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1. Supporting Information
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Figure S1. Experimental setups with two densities and four treatments. (a) Positions 1-5 and the
distances of 2 cm between corner position(s) (1-4) and central position (5) were illustrated. Position
1-4 started at the lower left and clockwise. Circles were Columbia (Col, blue) and ER::GFP (green),
while squares indicated conditioned media (yellow), half nutrients (i.e., 1/4X of MS media) (red) and
fresh media removed and replaced (blue). (b) A representative image of the H treatment in the D3
density at 26 DAP. (c) The control setup C was five plants per box with four Col seeds (blue circles)
on the position 1-4 and one ER:GFP (blue circle) at the position 5. Two densities were set up, five
seeds (as density 5, D5, as control) vs. four seeds (D4) per box and five seeds (D5, as control) vs.
three seeds per box (D3). In the D4 density, the medium of the position 3 was replaced with the
conditioned medium, with half nutrients, and with fresh media removed and replaced as
mechanical procedural control. In the D3 density, the media of the two positions, 1 and 3, were

modified.
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Figure S2. Setup of fluorescence imaging. (a) Illumination and image-taking by a camera were
placed as perpendicular to each other. An emission filter of long path (LP) 505 nm was used to block
the excitation wavelengths (505 nm) and permit only green emission wavelengths to pass toward
the camera; an excitation filter of short path (SP) 485 nm was used to permit only blue light to pass
through on the way toward the roots in a Magenta® box. Arabidopsis Columbia ecotype wild type
seeds (light blue circles) and ER:GFP seeds (green circles) were sown according to the setups in
Figure S1. Images were taken from side A, then side B, side C and finally side D. (b) A
representation of an ER::GFP root system. White solid arrow points to the junction of the root and
stem and surface of the gel; hollow white arrow points to the bottom of the box when the root
reached it.

Figure S3. Image processing. (a) Raw image of root systems taken from white light; (b) the same
image taken from blue light; (c) after Adobe Photoshop processing of the image to acquire the image
of the position 5 (central) root; (d) Post-Canny editing to acquire the “root skeleton”. The image was
from side B (refer to Figure S2) of the Control box (refer to Figure S1) in the D3 density at 26 DAP.
The red circle highlighted a root tip. In (a), red arrow presented X1 axis, yellow Z1 axis and green Y

axis.
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Figure S4. Histograms of two roots in the D3 density at 26 DAP. (a—c) came from a “C” treatment
while (d—f) from an “H” treatment. (a,d) are pixel distribution of the root from Side A (refer to
Figure S2; i.e., X1 axis); (b,e) from Side B (Z: axis); (¢ f) from top to bottom as depth of a root (Y axis).
Negative skewness (S in Red) occurs in (¢ f) but negative kurtosis (K in green) only in (f), not (c). M
is modal depth (in white).
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Figure S5. 3D heatmaps of root horizontal distribution. (a) 3D vertical representatives of four
treatments (C, H, L, PC) of the D3 (density 3 plants per box), replicate 1 from 12 days after planting
(DAP) to 26 DAP. (b) Pixel intensity from 0 (dark blue) to more than 4x10° (dark red). (c) A
representation diagram of X, Z and Y axes.
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Figure S6. 2D root density windroses. (a) Based on Cartesian Coordinates (X, Z) converted to polar
coordinates, windroses of 8 wedges (45 degrees per wedge) were made to illustrate the growth
direction(s) of root systems. The data are of the same in Figure S5A, four treatments (C, H, L, PC) of
the D3 (density 3 plants per box), replicate 1 from 12 days after planting (DAP) to 26 DAP. (b) A
representative of Cartesian Coordinates with four quadrants (Q1-Q4). (c) A windrose representative
from the H root system at 26 DAP. Each red tick presents the mean pixels in that wedge. The green
double arrow pointed the root system growing toward both south (S) and north (N).
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Figure S7. Inorganic nitrogen nutrients of diffusion assays and effects of densities and treatments.
(a) Diffusion assays were done by having the plugs of initial fresh 1/2 strength of MS media (as
“Initial 1/2X”) inserted in the 1/4 strength of MS media (1/4X) over a course of 30 days. After 30
days, the inorganic nitrogen content in the plugs (as “1/2X”), at least 3 mm thickness of its outer
ring, was similar to that in its surrounding (as “1/4X”). One-way ANOVA showed differences
between three (Initial 1/2X; 1/2X; 1/4X). (b) Contents of inorganic NO2/NOs and NH4+* in Initial 1/2X
differed from those in 1/2X and 1/4X. (c) Effects of densities (3 plants or 4 plants per box as D3 or
D4) and treatments high (H) with root exudates, low (L) nutrients (i.e.,, 1/4X MS media), and
mechanical procedural control (PC), on the changes of inorganic nitrogen nutrients in the position 5
(i.e., central position; refer to Supplemental Fig. S1 and Supplemental Fig. S2) after growing
Arabidopsis for 28 days. One-way ANOVA using of the initial fresh media (as “Initial”) as control
showed difference between groups. (d) The content of the Initial was different from that of the
transplant tube inserts (as “Transplant”), four plants (per box) in 1/4X MS (L_D4) and three plants
(per box) in 1/4X of MS (L_D3). Mean values sharing the same letter are not significantly different (p
<0.05).



2. Supplemental Methods

2.1. Root Recognition and Image Digitalization

Pattern recognition techniques common in medical imaging were used to extract salient
features from the digital images of roots [1,2]. However, due to the existence of artifacts in the root
images caused by lighting reflections by the Magenta® box, image processing techniques were also
applied to remove the artifacts and to retrieve the root image proper. Then we used an automated
region of interest (ROI) detection method, the so-called aROIs method (i.e., using an algorithm to
detect ROIs), to find a rectangular region that contains the roots for each image [3]. Since
Arabidopsis roots were the main objects in our images, human defined ROlIs (i.e.,, hROIs) can be
also used. This operation removed the container edges from the images while retaining the roots
only. Afterwards, a series of image processing techniques were applied to extract the root
architecture from the images, including improving edge detection with morphological operations to
connect the gaps in the roots resulted from edge detection while removing noise.

Canny edge detection algorithm [4] was combined with morphological operations that was
capable of detecting line segments [5,6]. Canny edge detector achieved three basic objectives. First,
it has a low error rate. All true edges should be found and there should be no false edges. Second, it
localizes the edges well. The edge found by the detector should have the minimal distance from the
center of the true edge. Third, it produces a single edge point response. No multiple edge points are
identified where only one edge point exists. To achieve these objectives, the algorithm consisted of
the following four stages. Stage 1. Noise reduction by smoothing the original image with a
Gaussian filter G(x, y),

(D

x? + y?
202 )

G(x,y) = exp (—

where o is a parameter representing the window size. In this study, we used 0 = 1.4 to create a 5 x 5
low-pass filter to spatially convolve with the original image I(x, y),

I(x,y) = G(x,y) * 1(x, y), )

where * represents spatial convolution. Stage 2. Computation of the gradient magnitude and angle
of the images. To find the directions of the edges, the horizontal, vertical and diagonal edge
detectors such as Roberts, Prewitt, and Sobel filters [5] were first applied to the blurred image
I;(x,y). Then the magnitude and angle were calculated as

M(x,y) = g5+ g5 .0(x,y) = tan‘li—;, 3)

Stage 3. Suppression of the non-maxima. The angles were rounded to four angles, for example,
-45, 0, 45, and 90 degrees. The magnitudes M(x, y) often contained wide ridges, which were
examined to determine whether or not they were local maxima [4]. As a result of this operation,
thin edges gy (x,y) which were either 0 or a local maximum, could be obtained. Stage 4. Detection
and linking of edges through hysteresis thresholding which required double thresholds T; and T},
with their ratio being two or three to one. Two auxiliary images gy; and gyy were created where
gni (gny respectively) contained all pixels satisfying gy, = T; (gnvu = Ty respectively). Then all
nonzero pixels were eliminated from gy, by letting

Ine(,y) = gn () — guu(x, ), 4)

Subsequently, simple connectivity analysis considering 8-neighbor connectivity was
performed to link the edges for obtaining longer edges.

After using the Canny edge detector, it was noticed that some faint parts of the roots still
became gaps (Figure 3D). The most parts of the edges were extracted; however, they could still be



disconnected because of the lighting variations, for example, caused by reflections. We adopted
morphological operations, including dilation followed by erosion, or thickening after thinning, to
further process the image so that discontinuous parts of the edges (of roots) could be connected and
the root of one plant can be traced automatically. After a series of such processing, the resultant
images were used to extract salient features for pattern recognition. For example, histograms of the
root images were constructed, based on which the statistical distributions of the roots were
obtained for modeling growth patterns. More specifically, histograms of the roots following
horizontal scanning lines or vertically scanning lines were built for analysis. The histograms were
then depicted into pixels for downstream statistical analysis. Supplemental Fig. S3D showed the
extracted roots of Figure 3C after the above-described sequence of image processing steps.
Supplemental Fig. S4A and 4B shows the distribution of roots in one dimension (axis X) and
presented axis X of root density from both Side A and Side C, respectively; Supplemental Fig. S4C
and 4D in the other dimension (axis Z) and presented axis Z of root density from both Side B and
Side D, respectively. Next, two dimensions (i.e., axes X and Z) of root density were reconstructed
for the position 5 roots (for all the groups and treatments) by collapsing Y onto an XZ matrix from a
three dimension (axes X, Y, Z) data collection. The XZ matrix contained numbers representing the
sum of root pixels in each Y-column at that XZ coordinate. Relative total root mass (using the
assumption that roots in each pixel were approximately equal in mass density) was calculated by
collapsing X, Y and Z into a single number representing the sum of all root pixels for each plant.

2.2. Assignment of Polar Coordinates and Windrose Plots

The rows and columns (m, n) for the X-axis and Z-axis data matrix of root distribution for each
plant was converted to generate (X, z) coordinates centered on the plant. The center (0, 0) was found
by locating the point in the plant where the hypocotyl and root junction originating from the seed
sat at the surface of the media in each images taken of X and Z sides. The exact distance from the
edge was determined using Image ] [7]. Often this resulted in a “best guess” scenario that was very
close to the true center. The converted matrix was loaded into the R environment [8] and run by the
IDLE’s (an integrated development environment for Python) graphical user interface (GUI) for
Python. The Cartesian coordinates (x, z) for each matrix element were then converted to polar
coordinates (r, 0) by calculating radius r = Vx2? + z2 and angle 6 = tan_l(g) and converting to

degrees angle. A windrose for each plant root distribution (Supplemental Fig. S6) was generated by
creating a histogram summing the total root pixels in the polar matrix in wedges of 45 degree
increments (thus 8 canonical wedges were generated for each plant). A visualization of root
distributions were obtained through production of windrose diagrams using R (programming
language) [8].
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