variables such as soil properties and forest community characteristics such as plant taxonomic diversity
(TD) and functional diversity. Functional diversity is defined as the distribution and relative abundance
of functional traits in a community [6]. Functional dispersion is one of the multidimensional indexes
of FD which captures the spread of species traits from the centroid. It has been used in this article to
represent FD. However, our understanding of the relative importance of functional and taxonomic
diversity in affecting aboveground biomass in restored woody forest ecosystems as opposed to the
herbaceous grassland ecosystem is relatively understudied.

Taxonomic diversity and plant functional diversity have linkage with aboveground biomass and
soil properties [7,8]. Species richness has been positively linked with aboveground biomass from
strata (understorey and overstorey) to the whole community [7]. Moreover, species richness explained
28.5% of the variation in the total carbon stock in a subtropical forest ecosystem in southeastern
China [9]. Species richness creates more niche space and improves efficient nutrient utilization,
therefore increases aboveground biomass [10]. According to our hypothesis (Figure 1), the relationship
between aboveground biomass and plant functional diversity fundamentally relies on species richness
and soil nutrients. Functional diversity has important linkages with ecosystem processes. Functional
diversity has been used for describing the variability in carbon stock deposited in the aboveground
biomass [11]. The relationship between carbon accumulation in the aboveground biomass and plant
functional diversity depends upon the forest types and the diversity of functional traits in a plant
community [1,12]. A higher diversity of traits associated with resource acquisition creates niche
complementarity which allows the community to have greater access to the entire resource pool [6].
Therefore, functional diversity should have a positive correlation with aboveground biomass when
resource complementarity is the underlying driver. However, if the community has a higher abundance
of productive species, then species richness would have a stronger relationship with aboveground
biomass than functional diversity [1].Plants 2019, 8, x FOR PEER REVIEW 3 of 22 

 

 
Figure 1. A conceptual model for linking the multivariate relationships among soil nutrient, species 
richness, functional diversity, community weighted mean (CWM) traits, and the aboveground 
biomass of a restored forest landscape in southern China. Soil nutrients were characterized by the 
principal component analysis (PCA) scores of major soil nutrients, functional diversity was 
characterized by the functional divergence of 15 traits and CWM was characterized by PCA scores of 
all the traits from above-and below-ground. Each hypothesized path has been discussed in the 
introduction section. 

Plant functional traits have a direct and indirect effect on plant fitness and productivity [23]. 
Aboveground biomass might be mechanistically correlated with the plant traits of a community 
related to the growth rate, and the ability to capture, store, and release carbon and resources [19]. 
Important ecosystem functions such as nutrient cycling, respiration, and productivity were found to 
be strongly influenced by specific leaf area (SLA) and the leaf nitrogen content (LN) [24]. SLA, LN, 
and the leaf dry matter content (LDMC) have been found to have a positive relationship with 
aboveground biomass [6,12,18]. Moreover, it is important to identify key plant functional traits, both 
above- and below-ground, which can be used to predict individual or multiple functions of the 
ecosystem. Previous studies mainly focused on aboveground plant traits as the variables of plant 
functional diversity, but ecosystem functions can be directly influenced by root traits, so these need 
to be incorporated in the study of the biodiversity-ecosystem functioning relationship [25]. Root 
traits have wider implications for soil processes likely to impact ecosystem functioning [26,27] and 
have been rarely studied. 

Herein, we aim to decipher the relationship between biodiversity metrics (taxonomic and 
functional diversity) and ecosystem function (aboveground biomass) in a restored forest landscape 
in subtropical China. The forest landscape consists of four plantation types: an Acacia mangium (AM) 
plantation, a mixed Eucalyptus (EE) species plantation, a mixed coniferous species (MC) plantation, 
and a mixed native species (NS) plantation. We address the following questions: i) Which 
biodiversity metrics (taxonomic diversity or functional diversity) is the more important regulator of 
aboveground biomass? ii) What are the important plant functional traits driving aboveground 
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2. Results 

The results of the Principal Component Analysis (PCA) of 15 functional traits (CWM) and 4 soil 
properties are shown in Table A1. The first PC axis for CWM traits explained 91.44% of overall 
variability and the second PC axis accounted for 6.71% of overall variability (Table A1). The first PC 
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Figure 1. A conceptual model for linking the multivariate relationships among soil nutrient, species
richness, functional diversity, community weighted mean (CWM) traits, and the aboveground biomass
of a restored forest landscape in southern China. Soil nutrients were characterized by the principal
component analysis (PCA) scores of major soil nutrients, functional diversity was characterized by
the functional divergence of 15 traits and CWM was characterized by PCA scores of all the traits from
above-and below-ground. Each hypothesized path has been discussed in the introduction section.

There are two important hypotheses by which we can characterize the effect of functional diversity
on aboveground biomass. The mass ratio hypothesis states that dominant species and their traits
have a relatively stronger effect on ecosystem processes than do functionally diverse rare species [13].
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The mass ratio or community weighted mean (CWM) is the trait value of the species weighted by
the species relative abundance in a community [14,15]. The niche complementary hypothesis posits
that higher aboveground biomass in a forest community is regulated by diverse species that create
more available niche space and the availability of diverse resources ensuring proper utilization of the
resources [12,16,17]. According to our hypothesis (Figure 1), functional diversity, species richness,
and CWM traits will correlate with and contribute to aboveground biomass. Previous empirical
studies showed evidence of CWM and functional diversity alone [18,19] or jointly [12] influencing
aboveground biomass. Additionally, ecosystem processes can be directly influenced by soil properties
by altering the ecosystem flux rates of matter and energy [20]. Soil nutrients were also found to
influence aboveground biomass indirectly through species richness and plant functional traits in
tropical forests [6,20]. Therefore, the conceptual framework (Figure 1) of this study postulates that soil
nutrients will directly influence aboveground biomass and that species richness and plant functional
diversity will do so indirectly. Previously we found that the taxonomic and phylogenetic diversity
of the studied forest has been increased steadily during restoration, and deterministic and stochastic
processes drove community composition of the forest [21]. Former studies in other regions of the
globe focused on the plant trait and ecosystem functioning linkages in artificially managed plant
communities or environmental gradients. In these communities, functional diversity would be very
low compared to under natural conditions. Furthermore, along environmental gradients, it is very
difficult to differentiate the effects of plant communities on ecosystem functions and soil properties.
Therefore, in realistic communities, the linkages between plant traits and ecosystem functions need to
be explored [22].

Plant functional traits have a direct and indirect effect on plant fitness and productivity [23].
Aboveground biomass might be mechanistically correlated with the plant traits of a community related
to the growth rate, and the ability to capture, store, and release carbon and resources [19]. Important
ecosystem functions such as nutrient cycling, respiration, and productivity were found to be strongly
influenced by specific leaf area (SLA) and the leaf nitrogen content (LN) [24]. SLA, LN, and the
leaf dry matter content (LDMC) have been found to have a positive relationship with aboveground
biomass [6,12,18]. Moreover, it is important to identify key plant functional traits, both above- and
below-ground, which can be used to predict individual or multiple functions of the ecosystem. Previous
studies mainly focused on aboveground plant traits as the variables of plant functional diversity, but
ecosystem functions can be directly influenced by root traits, so these need to be incorporated in the
study of the biodiversity-ecosystem functioning relationship [25]. Root traits have wider implications
for soil processes likely to impact ecosystem functioning [26,27] and have been rarely studied.

Herein, we aim to decipher the relationship between biodiversity metrics (taxonomic and functional
diversity) and ecosystem function (aboveground biomass) in a restored forest landscape in subtropical
China. The forest landscape consists of four plantation types: an Acacia mangium (AM) plantation, a
mixed Eucalyptus (EE) species plantation, a mixed coniferous species (MC) plantation, and a mixed
native species (NS) plantation. We address the following questions: (i) Which biodiversity metrics
(taxonomic diversity or functional diversity) is the more important regulator of aboveground biomass?
(ii) What are the important plant functional traits driving aboveground biomass?

2. Results

The results of the Principal Component Analysis (PCA) of 15 functional traits (CWM) and 4 soil
properties are shown in Appendix A Table A1. The first PC axis for CWM traits explained 91.44% of
overall variability and the second PC axis accounted for 6.71% of overall variability (Table A1). The
first PC axis dominated by traits related to statute, morphological and elemental concentration in leaf
and roots (Table A1). In case of soil PCA, the first PC axis which explained 66.05% of overall variability,
which mainly represented the variability in soil total carbon (SOC) and soil total nitrogen (TN). The
second soil PCA axis, which explained 33.82% overall variance, mainly represented the variability in
total phosphorus content (TP) and total potassium content (TK) in soil (Table A1).
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The ordinary least squares (OLS) linear regression analysis showed that aboveground biomass
was significantly (p < 0.01) and positively associated with TD and FD (Figure 2a,b). The relationship of
aboveground biomass with FD (R2 = 0.45) was stronger than that with TD (R2 = 0.13). FD (R2 = 0.45 vs.
0.13) explained more variations in aboveground biomass than did TD. Aboveground biomass was also
significantly related to CWM (R2 = 0.08) traits (Figure 2c) and soil nutrients (R2 = 0.22) (Figure 2d). Soil
nutrients had a significant (p < 0.01) relationship with FD and nonsignificant (p > 0.05) relationship
with TD and CWM traits (Figure 2e,f). The analysis of covariance (ANCOVA) showed that plantations
types had an influence on aboveground biomass (AGB) and TD bivariate relationships, while the other
bivariate relationship between AGB and predictor variables was not influenced by plantation types
(Table A2).
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Figure 2. Relationship between above ground biomass and (a) taxonomic diversity (species richness),
(b) functional diversity (FDis), (c) community weighted mean (CWM principal component—PC1)
traits, and (d) soil nutrients (PC1). Relationship between soil nutrients and (e) taxonomic diversity
(species richness), (f) functional diversity (FDis), (g) community weighted mean (CWM PC1) traits in
the restored forest ecosystem. The black line represents the fitted linear regression. Significant p < 0.05
and nonsignificant (NS) p > 0.05.

Structural equation modelling (SEM) accounted for 59% of the variation in aboveground biomass
(Figure 3). FD had the strongest positive direct relationship with aboveground biomass (β = 0.49, p <

0.001), followed by species richness (β = 0.40, p < 0.001) and CWM traits (β = 0.26, p < 0.01). The direct
effect of soil nutrients on aboveground biomass was found to be nonsignificant (β = 0.20, p > 0.05), but



Plants 2019, 8, 612 5 of 20

the indirect effect of soil nutrients through FD was found to be significant (β = 0.25, p < 0.01). The SEM
also attributed 27% variation to FD and 3% variation to each of the species richness and CWM traits
(Figure 3).
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Figure 3. The structural equation modelling showed how soil nutrients, taxonomic diversity (species
richness), functional diversity (FD), and community weighted mean traits (CWM traits) drive
above-ground biomass. Effect size of relationship was presented through the numbers adjacent
to the arrows. Solid black arrows indicate a positive significant relationship, and grey arrows indicates
as non-significant relationship. Goodness-fit statistics for model are as follows: χ2 = 2.555(p = 0.465),
d.f. = 3; GFI = 0.979; CFI = 1.00; SRMR = 0.063, AIC = 152.44.

Soil nutrients had a significant direct positive relationship with FD (β = 0.52, p < 0.001) (Table 1),
but the relationship was nonsignificant between soil nutrients, species richness, and CWM traits
(Figure A1). SOC and TN had a significant relationship with aboveground biomass, while the
relationship of TP and TK with aboveground biomass was found to be nonsignificant (Figure A2). The
AGB and TN relationship was influenced by the plantation type, while other bivariate relationships
was not influenced by plantation types (Table A2).

Random forest modelling was applied to identify the most important plant functional traits that
contribute in predicting variations in aboveground biomass. The random forest model explained 33%
of the variability in aboveground biomass (Table A3). Plant functional traits related to carbon (leaf
carbon content, LC; root carbon content, RC), nitrogen (LN, RN), and phosphorus (leaf phosphorus
content, LP; root phosphorus content, RP) were found to be the dominant predictors of aboveground
biomass (Figure 4). Plant height, SLA, and root tissue density (RTD) were also found to be among the
most important predictors of aboveground biomass (Figure 4). We also tested the bivariate relationships
between aboveground biomass and the significant plant traits identified by random forest analysis. We
found that the plant traits were significantly and positively related to aboveground biomass (Figure 5).
The ANCOVA results showed that plantation type had an influence on the AGB–LN and AGB–RN
relationships (Table A2), while other bivariate relations was not influenced by plantation types. The
results of the bivariate relationships and PCA indicated the existence of a leaf and root economic
spectrum with an acquisitive resource use strategy (Table A1).
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Table 1. The direct, indirect, and total standardized effects of soil nutrients, functional diversity (FD),
species richness, and community weighted means (CWM) on aboveground biomass (AGB) across
subtropical forest of southern China based on structural equation models (SEMs). Significance at (p <

0.05).

Predictor Pathway to Response
Variable Response Variable Effect p-Value

Soil nutrient

Direct effect AGB 0.20 0.117
Direct effect FD 0.52 <0.001
Direct effect SR −0.18 0.269
Direct effect CWM 0.17 0.304

Indirect effect via FD AGB 0.25 0.008
Indirect effect via SR AGB −0.07 0.290

Indirect effect via
CWM AGB 0.04 0.345

Total effect AGB 0.43 0.004
Total effect FD 0.52 <0.001
Total effect SR −0.18 0.269
Total effect CWM 0.17 0.304

FD
Direct effect AGB 0.49 <0.001
Total effect AGB 0.49 <0.001

Species richness Direct effect AGB 0.40 <0.001
Total effect AGB 0.40 <0.001

CWM
Direct effect AGB 0.26 0.018
Total effect AGB 0.26 0.018

AGB—aboveground biomass; FD—functional diversity; SR—species richness; CWM—community weighted mean.

Plants 2019, 8, x FOR PEER REVIEW 7 of 22 

 

 

Figure 4. Random forest analysis identifying the best plant functional traits that drive above ground 
biomass. This analysis identified the important (%increase in Mean Square Error) plant functional 
traits that drive above ground biomass in the restored forest ecosystem. Bars with different color 
represent statistically significant predictors (p < 0.05) and bars with the same (black) color represent 
non-significant prediction (p > 0.05). The full analysis results are shown in Table A3. Elaboration of 
the acronyms used in the figure is as follows: LP—leaf phosphorus content; RP—root phosphorus 
content; RC—root carbon content; LC—leaf carbon content; RN—root nitrogen content; 
SLA—specific leaf area; LN—leaf nitrogen content; RTD—root tissue density; SRL—specific root 
length; VD—leaf vein density; RBI—root branching intensity; RDMC—root dry matter content; 
LDMC—leaf dry matter content; RD—root diameter. 

The correlation analysis showed that SOC was positively (p < 0.05) correlated with the CWM of 
the plant height, SLA, LC, root dry matter content (RDMC), and RC (Table A4), while TN was 
positively and significantly (p < 0.05) correlated with plant height, SLA, LDMC, LN, RDMC, and RN 
(Table A6). TP was positively (p < 0.05) correlated with specific root length (SRL), RP, RTD, root 
branching intensity (RBI) and negatively correlated with LP (Table A4). 

Figure 4. Random forest analysis identifying the best plant functional traits that drive above ground
biomass. This analysis identified the important (%increase in Mean Square Error) plant functional
traits that drive above ground biomass in the restored forest ecosystem. Bars with different color
represent statistically significant predictors (p < 0.05) and bars with the same (black) color represent
non-significant prediction (p > 0.05). The full analysis results are shown in Table A3. Elaboration of
the acronyms used in the figure is as follows: LP—leaf phosphorus content; RP—root phosphorus
content; RC—root carbon content; LC—leaf carbon content; RN—root nitrogen content; SLA—specific
leaf area; LN—leaf nitrogen content; RTD—root tissue density; SRL—specific root length; VD—leaf
vein density; RBI—root branching intensity; RDMC—root dry matter content; LDMC—leaf dry matter
content; RD—root diameter.
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Figure 5. Bivariate relationship between above ground biomass (dependent variable) and selected plant
functional traits (independent variable) identified from random forest analysis. Selected significant
relationships are shown here. (a–i) Above ground biomass with (a) maximum plant height; (b)
community weighted mean of specific leaf area (SLA); (c)community weighted mean of leaf carbon
content (CWM LC); (d) community weighted mean of leaf nitrogen content (CWM LN); (e) community
weighted mean of leaf phosphorus content (CWM LP); (f) community weighted mean of specific root
length; (g) community weighted mean of root carbon content (CWM RC); (h) community weighted
mean of root nitrogen content (CWM RN); (i) community weighted mean of root phosphorus content
(CWM RP).

The correlation analysis showed that SOC was positively (p < 0.05) correlated with the CWM
of the plant height, SLA, LC, root dry matter content (RDMC), and RC (Table A4), while TN was
positively and significantly (p < 0.05) correlated with plant height, SLA, LDMC, LN, RDMC, and
RN (Table A6). TP was positively (p < 0.05) correlated with specific root length (SRL), RP, RTD, root
branching intensity (RBI) and negatively correlated with LP (Table A4).

3. Discussion

Understanding how biodiversity attributes determine ecosystem functioning (aboveground
biomass) is one of the central goals of ecology. This empirical study focused on the relative importance
of taxonomic (species richness) diversity and functional diversity in regulating aboveground biomass.
Consistent with our hypothesis, the aboveground biomass was found to have a positive relationship
with taxonomic and functional diversity (Figure 2). The results from OLS regression and SEM analysis
revealed that FD had relatively more explanatory power in predicting variation in the aboveground
biomass than did TD in the restored forest ecosystem (Figure 3). Higher FD might provide lower niche
overlap among the constituent species and ensure maximum utilization of the available resources
which, in turn, can positively influence the aboveground biomass [28]. The dominant species and their
functional traits (mass-ratio hypothesis) also increased aboveground biomass. The positive relationship
of aboveground biomass with CWM and FD indicates that increased aboveground biomass in the
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restored forest is driven by the dominant species with rapid acquisitive strategies; and diverse species
with diversified nutrient use strategies [1,12]. Therefore, aboveground biomass in the restored forest
is regulated by both the mass-ratio hypothesis and the niche complementarity hypothesis (Figure 3).
The findings of this study—that aboveground biomass in the restored forest is jointly regulated by the
mass-ratio and niche complementarity mechanisms—are consistent with the findings of Ali et al. [12]
but contrast with empirical studies that did not find support for either of the two mechanisms [14,29].
Moreover, species richness might have increased aboveground biomass through greater resource
capture and efficient utilization of the available resources [9,30]. Additionally, diversity of resources
due to diverse species richness across plantation types might have influenced aboveground biomass.
Consistent with our findings, species richness was also previously found to have a positive link
with aboveground biomass in a subtropical forest [6]. However, some empirical studies found that
species richness had a weak or negative relationship with aboveground biomass in sites where the
heterogeneity of environmental factors was dominant [1,3]. These results, that plant functional diversity
better explained the aboveground biomass than did species richness, are in accordance with previous
studies on secondary forests and grassland [18,31].

Plant functional traits that enhance acquisition, sustain plant growth, and allow proficient use of
natural resources (solar radiation) and nutrients are essential for sustainable increases in aboveground
biomass [20,32]. In our study, plant functional traits related to growth and nutrient acquisition and
utilization were found to be the dominant predictors of aboveground biomass. The PCA results
revealed that the first PCA axis was driven by CWM traits related to morphology and elemental
concentration in plant tissues, representing a community-level leaf and root economic spectrum. These
results also suggest that at the community level, plant traits associated with construction cost (leaf
and root) and resource acquisition potential might covary, highlighting the presence of an economic
spectrum (leaf and root) in the restored forest landscape. Moreover, the PCA loadings and bivariate
relationships suggest an acquisitive strategy that tends to influence aboveground biomass. The increase
in aboveground biomass with increasing plant height might be due to the presence of fast-growing
tall species that are proactive in their efficient utilization of solar radiation. A positive link between
aboveground biomass and plant height was previously reported in several empirical studies [1,2,12,29].
The positive relationship between CWM SLA and aboveground biomass increase might be related to the
leaf economic spectrum [15], the exploitative species with high SLA facilitate rapid nutrient acquisition
and turnover, which might enhance rapid growth and maximize aboveground biomass [24]. Indeed, the
CWM of SLA following the carbon gain concept [33] might facilitate higher carbon accumulation; the
positive effect of SLA on stand level productivity was also found in tropical rainforests of Australia [34].
The presence of a maximum number of unshaded leaves (e.g., in Eucalyptus and coniferous vegetation)
is another probable reason for the positive relationship between aboveground biomass and CWM
SLA. Therefore, high aboveground biomass in forest communities might be associated with a high
proportion of unshaded leaves [12]. Furthermore, the significant increase in aboveground biomass with
increasing CWM LC, CWM LN, and CWM LP also suggests that short lived leaves (high SLA), having
a higher leaf elemental concentration through their canopy properties, might improve soil properties
by adding nutrients into the soil, which, in turn, might influence aboveground biomass [11]. These
findings are in agreement with previous empirical studies in a tropical forest [29] and successional
biomes of temperate [8] and tropical regions [12], which implies that the presence of a leaf economic
spectrum [24] will have a significant impact on canopy properties and ecosystem processes.

Our results also found that high aboveground biomass is associated with root traits. The
positive associations of CWM SRL and CWM RN with aboveground biomass indicate a root economic
spectrum [26]. SRL and RN have a strong effect on nitrification and have linkage with the plant nitrogen
cycling [27]. The rapid acquisition and turnover of fine roots can enhance nutrient cycling which might
facilitate plant growth and increased aboveground biomass. The positive association among CWM
RN and aboveground biomass might be due to the leguminous species (e.g., the Acacia mangium in
AM plantation) which fixes atmospheric nitrogen and added to the soil. Moreover, phosphorus is
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considered to be the most limiting nutrient in the tropical forest ecosystem [30]; thus, an increase in
CWM RP might increase phosphorus cycling and more available phosphorus might facilitate plant
growth and increase the aboveground biomass of the restored forest community. Therefore, high
aboveground biomass in the restored forest is scaled up by the economic spectra and the acquisitive
strategies in the leaf and root traits. Moreover, the SEM did not find a significant direct effect of
soil nutrients on aboveground biomass, but the bivariate relationship found a positive effect of SOC
and TN on aboveground biomass (Figure A2). These results indicate that an increase in SOC and
TN during forest restoration through plant-mediated inputs might positively (Table A2) influence
plant growth and aboveground biomass [20,35]. FD had a positive relationship with soil nutrients,
indicating that soil properties (mainly SOC and TN as suggested by the PC1 loadings) favor a higher
dispersion of functional traits that might facilitate the germination of dispersed species or survival of
planted/dispersed species. Moreover, SOC and TN were positively correlated with CWM traits (e.g.,
SLA, LC, LN, RC, RN), suggesting that the dominant species of the community have higher carbon
and nitrogen use efficiency [36]. Fast-growing species possessing acquisitive traits might facilitate
litter (above and belowground) decomposition and rapid turnover to the soil which in turn might
significantly influence the aboveground biomass [32]. Therefore, the greater nutrient retention and
resource use capacity might support plant growth and aboveground biomass [37].

4. Materials and Methods

4.1. Study area and Experimental Forests

This study was conducted at the Heshan National Field Research Station of Forest Ecosystem
(112◦50′ E and 22◦34′ N), Heshan city, Guangdong Province, southern China. A hot and humid climate
prevails in the study area, with a mean temperature of 21.7 ◦C and, mean annual rainfall of 1700 mm.
In the study area, April–September is the rainy season and October–March is the dry season. The
soil of the region is an ultisol developed from sandstone [38]. Previously, the study area was severely
damaged, overexploited, and denuded, causing severe land degradation. Restoration strategies were
initiated in 1984 to conserve the degraded hills by plantations across small patches of the forest area.
A total area of 12.22 hectares was restored with four plantation types. Among the plantations, three
were restored by planting exotic species, and one plantation was restored by planting native species.
The plantation types included, (1) a monoculture of Acacia mangium (AM); (2) a mixed plantation
of Eucalyptus species (E. exserta, E. citriodora, and E. camaldulensis) (EE); (3) a mixed plantation of
coniferous species (Cunninghamia lanceolate and Pinus massoniana) (MC); and (4) a mixed native species
plantation (Schima superba and S. wallichii) (NS). Healthy one-year-old saplings were planted at a 2.5 m
× 2.5 m spacing, and the forest was allowed to grow naturally by prohibiting anthropogenic activities
around the forest area.

4.2. Forest Inventory and Estimation of Aboveground Biomass

A forest inventory was undertaken at three slope positions (upper slope, middle slope, and lower
slope) in each plantation during July–August, 2017 (Figure A3). There were three plots (10 m × 10 m)
at each slope position and 36 plots for all the four plantations. In every plot, the height of the trees was
measured using either a telescopic pole or a clinometer based on the height of the tree. Diameter at
breast height (DBH) was measured for individuals taller than 1.50 m, and the diameter at mid-height
or 45 cm height was measured for individuals <1.50 m tall. Subsequently, we used allometric equation
based on the height (H, m) and DBH (cm) to calculate the aboveground biomass of the trees following
Chen et al. [39]:

Aboveground biomass = a × (DBH2
× H) b (1)

where a and b are statistical parameters; values of the statistical parameters and details of the equations
are presented in Table A5.
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4.3. Soil Sampling and Soil Chemical Analysis

Within each plot, surface soil samples at the depth of 0–20 cm were collected using a soil auger.
We randomly collected 108 soil cores from 36 plots, three soil cores from each plot. To prevent
cross-contamination, the soil auger was cleaned and sterilized (70% ethanol) properly between each
soil sample collection. After sampling, soils were sieved (2 mm mesh) and air dried for chemical
analysis. Soil total carbon (SOC), total nitrogen (TN), total phosphorus (TP), and total potassium
(TK) were determined in this study. An Elementar analyzer (Vario elemental analyzer, Langenselbold,
Germany) was used to determine the SOC and TN. The molybdenum blue method followed by
colorimetric analysis [40] was applied to measure TP, and extraction with 1M NH4OAc followed by
spectrophotometry with an atomic absorption flame spectrophotometer was used to determine the
TK [41].

4.4. Plant Functional Traits

The plant functional traits of dominant species were measured based on the standard protocols
described by Cornelissen et al. [42]. A total of 20 dominant species was selected based on their relative
abundance and some species were found to be common across the four plantation types (Table A6).
The plant functional traits measured in this study were as follows: maximum plant height; specific
leaf area (SLA); leaf dry matter content (LDMC); leaf vein density (VD); leaf carbon, nitrogen, and
phosphorus (LC, LN, and LP, respectively); root diameter (RD); specific root length (SRL); root dry
matter content (RDMC); root tissue density (RTD); root branching intensity (RBI); and root carbon,
nitrogen, and phosphorus (RC, RN, and RP, respectively). The above- and below-ground functional
traits were measured from 5 individuals and 25 samples of leaves and roots were collected for each
species. Leaves fully exposed to sunlight were collected to measure the SLA and LDMC. A leaf area
meter (Li-Cor 3100C Area Meter, Li-Cor, Lincoln, NE, USA) was used to measure the leaf area of fresh
and turgid leaves. Leaves were then oven dried at 60 ◦C for 72 h [29]. We calculated the SLA by
dividing the leaf area by its dry mass; LDMC was measured by dividing the fresh mass by its dry mass.
The dried leaves were ground in a ball mill and sieved to determine the total nitrogen and total carbon
using an Elementar analyzer (Vario Micro Cube elemental analyzer, Langenselbold, Germany). Leaf
vein density was measured by the standard protocol described by Peìrez-Harguindeguy et al. [43].
At the base of the trees, a specially constructed fork was used to excavate the surface soil, and fine
roots that were attached to the main lateral roots were collected for this study. The depth of the soil
excavation was different based on the species. Roots were washed with deionized water, stored in an
icebox and transported to the laboratory within 4 hours. An Epson Expression 10000XL flatbed scanner
and image processing software WINRHIZO (Regent Instruments Inc., Sainte-Foy Sillery-Cap-Rouge,
Canada) were used to obtain the root length, root diameter, and root volume. The roots were scanned
at 300 dpi [43]. Furthermore, the roots were oven dried to constant weight; SRL was measured as
the ratio of root length to its dry mass and RDMC was determined by the fresh mass of root with its
dry mass. Again, the dried ground powder of roots obtained from a ball mill was used to measure
the root total carbon and nitrogen content using an Elementar (Vario Micro Cube elemental analyzer,
Langenselbold, Germany). A similar method was applied for leaf and root phosphorus estimation as
was used for soil phosphorus. The RTD was measured by dividing the root dry mass with its volume
and the RBI was measured by dividing the number of root tips by the total root length [44].

We measured the CWM for each trait; the CWM is the abundance-weighted mean trait value for a
community and was calculated with the following formula:

CWM (traitx) = ΣPiTi (2)
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where, Pi is the relative abundance for the ith species in the community and Ti is the mean trait value of
the ith species in the community. The single trait functional dispersion in each forest community [45]
was measured by using the formula:

FD =
n∑

i=1

pi
|Ti −CWTi|∑n
i |Ti −CWTi|

(3)

Further, FDis was measured including all traits following Laliberté and Legendre [46]:

FDis=
∑

(PijZj) /
∑

Aj (4)

c=
∑

(PijTjj) /
∑

Aj (5)

where Tij is the value of trait i for species j, Aj is the abundance of species j, and c is used to calculate Zj,
the distance of species j to the weighted centroid.

The values of the CWM of each trait and characteristics of other variables are presented in Table A7.

4.5. Statistical Analysis

To test the relationship between aboveground biomass and plant diversity metrics (taxonomic
and functional diversity), we constructed an ordinary least squares (OLS) linear regression model.
Again, we used structural equation modelling (SEM) to determine the relationships of soil nutrients,
plant diversity metrics (taxonomic diversity, functional diversity), and CWM traits with the ecosystem
aboveground biomass. A hypothesized meta-model was constructed based on the predictor variables
(Figure 1). The soil chemical properties (SOC, TN, TP, and TK) were converted into a single variable
through PCA, and the first PC of soil properties described 66% of the variation. The same analysis
was also conducted to convert the leaf and root CWM into a single variable. The PC1 of CWM
traits described 91% of the variation (Table A2). We have picked PC1 for both CWM traits and soil
properties for further analysis based on the parallel test (Table A8) performed in R [47]. To fit the
model, the maximum-likelihood estimation method was applied. Model fitness was checked through
non-significant Chi-square (χ2) test statistics (p > 0.05), low standardized root mean square residual
(SRMR < 0.08), and a high goodness of fit index (GFI > 0.95) and comparative fit index (CFI). Direct
and indirect pathways among the variables were assessed to identify the net influence of one variable
on another. Standardized direct and indirect effects were added to calculate the total effect [12]. This
analysis was conducted using the lavaan package [48] of R 3.2.2 [47]. Furthermore, random forest
modelling was applied to detect the most important plant functional traits that influence aboveground
biomass. Random forest modelling does not depend on a single regression; rather, it aggregates
multiple classification trees through bootstrap aggregation. The importance of each predictor was
determined by the increase in the mean square error (MSE) and was averaged over 5000 trees. This
analysis was performed using the rfPermute package in [49] in R. Moreover, the plant traits identified
by random forest analysis were tested through bivariate regression analysis where the aboveground
biomass was dependent variable and the CWM traits were the independent variable. We did ANCOVA
test to determine the effect of plantation type on the bivariate relationships between AGB with other
predicting variables. Moreover, analysis of variance (ANOVA) test was performed and revealed, AGB
and other predicting variables were not significantly influenced by the slopes of the hill (Table A9).
Finally, correlation (Pearson correlation) analysis between soil properties and CWM plant traits was
performed to determine the influence of soil properties on plant functional traits.

5. Conclusions

We conclude that, in assessing the relative contributions of plant taxonomic (species richness)
and functional diversity for predicting aboveground biomass, functional diversity explains more than
the taxonomic diversity. We found that the mass-ratio hypothesis and the niche complementarity
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hypothesis were not mutually exclusive; rather, these metrics jointly predicted the variability in
aboveground biomass [11]. However, FD following the niche complementarity hypothesis was more
important than the CWM (i.e., the mass ratio hypothesis). These results indicate that efforts should
be made to maintain high numbers of standing dominant species having diverse functional traits to
facilitate aboveground biomass in restored forest landscapes. The results of this study also suggest
the existence of leaf and root economic spectrum. Therefore, the inclusion of root functional traits
along with leaf functional traits might improve our understanding of the contribution of functional
diversity in explaining the variation in aboveground biomass. The plant functional traits related
to rapid nutrient acquisition and nutrient turnover were found to be the dominant predictors of
aboveground biomass. Overall, this study enriched our understanding of the significant biodiversity
metrics and plant functional traits that influence ecosystem functioning (aboveground biomass) and
can guide successful management of forests in tropical and subtropical regions. Future studies on the
relationship between aboveground biomass and biodiversity metrics might focus on forests distributed
across a large scale and exposed to contrasting environmental gradients.
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Appendix A

Table A1. Eigenvalues and variances for the first two components in Principal Components Analysis
(PCA) of leaf and root functional traits.

Soil PCA CWM PCA
Variables PC 1 (66.05%) PC 2 (33.82%) Variables PC 1 (91.44%) PC 2 (6.71%)
SOC 0.82074 0.57086 HEIGHT 0.00721 −0.003658
TN 0.018358 0.012611 SLA 0.000370 −0.000316
TP −0.00375 0.005537 LDMC 0.40724 0.32336
TK −0.57099 0.82093 VD 0.00065 −0.006267

LC 0.55928 −0.46773
LN 0.08116 −0.023379
LP 0.002254 0.000754
RD 0.000929 0.000469
SRL 0.03066 −0.02578
RDMC 0.4403 0.74325
RTD 0.000944 0.000286
RBI 0.006874 −0.00497
RC 0.57147 −0.34109
RN 0.0239 −0.016097
RP 0.000761 −0.00139

SOC, TN, TP, TK values were used to get PCA scores of soil and all the traits measured were used to obtain
CWM PCA.
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Table A2. Analysis of covariance (ANCOVA) test showing significance levels for the slopes of the
regression equation for each pair of variables among the four plantations. Significance at (p < 0.05).

Pair of Variables
p-Value
(Continuous
Predictor)

p-Value
(Plantation Type)

p-Value (Slope
Position)

p-Value
(Interaction Effect)

AGB-TD <0.001 0.015 0.615 0.174
AGB-FD <0.001 0.163 0.708 0.268
AGB-CWM 0.04 0.755 0.890 0.442
AGB-SOC <0.001 0.138 0.272 0.750
AGB-TN <0.001 0.046 0.602 0.608
AGB-Height <0.001 0.432 0.920 0.713
AGB-SLA 0.003 0.527 0.666 0.534
AGB-LC 0.007 0.885 0.856 0.764
AGB-LN <0.001 0.254 0.665 0.963
AGB-LP <0.001 <0.001 0.934 0.136
AGB-SRL <0.001 0.109 0.882 0.069
AGB-RC 0.03 0.0838 0.932 0.397
AGB-RN <0.001 0.034 0.954 0.253
AGB-RP <0.001 0.471 0.907 0.894

Each row represents a separate model, AGB is the response variable and other variables are the continuous variable.
Elaboration of the acronyms has been presented in Figures 2 and 5.

Table A3. Random forest modelling for identifying important predictors explaining above ground
biomass in restored forest of southern China. Importance of the predictors was measured by % increase
in mean square of error (MSE). p-value identifies the significant predictors.

Predictors Variation Explained (32.91%)

%Increase in MSE p-Value

LP 23.38 0.01
RP 22.68 0.03
Height 18.73 0.01
RC 17.44 0.03
LC 16.89 0.03
RN 16.69 0.04
SLA 14.78 0.05
LN 13.52 0.03
RTD 12.92 0.05
SRL 11.91 0.25
VD 9.09 0.49
RBI 6.211 0.21
RDMC 6.12 0.43
LDMC 3.55 0.67
RD 1.66 0.70

Elaboration of the acronyms has been presented in Figure 5.

Table A4. Correlation coefficients (Pearson correlation) of soil properties and above and below ground
community weighted mean (CWM) traits of the restored forest ecosystem.

HEIGHT SLA LDMC LC LN LP SRL RDMC RTD RBI RC RN RP

SOC 0.350 * 0.389 * 0.281 0.365 * 0.304 0.513 ** 0.135 0.328 * 0.14 0.122 0.359 * 0.519 ** 0.267
TN 0.516 ** 0.506 ** 0.493 ** 0.531 ** 0.470 ** 0.635 ** 0.156 0.443 ** 0.22 −0.08 0.537 ** 0.721 ** 0.464 **
TP 0.148 0.209 0.158 0.31 0.003 −0.363 * 0.353 * −0.03 0.443 ** 0.420 ** 0.315 −0.017 0.509 **
TK 0.09 −0.05 0.14 0.22 −0.09 0.157 0.065 0.003 0.446 ** 0.351 * 0.254 −0.094 0.365 *

Significance at * p < 0.05; ** p < 0.01; Elaboration of the acronyms has been presented in Figures 4 and 5.
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Table A5. The allometric equations used to calculate the aboveground biomass of species across the
restored forest ecosystem.

Aboveground Biomass

Species Allometric Equation

Acacia mangium 0.1751 × (DBH2
× H)0.7466

Cinnamomum burmannii 0.0087 × (DBH2
× H)1.0323

Clerodendrum fortunatum 1.6461 × (DBH2
× H)0.6825

Cunninghamia lanceolata 0.0087 × (DBH2
× H)1.0323

Eucalyptus exserta 0.0811 × (DBH2
× H)0.8264

Eucalyptus rostrata 0.0811 × (DBH2
× H)0.8264

Eucalyptus urophylla 0.0811 × (DBH2
× H)0.8264

Eurya chinensis 0.5092 × (DBH2
× H)0.9403

Gardenia jasminoides 0.8948 × (DBH2
× H)0.7417

Ilex asprella 7.7741 × (DBH2
× H)0.5995

Litsea cubeba 0.5423 × (DBH2
× H)0.8742

Litsea glutinosa 0.4868 × (DBH2
× H)0.9218

Litsea rotundifolia 0.0423 × (DBH2
× H)0.8949

Melastoma malabathricum 0.2475 × (DBH2
× H)1.0904

Melicope pteleifolia 0.8246 × (DBH2
× H)0.7595

Pinus massoniana 0.0156 × (DBH2
× H)1.0359

Psychotria asiatica 0.4596 × (DBH2
× H)0.9482

Rhodomyrtus tomentosa 0.0506 × (DBH2
× H)1.4907

Schima superba 0.0629 × (DBH2
× H)0.4643

Schima wallichii 0.0629 × (DBH2
× H)0.4643

Table A6. List of species selected for this study along with their characteristics across four
plantation forests.

Species Family Growth Form Plant Type Nitrogen Fixation

AM

Acacia mangium Fabaceae Tree Evergreen Nitrogen fixing
Cinnamomum burmannii Lauraceae Tree Evergreen Non-nitrogen fixing
Eurya chinensis Theaceae Tree Evergreen Non-nitrogen fixing
Ilex asprella * Aquifoliaceae Tree Deciduous Non-nitrogen fixing
Litsea cubeba Lauraceae Tree Evergreen Non-nitrogen fixing
Litsea rotundifolia Lauraceae Tree Evergreen Non-nitrogen fixing
Melicope pteleifolia * Rutaceae Tree Deciduous Non-nitrogen fixing
Rhodomyrtus tomentosa * Myrtaceae Tree Evergreen Non-nitrogen fixing
Clerodendrum fortunatum * Lamiaceae Shrub Evergreen Non-nitrogen fixing
Gardenia jasminoides* Rubiaceae Shrub Evergreen Non-nitrogen fixing
Litsea glutinosa Lauraceae Shrub Evergreen Non-nitrogen fixing

EE

Eucalyptus exserta Myrtaceae Tree Evergreen Non-nitrogen fixing
Eucalyptus rostrata Myrtaceae Tree Evergreen Non-nitrogen fixing
Eucalyptus urophylla Myrtaceae Tree Evergreen Non-nitrogen fixing
Ilex asprella * Aquifoliaceae Tree Deciduous Non-nitrogen fixing
Litsea cubeba Lauraceae Tree Evergreen Non-nitrogen fixing
Litsea glutinosa Lauraceae Tree Evergreen Non-nitrogen fixing
Melicope pteleifolia * Rutaceae Tree Deciduous Non-nitrogen fixing
Clerodendrum fortunatum * Lamiaceae Shrub Evergreen Non-nitrogen fixing
Gardenia jasminoides * Rubiaceae Shrub Evergreen Non-nitrogen fixing
Melastoma malabathricum Melastomataceae Shrub Evergreen Non-nitrogen fixing
Rhodomyrtus tomentosa * Myrtaceae Shrub Evergreen Non-nitrogen fixing
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Table A6. Cont.

Species Family Growth Form Plant Type Nitrogen Fixation

MC

Cunninghamia lanceolata Pinaceae Tree Evergreen Non-nitrogen fixing
Ilex asprella * Aquifoliaceae Tree Deciduous Non-nitrogen fixing
Melicope pteleifolia * Rutaceae Tree Deciduous Non-nitrogen fixing
Pinus massoniana Pinaceae Tree Evergreen Non-nitrogen fixing
Schima superba Theaceae Tree Evergreen Non-nitrogen fixing
Rhodomyrtus tomentosa * Myrtaceae Tree Evergreen Non-nitrogen fixing
Clerodendrum fortunatum * Lamiaceae Shrub Evergreen Non-nitrogen fixing
Gardenia jasminoides * Rubiaceae Shrub Evergreen Non-nitrogen fixing
Psychotria asiatica Rubiaceae Shrub Evergreen Non-nitrogen fixing

NS

Ilex asprella * Aquifoliaceae Tree Deciduous Non-nitrogen fixing
Melicope pteleifolia * Rutaceae Tree Deciduous Non-nitrogen fixing
Psychotria asiatica Rubiaceae Tree Evergreen Non-nitrogen fixing
Schima wallichii Theaceae Tree Evergreen Non-nitrogen fixing
Schima superba Theaceae Tree Evergreen Non-nitrogen fixing
Clerodendrum fortunatum * Lamiaceae Shrub Evergreen Non-nitrogen fixing
Eurya chinensis Theaceae Shrub Evergreen Non-nitrogen fixing
Gardenia jasminoides * Rubiaceae Shrub Evergreen Non-nitrogen fixing
Rhodomyrtus tomentosa * Myrtaceae Shrub Evergreen Non-nitrogen fixing

* Common species; AM—Acacia mangium plantation; EE—mixed Eucalyptus species plantation; MC—mixed
coniferous species plantation; NS—mixed Schima species plantation

Table A7. Summary of the characteristics (value range, mean, standard error of mean) of variables
along with their acronyms and measuring units.

Variables Acronym Value Range Mean ± Standard
Error Units

Aboveground biomass AGB 34.18–352.31 115.03 ± 11.42 Mg ha–1

Species richness TD 8–21 13.25 ± 0.595 number
Functional diversity FD 0.06–0.25 0.12 ± 0.007 Unitless
Maximum plant height Height 2.1–4.59 3.02 ± 0.118 m
Specific leaf area SLA 0.07–0.4 0.17 ± 0.010 mm2 mg–1

Leaf dry matter content LDMC 97.35–298.07 230.30 ± 6.525 mg g–1

Leaf vein density VD 2.11–11.92 4.21 ± 0.261 mm mm–2

Leaf carbon content LC 164.9–454.54 364.59 ± 8.873 g kg–1

Leaf nitrogen content LN 11.38–30.67 20.34 ± 0.784 g kg–1

Leaf phosphorus content LP 0.71–2.16 1.33 ± 0.071 g kg–1

Root diameter RD 0.21–4.09 0.58 ± 0.103 mm
Specific root length SRL 3.3–9.17 6.49 ± 0.203 m g–1

Root dry matter content RDMC 104.17–344.55 229.59 ± 7.491 mg g–1

Root tissue density RTD 0.18–0.65 0.46 ± 0.019 g cm–3

Root branching intensity RBI 0.5–6.5 3.60 ± 0.240 tipscm–1

Root carbon content RC 151.54–414.79 346.85 ± 8.966 g kg–1

Root nitrogen content RN 5.05–17.07 11.05 ± 0.365 g kg–1

Root phosphorus content RP 0.24–0.72 0.55 ± 0.013 g kg–1

Soil organic carbon SOC 16.51–61.37 32.52 ± 2.025 g kg–1

Total nitrogen TN 0.9–4.01 1.64 ± 0.102 g kg–1

Total phosphorus TP 0.09–0.39 0.24 ± 0.016 g kg–1

Total potassium TK 8.07–41.02 21.96 ± 1.810 g kg–1
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Table A8. Results of Horn’s Parallel Analysis for component retention (Adjusted eigenvalues > 1
indicate dimensions to retain).

Component Adjusted
Eigenvalue

Unadjusted
Eigenvalue Estimated Bias

CWM traits PCA

1 1.631151 1.256974 0.625823
2 0.663314 0.839614 0.176299

Soil PCA

1 1.355838 1.743546 0.387708
2 0.327638 0.421766 0.094127

Table A9. Analysis of variance (ANOVA) table showing the significance of different variables influenced
by the hill slopes (Significance p < 0.05).

Variables Sum of Squares DF Mean Square F Sig.

AGB 2183315.682 2 1091657.841 2.526244 0.095315
TD 10.16666667 2 5.083333333 0.384234 0.683979
FD 0.008205556 2 0.004102778 2.469524 0.100128
HEIGHT 0.666672222 2 0.333336111 0.651748 0.527712
SLA 0.020816667 2 0.010408333 2.795131 0.075613
LDMC 3150.75905 2 1575.379525 1.029242 0.368462
VD 9.624155556 2 4.812077778 2.081727 0.140788
LC 8581.352106 2 4290.676053 1.562361 0.224753
LN 120.6284667 2 60.31423333 3.03795 0.061515
LP 0.392372222 2 0.196186111 1.056245 0.359222
RD 0.83495 2 0.417475 1.09229 0.347269
SRL 4.315872222 2 2.157936111 1.486274 0.240966
RDMC 3942.490289 2 1971.245144 0.974221 0.38808
RTD 0.016538889 2 0.008269444 0.612208 0.548195
RBI 5.078505556 2 2.539252778 1.236306 0.303559
RC 8132.912822 2 4066.456411 1.440282 0.251363
RN 17.37561667 2 8.687808333 1.897105 0.166004
RP 0.014372222 2 0.007186111 1.051393 0.360864

Elaboration of the acronyms has been presented in Figures 4 and 5.
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RBI 5.078505556 2 2.539252778 1.236306 0.303559 
RC 8132.912822 2 4066.456411 1.440282 0.251363 
RN 17.37561667 2 8.687808333 1.897105 0.166004 
RP 0.014372222 2 0.007186111 1.051393 0.360864 

Elaboration of the acronyms has been presented in Figure 4 and Figure 5 
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Figure A3. A map of the total study area and the plots selected for this study. The four plantations were
located side by side and the plots (black dots) were placed within each plantation types. (AM—Acacia
mangium plantation, EE—Eucalyptus species plantation; MC—mixed coniferous species plantation;
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