Next Article in Journal
Response of Arabidopsis thaliana Roots with Altered Lipid Transfer Protein (LTP) Gene Expression to the Clubroot Disease and Salt Stress
Next Article in Special Issue
Knockdown of WHIRLY1 Affects Drought Stress-Induced Leaf Senescence and Histone Modifications of the Senescence-Associated Gene HvS40
Previous Article in Journal / Special Issue
Molecular Mechanisms of Phosphorus Metabolism and Transport during Leaf Senescence
Article Menu

Export Article

Open AccessArticle
Plants 2016, 5(1), 1; doi:10.3390/plants5010001

A Comparative Study of Proteolytic Mechanisms during Leaf Senescence of Four Genotypes of Winter Oilseed Rape Highlighted Relevant Physiological and Molecular Traits for NRE Improvement

1
UMR INRA-UCBN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., Université de Caen Normandie, F-14032 Caen, France
2
INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, Agrocampus Ouest, Université de Rennes 1, F-35653 Le Rheu, France
*
Author to whom correspondence should be addressed.
Academic Editor: Salma Balazadeh
Received: 15 October 2015 / Revised: 7 December 2015 / Accepted: 14 December 2015 / Published: 22 December 2015
(This article belongs to the Special Issue Plant Senescence)
View Full-Text   |   Download PDF [1783 KB, uploaded 22 December 2015]   |  

Abstract

Winter oilseed rape is characterized by a low N use efficiency related to a weak leaf N remobilization efficiency (NRE) at vegetative stages. By investigating the natural genotypic variability of leaf NRE, our goal was to characterize the relevant physiological traits and the main protease classes associated with an efficient proteolysis and high leaf NRE in response to ample or restricted nitrate supply. The degradation rate of soluble proteins and D1 protein (a thylakoid-bound protein) were correlated to N remobilization, except for the genotype Samouraï which showed a low NRE despite high levels of proteolysis. Under restricted nitrate conditions, high levels of soluble protein degradation were associated with serine, cysteine and aspartic proteases at acidic pH. Low leaf NRE was related to a weak proteolysis of both soluble and thylakoid-bound proteins. The results obtained on the genotype Samouraï suggest that the timing between the onset of proteolysis and abscission could be a determinant. The specific involvement of acidic proteases suggests that autophagy and/or senescence-associated vacuoles are implicated in N remobilization under low N conditions. The data revealed that the rate of D1 degradation could be a relevant indicator of leaf NRE and might be used as a tool for plant breeding. View Full-Text
Keywords: Brassica napus; N remobilization; genotypic variability; proteolysis; acidic proteases Brassica napus; N remobilization; genotypic variability; proteolysis; acidic proteases
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Girondé, A.; Poret, M.; Etienne, P.; Trouverie, J.; Bouchereau, A.; Le Cahérec, F.; Leport, L.; Niogret, M.-F.; Avice, J.-C. A Comparative Study of Proteolytic Mechanisms during Leaf Senescence of Four Genotypes of Winter Oilseed Rape Highlighted Relevant Physiological and Molecular Traits for NRE Improvement. Plants 2016, 5, 1.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Plants EISSN 2223-7747 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top