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Abstract: Sustaining wheat production under low-input conditions through development and
identifying genotypes with enhanced nutritional quality are two current concerns of wheat breeders.
Wheat grain total protein content, to no small extent, determines the economic and nutritive value
of wheat. Therefore, the objectives of this study are to identify accessions with high and low grain
protein content (GPC) under well-watered and water-deficit growth conditions and to locate genomic
regions that contribute to GPC accumulation. Spring wheat grains obtained from 2111 accessions
that were grown under well-watered and water-deficit conditions were assessed for GPC using
near-infrared spectroscopy (NIR). Results indicated significant influences of moisture, genotype,
and genotype× environment interaction on the GPC accumulation. Furthermore, genotypes exhibited
a wide range of variation for GPC, indicating the presence of high levels of genetic variability among
the studied accessions. Around 366 (166 with high GPC and 200 with low GPC) wheat genotypes
performed relatively the same across environments, which implies that GPC accumulation in these
genotypes was less responsive to water deficit. Genome-wide association mapping results indicated
that seven single nucleotide polymorphism (SNPs) were linked with GPC under well-watered
growth conditions, while another six SNPs were linked with GPC under water-deficit conditions only.
Moreover, 10 SNPs were linked with GPC under both well-watered and water-deficit conditions.
These results emphasize the importance of using diverse, worldwide germplasm to dissect the genetic
architecture of GPC in wheat and identify accessions that might be potential parents for high GPC in
wheat breeding programs.
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1. Introduction

Wheat (Triticum aestivum L.) is the food commodity for more than third of the world's population.
Wheat grain is a rich source of starch (carbohydrate). Therefore wheat is primarily considered as
a source of energy [1]. However, wheat grain contains also moderate amounts of dietary proteins
which determines, to a large extent, both the end-use quality and wheat grain price [2]. Wheat grain
total protein content (GPC) ranges from 9 to 15% of the dry weight [3,4]. Although, GPC depends
primarily on the genotype; the environment and genotype × environment interaction also plays
an essential role in grain protein accumulation [5].
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Nitrogen fertilization is the critical environmental factor that affects protein accumulation;
if nitrogen fertilization stays constant, increased yield often results in decreased protein content because
of nitrogen dilution by the large biomass [6–9]. Furthermore, under stress conditions, grain protein
content tends to be higher compared to either irrigated or nitrogen-limited conditions [10]. Water deficit
increases grain total protein content, but it decreases grain yield [11]. Wheat genotypes with higher
yield potential tend to have lower protein content and vice versa [12]. Several explanations for the
negative relationship between grain protein content and yield have been proposed [13]. However,
some wheat genotypes deviate from the previous relationship, i.e., they produce high yield and high
grain protein content [14]. That deviation implies that the nitrogen supply to grains was increased,
but it was not associated with a reduction in the grain yield [15].

Exploring genetic resources to identify wheat genotypes with high grain protein content is the
most efficient way to improve the nutritional value of wheat grains [16]. Wheat breeders were successful
in selecting genotypes with a high total protein content that were generated from cultivated materials
such as “Atlas,” “Atlas66” and “Nap Hall” [17]. Previous studies reported higher GPC in landraces
and wild relatives compared to modern wheat genotypes [18,19]. A wild emmer (Triticum turgidum var
dicoccoides) genotype was identified in Israel, i.e., “FA15-3” which was found to be able to accumulate
40% protein when given adequate nitrogen fertilization [20]. High grain protein content gene GPC-B1
allele which was originally identified in wild emmer wheat, was transferred to a spring wheat genotype
and increased grain total protein content by 3% [21]. The GPC-B1 allele accelerates senescence and
increases mobilization of nitrogen, zinc, and iron to the developing grains [22]. Thus, accessions
containing this allele most likely will contain high protein as well as high iron and zinc [23]. However,
most of the modern tetraploid and hexaploid wheat genotypes have lost a functional allele of
GPC-B1 [16]. During the last decade, several QTLs for GPC were mapped using association mapping
(AM) and biparental populations on chromosomes 5A, 5D, 2D, 2B, 6A, 6B and 7A [24–31], that QTLs
were validated and used in marker-assisted selection to improve GPC.

Marker-assisted selection (MAS) was defined as one of the promising avenues to improve wheat
total protein content and grain yield [32]. The critical step in MAS is to identify molecular markers
associated with desirable phenotypic traits using AM or biparental populations [33]. Association
mapping (AM) can be applied to structured populations [34], thus incorporating a broad spectrum of
germplasm is possible [34–36]. However, the successful application of association mapping requires
comprehensive phenotypic and genotypic data. The dramatic decrease in the genotyping costs [37]
in addition to the availability of high throughput phenotyping technologies such as Near-Infrared
Spectroscopy (NIR) make AM a viable approach for large populations [38]. Furthermore, A robust
sequence and annotation of the wheat genome are now available [39] with the latest developments in
genomic technologies. This might allow researchers to identify new loci associated with GPC genes
and dissect the genetic architecture of GPC in wheat.

Three strategies were adopted to select for high GPC and grain yield, i.e., selecting for high
grain protein alone, selecting for high grain protein within highest yielding genotypes, and using
an index to simultaneously select for both protein and yield [40]. In the current study, the most recent
developments in genotyping and phenotyping technologies were applied to identify genomic regions
associated with GPC and select accessions with high and low grain protein content using a worldwide
collection of spring wheat accessions.

2. Materials and Methods

2.1. Plant Materials and Field Growth Conditions

Wheat grains obtained from 2111 wheat accessions (882 landraces; 493 breeding lines; 419 cultivars
and 317 with uncertain category) were used in the current study. The accessions seeds were provided
by the national small grains collection (NSGC) located in Aberdeen, ID, USA. The accessions were
screened in Egypt during 2015/2016 and 2016/2017 growing seasons for total protein content under
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well-watered and water deficit conditions in Damanhour university experimental farm (30◦45′19.4′′ N,
30◦29′4.8′′ E). During the two growing seasons, drought stress was imposed by controlling irrigation
during the reproductive stage in which plants were irrigated at 40% depletion of plant available
water (PAW) (well-watered), or 80% PAW (water deficit). Well-watered and water deficit treatments
were applied on two sublocations within the same experimental farm to facilitate the control of
water application. For both sublocations, the wheat accessions were planted in two replicates using
a randomized incomplete block design [41] in plots of four rows wide with 25 cm between rows and
two meters long. The incomplete blocks consisted of 50 accessions in addition to three check cultivars,
i.e., “Sids13”, Gimmiza 9”, and “Giza 168. The check cultivars were planted in each incomplete block.

2.2. Estimation of Grain Protein Content (GPC)

Grain protein content (% or g/100 g) was estimated using near-infrared spectroscopy (NIR)
with a Perten DA7250 diode array NIR (Springfield, IL, USA). NIR is a nondestructive technique that
complies with the ISO 12099 standard method. The measurements of GPC were done in the near infrared
region 950–1650 nm and readings were processed in NetPlus software (Perten, Hägersten, Sweden),
which includes validation calculation modules, such as calculations of bias, slope, and standard errors of
prediction against the reference methods. However, for initial calibration of the Perten DA7250, the crude
protein content of 100 wheat accessions was measured using the Kjeldahl method (Pelican Equipment’s,
Chennai, India). The correlation coefficient (r) between the calibration set and Perten DA7250 NIR
readings was 0.964 for crude protein (% dry basis).

2.3. Single Nucleotide Polymorphism (SNP)

Wheat accessions included in this study were genotyped through the Triticeae Coordinated
Agriculture Project (TCAP) using the Illumina iSelect 9 K (Illumina, Madison, WI, USA) wheat array [42]
at the USDA-ARS genotyping laboratory in Fargo, ND, USA. The single nucleotide polymorphism
(SNP) markers were filtered by removing SNPs with missing values >10% and minor allele frequency
(MAF) <5%. The filtration step resulted in 5090 high-quality SNPs in which the missing values were
imputed using random forest regression [43], which was applied using the MissForest R/package [44].
Then, the filtered and imputed SNP markers were used for the association mapping analysis, in which
SNP markers were plotted in a Manhattan plot using “WNSP 2013 consensus map”; available on:
(https://triticeaetoolbox.org/wheat/) according to Wang et al. [45].

2.4. Statistical Analysis

Analysis of variance was carried out by fitting the following model [46]:

Yijlm = µ + Ei + EB(il)j + Gm + EGim + εijlm

where Yijlm is the response measured on the ijlm plot, µ is the overall mean, Ei is the effect of ith
environment, EB(il)j is jth incomplete block nested within lth complete block and ith environment
(random), Gm is the effect of mth accession, EGim is the interaction effect among ith environment
and mth accession, and εijlm is the experimental error. Type III expected mean square estimation was
conducted as follows:

Source Type III Expected Mean Square
Environment (Env) Var (Error) + 45.372 Var (IBlock (Env × Rep)) + Q (Env, Env × Genotypes)
Incomplete block (Env × block) Var (Error) + 36.829 Var (IBlock (Env × Rep))
Accessions Var (Error) + Q (Genotypes, Env × Genotypes)
Env × Accessions Var (Error) + Q (Env × Genotypes)

Homogeneity and normality of variance were checked using Bartlett and Shapiro-Wilk statistics
using R/package agricolae [47]; Least Square Means (Lsmeans) were estimated using R/package
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lsmeans [48]. Lsmeans were compared using Tukey’s studentized range (HSD) (at p-value < 0.05).
Pearson correlation analysis (r) was carried out between lsmeans using R/package corr.test [47].
Mean-based heritability (h2) was estimated using the following model:

h2 = σG
2/[σG

2 + (σE
2/ri)]

where σG
2 is the genetic variance, σE

2 the residual variance and ri is the number of replicates [49].

2.5. Association Mapping

The estimated Lsmeans for GPC and SNP markers were subjected to association analysis according
to the following mixed linear model (MLM) in R package GAPIT [50].

Y = µ + Zu + Wm + e (1)

where Y is a vector of the total protein content, µ is a vector of intercepts, u is an n× 1 vector of random
polygene background effects, e is a vector of random experimental errors with mean 0 and covariance
matrix Var(e), Z is an incidence matrix relating Y to u. Var(u) = 2 KVg, where K is a known n× n matrix
of a realized relationship matrix, estimated using the A.mat function in R software [51], as K = WW/C,
where Wik = Xik + 1 − 2pk and pk is the frequency of the one allele at marker k [51], Vg is the unknown
genetic variance, which is a scalar, m is a vector of fixed effects due to SNP markers, W is incidence
matrix relating Y to m. Var(e) = RVR, where R is an n × n matrix, and VR is the unknown residual
variance, which is a scalar too. Furthermore, principal component analysis (PCA) was conducted using
the filtered SNP markers [52] and the integrated PCA function (prcomp) of the R software. In addition
to Model (1), another three models were fitted. Model (2) contained the K matrix and the first PCA;
Model (3) contained the K matrix, in addition to PCA1 and 2. Moreover, Model (4) contained the K
matrix, in addition to the first three PCAs. p-values estimated from the mixed models were subjected
to false discovery rate (FDR) corrections using Q-value estimates applied in the R package q-value [53].
The proportion of phenotypic variance explained (R2) by the significant markers, and their additive
effects were estimated using the GAPIT function, according to Wray et al. [54], in R software [50].

3. Results

3.1. Grain Protein Content (GPC)

Normal distribution and homogeneity of variance for grain protein content (GPC) were observed
across the four environments (two seasons and two water regimes). Thus, combined analysis of variance
across environments was conducted. Combined analysis of variance for GPC indicated a highly
significant effect (p-value < 0.01) for the environments, genotypes, and genotype × environment
interaction (Table 1). Broad-sense heritability estimates ranged from 0.49 to 0.60 for well-watered
and water deficit conditions, respectively. Furthermore, the broad sense heritability estimates across
years, and water regimes (the four environments) was 0.64 lsmeans of the grain protein content (GPC)
ranged from 5.96 to 17.11% with a mean of 10.15 under well-watered conditions during 2016, and 6.88
to 17.43 with a mean of 9.67 in 2017 growing seasons. On the other hand, under water deficit conditions,
GPC ranged from 11.12 to 18.5 with a mean of 14.9 in 2016 and 9.8 to 18.3 with a mean of 13.97 in 2017
growing seasons. Although, no significant difference was detected for the difference between means of
the growing seasons, the difference between the lsmeans of the water regimes was highly significant,
based on HSD at 0.01 probability level. Overall, our results indicated that water deficit increased GPC
by 29% across the two growing seasons (Figure 1).
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Table 1. Analysis of variance for grain protein content (GPC) of the 2111 genotypes across environments.

Source DF Type III SS Mean Square F Value

Environment 3 70,093.78 23,364.59 19,188.5 **
IBlock (Replicate Environment) 256 1361.56 5.31 4.37

Genotypes 2113 26,096.19 12.35 10.14 **
Environment × Genotypes 6255 26,164.38 4.18 3.44 **

Error 9208 11,211.99 1.21

**: Significant at 0.01 probability level.

Furthermore, the correlation between GPC obtained from well-watered with that obtained water
deficit across all genotypes was positive and significant (r = 0.23, p-value = 0.01). The first quartiles for
the GPC across growing seasons (the cut off for the lowest 25%) under well-watered and water deficit
conditions were ≤8.36 and 13.41, respectively (Figure 1). Whereas, the third quartile (the cut off for the
highest 25%) of the genotypes under well-watered and water deficit conditions were ≥11.35 and 14.66,
respectively. The first and third quartiles in this study were used as criteria to classify the genotypes into
high and low GPC genotypes. Therefore genotypes with GPC ≤8.36 under well-watered and ≤13.41
under water deficit conditions, were defined as low protein genotypes. On the other hand, genotypes
with GPC ≥11.35 under well-watered and ≥14.66 under water deficit conditions were defined as
high protein genotypes. Grain protein content (GPC) for all genotypes under well-watered and water
deficit conditions (Figure 2) indicated that 166 (7.8% of the genotypes) had high protein content under
well-watered and water deficit conditions concurrently. Another, 200 genotypes (9.47%) were classified
as low protein genotypes under both well-watered and water deficit conditions concurrently. The top
20 accessions with the highest GPC under well-watered and water deficit conditions are presented in
Table 2, in which no overlapping accessions between the two water regimes were detected. Out of
the top 20 accessions, detected under well-watered conditions, nine landraces were present. On the
other hand, 18 landraces were present among the top 20 accessions detected under water deficit
conditions. Overall, the estimated lsmeans from the landraces (882 accessions) under well-watered
conditions was 10.9; which was 11.22% higher than the overall average of all other accessions (Table 2).
Additionally, under water deficit conditions the average GPC for the landraces was 15.04 which was
7.9% higher than the overall average of all other accessions. Overall, our results indicate that moisture
has a significant impact on GPC accumulation in wheat. Landraces had higher GPC, compared to
other germplasm used in the current study.
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Figure 2. The overall performance of the 2111 wheat accessions across the two growing seasons under
water deficit and well-watered growth conditions.

Table 2. Lsmean values of the grain protein content (GPC) of 20 accessions with the highest
values across 2015/2016 and 2016/2017 growing seasons obtained from well-watered (control) and
water-deficit conditions.

Well-Watered Water Deficit

Accession Origin Improvement Mean Accession Origin Improvement Mean

534,406 Algeria landrace 14.78 366,801 Afghanistan landrace 17.965
534,448 Algeria landrace 15.63 350,850 Austria landrace 18.38
338,364 Belgium cultivar 14.83 350,820 Austria landrace 18.1125
481,731 Bhutan landrace 14.69 565,254 Bolivia landrace 17.9275
14,261 Canada breeding 15.39 374,243 Chad landrace 18.135

313,109 Colombia uncertain 15.13 57,825 India landrace 18.0175
372,434 Cyprus landrace 14.90 382,048 Iran landrace 18.535

428,672 Czech
Republic cultivar 15.33 625,916 Iran landrace 18.43

254,023 Europe uncertain 15.27 623,758 Iran landrace 18.055
278,279 Greece landrace 15.09 624,992 Iran landrace 18.03
468,988 Greece landrace 16.11 624,124 Iran landrace 17.9125
15,396 Lebanon uncertain 15.89 626,116 Iran landrace 17.9075

520,369 Mexico breeding 15.80 623,968 Iran landrace 17.8525
525,283 Morocco landrace 15.49 70,704 Iraq landrace 18.42
477,901 Peru landrace 15.05 191,987 Portugal landrace 18.3475
370,724 Poland cultivar 15.03 345,474 Serbia landrace 18.3975

155,119 Russian
Federation cultivar 15.68 225,424 Uruguay breeding 18.355

479,700 South
Africa cultivar 15.48 225,519 Uruguay breeding 17.8375

241,596 Taiwan cultivar 15.31 36,500 Uzbekistan landrace 17.95
534,366 Tunisia landrace 14.98 24,485 Uzbekistan landrace 17.85

3.2. Association Mapping for Grain Protein Content

A total of 3215 mapped SNPs were used for estimating the extent of linkage disequilibrium (LD)
in the 2111 wheat accessions. Only SNP loci having MAF≥0.05 and missing values≤10% were used to
estimate r2 across all SNPs. The estimates of r2 for all pairs of SNPs loci were used to determine the rate
of LD decay with genetic distance. Across the three wheat genomes, i.e., A, B and D using only markers
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with significant r2 (p-value = 0.001), the LD ranged from 0 to 0.35. Overall, LD declined to 50% of its
initial value at about 8 cM (Supplementary Materials, Figure S1). Eigenvector decomposition of the
kinship matrix was used to investigate the population structure among accessions. The first principal
component (PCA) accounts for less than 1% of the total variance (Supplementary Materials, Figure S2).
Nevertheless, GWAS models with kinship matrix (K matrix, supporting information Figure S3) with
zero, one, two or three PCAs were compared using Bayesian information criteria (BIC). The results
indicated noticeable difference between the four models. Additionally, the first model, i.e., with no
PCA produced the highest BIC values, given that the largest is the best [55]. Therefore, we reported
the results of association mapping using only the K matrix in which it accounted for most of the
stratification among accessions.

Association mapping analysis was conducted on each environment separately (two growing seasons
and two water regimes). Genome-wide association mapping (GWAS) indicated that 46 SNP markers
found to be significantly linked with GPC. The significant SNP markers were located on chromosomes
1A (12 SNPs), 1B (12 SNPs), 1D (7 SNPs), 6A (6 SNPs), 6B (7 SNPs) and 6D (3 SNPs) (Figures 3
and 4). Out of the 46 significant SNP markers, ten markers were linked with GPC under well-watered
and water deficit conditions in one growing season at least. Three SNP markers (IWA3169, IWA3501,
and IWA7937) were significantly linked with GPC across the four environments (2016, 2017 growing
seasons, and well-watered and water deficit conditions) (Table 3). Four markers (IWA6649, IWA6787,
IWA3481 and IWA4351) found to be linked with GPC in three environments (2016 well-watered, 2016 and
2017 water deficit conditions) (Table 3). These results together indicate that some loci were significantly
associated with GPC in wheat irrespective of water status.
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Table 3. SNP markers that found to be significantly linked with GPC under well-watered (control) and water deficit conditions.

Marker Chrom Position
Well-Watered Water Deficit

R2 (%) Additive Effect MAF Marker Chrom Position
Well-Watered Water Deficit

R2 (%) Additive Effect MAF
2016 2017 2016 2017 2016 2017 2016 2017

IWA5150 1A 9.9 + + − − 0.893 −0.007 0.19 IWA8551 1D 32.8 − − + − 1.069 0.062 0.25
IWA6649 1A 11.6 + − + + 1.141 0.07 0.35 IWA3481 1D 45.1 − + − + 1.122 0.13 0.07
IWA4351 1A 11.6 + − + + 1.089 0.062 0.35 IWA3446 1D 45.1 − − + + 1.001 0.086 0.07
IWA4643 1A 21 + + − − 0.892 0.004 0.28 IWA5020 1D 47.7 − + − − 0.918 −0.026 0.33
IWA4753 1A 21.7 − + − − 0.9 −0.02 0.1 IWA5019 1D 47.7 − + − − 0.918 −0.026 0.33
IWA7191 1A 21.7 − − + + 0.965 0.053 0.13 IWA5018 1D 47.7 − + − − 0.917 −0.026 0.33
IWA4678 1A 22.5 − + − − 0.901 0.028 0.08 IWA4598 1D 48.6 − + − − 0.912 0.023 0.33
IWA4644 1A 22.9 − + − − 0.915 −0.026 0.16 IWA7007 6A 10 − − + − 0.918 0.025 0.23
IWA4754 1A 23.2 + + − − 0.892 0.003 0.34 IWA4551 6A 16.2 + − − − 1.294 −0.13 0.13
IWA4506 1A 26.9 + − − − 0.907 −0.019 0.29 IWA4552 6A 16.2 + − − − 1.313 −0.131 0.13
IWA7050 1A 32.5 − − + − 1.305 0.092 0.38 IWA7288 6A 17.8 − − + + 1.316 0.093 0.35
IWA4163 1A 32.8 + − − − 1.17 −0.076 0.39 IWA7287 6A 21.9 − − + + 1.391 0.116 0.21
IWA4349 1B 13.2 + − + − 1.589 0.128 0.26 IWA4962 6A 22.8 − + − − 0.923 −0.027 0.24
IWA6787 1B 13.2 + − + − 1.433 0.105 0.28 IWA4730 6B 48.5 + − − − 0.922 0.046 0.06
IWA7048 1B 22.9 − − + − 1.746 0.244 0.07 IWA3501 6B 48.8 + + + + 2.681 0.213 0.39
IWA7480 1B 22.9 − − − + 1.472 0.111 0.35 IWA7937 6B 48.8 + + + + 2.654 0.187 0.37
IWA3169 1B 23.7 + + + + 2.027 0.161 0.31 IWA3923 6B 48.8 + + − − 1.208 0.117 0.11
IWA8199 1B 27.4 − − + + 1.271 0.099 0.25 IWA6466 6B 48.8 + + − − 1.448 0.131 0.18
IWA7345 1B 28.1 − − + + 1.808 0.23 0.09 IWA6467 6B 48.8 + + − − 1.455 0.132 0.18
IWA6611 1B 28.1 − − − + 1.636 0.131 0.27 IWA5986 6B 50.8 + + − − 0.892 0.005 0.24
IWA6610 1B 28.1 − − − + 1.642 −0.13 0.27 IWA6673 6D 17.2 − − + − 1.147 0.079 0.24
IWA3738 1B 28.2 − + − − 1.451 0.12 0.22 IWA3624 6D 17.3 − − + − 1.073 0.068 0.41
IWA8275 1B 28.2 − − + − 1.618 0.128 0.27 IWA7616 6D 29.8 − − − + 1.542 0.142 0.17

− and + refer to nonsignificant and significant SNPs, respectively.
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Under well-watered conditions for the two growing seasons, seven SNP markers (IWA5150,
IWA4643, IWA4754, IWA3923, IWA6466, IWA6467, and IWA5986) found to be significantly linked with
GPC. On the other hand, under water deficit conditions for the two growing seasons, six SNP markers
(IWA7191, IWA8199, IWA7345, IWA3446, IWA7288, and IWA7287) found to be significantly linked with
GPC. In contrary, 14 markers (IWA4753, IWA4678, IWA4644, IWA4506, IWA4163, IWA3738, IWA5020,
IWA5019, IWA5018, IWA4598, IWA4551, IWA4552, IWA4962, and IWA4730) found to be significantly
linked with GPC during only one growing season under well-watered conditions. Another ten
markers (IWA7616, IWA3624, IWA6673, IWA7007, IWA8551, IWA6610, IWA6611, IWA7480, IWA7048,
and IWA7050) found to be significantly linked with GPC under water deficit conditions in only one
growing season. Repeatability of the GPC associated loci in 2 seasons under any given water treatment
suggests the feasibility of using/developing markers in LD with these loci.

4. Discussion

Protein content is an essential compositional trait in wheat, which has a broad impact in the food
industry concerning human nutrition and health. Consequently, breeding for enhanced end-use quality
is one of the essential breeding goals in wheat. However, GPC in wheat is positively affected by water
deficit compared to well-watered conditions [10]. In this study, we seek to evaluate a comprehensive
spring wheat collection for grain protein content (GPC) and to locate genomic regions associated with
GPC under well-watered and water deficit conditions using GWAS approach.

The most striking observation in this study was the weak, positive and significant correlation
between GPC obtained from the well-watered condition and water deficit conditions (r = 0.23).
That weak correlation implies strong genotype × environment interaction, in which genotypes
responded differently concerning water treatment. Increase in GPC under water deficit conditions
could be mainly due to higher rates of accumulation of grain nitrogen and lower rates of accumulation
of carbohydrates. High moisture, on the other hand, may decrease GPC by dilution of nitrogen with
carbohydrates [56]. An increased grain protein and gluten content in response to water deficit as
compared to the well-watered experiment in a winter wheat was also reported in a previous study [57].
The current study, as well as previous reports, indicated a significant effect of environment (moisture
and growing seasons) on wheat GPC accumulation. Analysis of variance indicated a significant effect
of moisture, genotype, and genotype × environment interaction on GPC in wheat, suggesting that
GPC is a complex trait influenced by several factors. The significant genotypic effect observed in
this study also indicated a wide range of variation for GPC accumulation among wheat accessions
used. Moreover, around 366 (166 with high GPC and 200 with low GPC) wheat genotypes performed
relatively the same across environments, which implies that GPC accumulation on these genotypes
was less responsive to moisture.

Genotypic variation is a result of several alleles on genes which result in different responses to
environmental conditions [58]. Furthermore, landraces serve as a valuable genetic resource in which
it might provide new alleles for improvement of economically important traits such as GPC [19].
Results reported herein showed that landraces outperformed cultivated genotypes concerning GPC.
These findings agree with previous reports [59,60] in which 121 landraces, 101 obsolete cultivars,
and modern wheat cultivars were evaluated for GPC under the same environmental conditions,
and landraces had higher total protein content compared to other studied accessions. Grain quality
of some wheat landraces should be of particular interest because much broader diversity can be
found in landraces compared to modern wheat cultivars [61]. Additionally, most of the organic wheat
production systems rely on cultivars that were developed for high-input production systems [60,62].
Wheat landraces have been developed mostly in environments with low nutrient availability; they
represent a source of variation for selection of genotypes adapted to cropping systems with low
fertilizer input [61]. In the current study, we identified 224, 214 and 70 wheat landraces that
were found to have high GPC under well-watered, water deficit and both conditions, respectively.
Our results and previous reports indicated that GPC depends mainly on genotype, environment,
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and genotype × environment interaction [59]. However, the response mechanism that modifies protein
accumulation under water deficit conditions is still unclear. Recently, a putative mechanism underlying
the increased accumulation of storage proteins in wheat endosperm under water deficit was provided
by Chen et al. [63]. They identified four differentially expressed miRNAs induced by drought stress
that may affect the development of protein bodies in caryopsis by regulating the expression levels of
target genes involved in protein biosynthesis pathways.

One of the primary goals of this study was to locate significant genomic regions that control
the accumulation of GPC which might shed light on the genetic architecture of GPC and the protein
accumulation mechanism. The genome-wide association mapping analysis, applied in the current
study, using the kinship (K) matrix in a mixed model indicated that K matrix was adequate in
accounting for population structure [64]. Also, these results agree with those of Zhao et al. [65], in which
they found that K models were adequate for genome-wide association mapping. Furthermore, the K
model was more effective in reducing the false-positive rate compared to using the Q + K model.
Linkage disequilibrium (LD) was estimated using r2 among all pairs of SNPs loci, in which r2 in this
study was 0.09, which is higher than that obtained by Breseghello and Sorrells [66] and 0.019 reported
by Neumann et al. [67] because of their small size populations, and with a similar number of marker
pairs. This indicates that the population size might have an impact on the LD.

Genome-wide association analysis (GWAS) was conducted on each environment separately to
measure the repeatability of the significant SNPs, and the effect of moisture on the genomic regions
controlling GPC. Several SNPs found to be significantly linked to the GPC under well-watered
conditions but not significantly linked to GPC under water deficit conditions and vice versa. Moreover,
ten QTLs were linked with GPC under both well-watered and water deficit conditions. The GWAS
analysis suggested a significant role of genotype× environment interaction in detecting GPC associated
loci. Genome-wide association studies using diverse wheat germplasm have successfully detected
GPC associated loci in durum wheat [68], and bread wheat lines [69]. Thus, the SNPs associated with
GPC under water deficit or well-watered environmental conditions, from this study might provide
useful molecular information for wheat breeders to incorporate specific QTLs to increase GPC in low
input or drought-stressed environments. Around 50% of the significant SNPs detected in the current
study was on chromosome 1, where copies of Glu-B1 and Gli-B1 genes reside [70]. Glu-B1 and Gli-B1
genes were previously reported to contribute of about 24.6 and 19.5% of the total phenotypic variation
for sedimentation volume (determines gluten strength and in turn cooking quality of pasta) [2]. Several
SNP loci in LD with sedimentation volume were discovered recently on chromosome 1A and 1B,
in durum wheat [68].

These results together emphasized the importance of using diverse worldwide germplasm to
dissect the genetic architecture of GPC in wheat and identify accessions that might be potential parents
in wheat breeding programs. Ongoing multiple years, multiple replication study using 406 accessions
identified in the current study is being conducted, to evaluate these genotypes for yield and validate the
GPC associated loci detected herein. Furthermore, GPC estimates under well-watered and water deficit
conditions was used as a selection parameter to downsize the number of accessions from 2111 to 406.
Reducing the number of accessions will allow us to profoundly investigate other wheat quality aspects
such as concentrations (soluble and insoluble) of glutenin, α/β, γ gliadin and albumin/globulin in
addition to the total protein for high and low GPC genotypes.

5. Conclusions

Based on previous research and our findings, the spring wheat collection used in this study
contains high protein accessions. Furthermore, GPC measurement under well-watered and water
deficit conditions was used as a selection criterion to reduce the number of accessions from 2111 to 406
accessions. This reduction in the number of studied accessions will allow us to profoundly study other
wheat quality aspects such as concentrations (soluble and insoluble) of glutenin, α/β, γ gliadin and
albumin/globulin in addition to the total protein for high and low GPC genotypes. It also represents
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a precious resource for further investigations including annotation of relevant genomic regions/genes
using available wheat genomic resources to study the GPC. Results of GWAS indicated that several
genomic regions were involved in GPC accumulation in wheat grains. Furthermore, GWAS results
also suggested a significant role for genotype x environment interaction in the identification of GPC
associated loci under well-watered and water deficit conditions. The identified loci might allow
development of marker-assisted selection (MAS) for GPC and might also facilitate the development
of a better understanding of the genetic architecture that controls GPC in wheat. Therefore, the high
and low GPC accessions identified in the current study were included in ongoing multiple years and
locations studies to evaluate them for yield and confirm the GPC associated loci detected.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/7/3/56/s1,
Figure S1: Decay of r2 as a function of genetic distance between SNP markers estimated for 2111 spring wheat
collection from different geographic regions, Figure S2: The percentage of variance explained by principal
components (PCA), Figure S3: Heatmap and dendrogram of a kinship matrix estimated using the A.mat function
(rrBLUP package) based on 5090 SNPs among 2111 wheat accessions.
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