Next Issue
Previous Issue

Table of Contents

Plants, Volume 2, Issue 2 (June 2013), Pages 174-353

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-9
Export citation of selected articles as:

Research

Jump to: Review, Other

Open AccessArticle Combinations of Mutations Sufficient to Alter Arabidopsis Leaf Dissection
Plants 2013, 2(2), 230-247; doi:10.3390/plants2020230
Received: 6 February 2013 / Revised: 27 March 2013 / Accepted: 1 April 2013 / Published: 8 April 2013
Cited by 3 | PDF Full-text (1817 KB) | HTML Full-text | XML Full-text
Abstract
Leaves show a wide range of shapes that results from the combinatory variations of two main parameters: the relative duration of the morphogenetic phase and the pattern of dissection of the leaf margin. To further understand the mechanisms controlling leaf shape, we have
[...] Read more.
Leaves show a wide range of shapes that results from the combinatory variations of two main parameters: the relative duration of the morphogenetic phase and the pattern of dissection of the leaf margin. To further understand the mechanisms controlling leaf shape, we have studied the interactions between several loci leading to increased dissection of the Arabidopsis leaf margins. Thus, we have used (i) mutants in which miR164 regulation of the CUC2 gene is impaired, (ii) plants overexpressing miR319/miRJAW that down-regulates multiple TCP genes and (iii) plants overexpressing the STIMPY/WOX9 gene. Through the analysis of their effects on leaf shape and KNOX I gene expression, we show that these loci act in different pathways. We show, in particular, that they have synergetic effects and that plants combining two or three of these loci show dramatic modifications of their leaf shapes. Finally, we present a working model for the role of these loci during leaf development. Full article
(This article belongs to the Special Issue Leaf Development)
Figures

Open AccessArticle Pollen Performance in Clarkia Taxa with Contrasting Mating Systems: Implications for Male Gametophytic Evolution in Selfers and Outcrossers
Plants 2013, 2(2), 248-278; doi:10.3390/plants2020248
Received: 15 February 2013 / Revised: 13 March 2013 / Accepted: 3 April 2013 / Published: 24 April 2013
Cited by 3 | PDF Full-text (1191 KB) | HTML Full-text | XML Full-text
Abstract
We tested three predictions regarding the joint evolution of pollen performance and mating system. First, due to the potential for intense intrasexual competition in outcrossing populations, we predicted that outcrossers would produce faster-growing pollen than their selfing relatives. Second, if elevated competition promotes
[...] Read more.
We tested three predictions regarding the joint evolution of pollen performance and mating system. First, due to the potential for intense intrasexual competition in outcrossing populations, we predicted that outcrossers would produce faster-growing pollen than their selfing relatives. Second, if elevated competition promotes stronger selection on traits that improve pollen performance, then, among-plant variation in pollen performance would be lower in outcrossers than in selfers. Third, given successive generations of adaptation to the same maternal genotype in selfers, we predicted that, in selfing populations (but not in outcrossing ones), pollen would perform better following self- than cross-pollinations. We tested these predictions in field populations of two pairs of Clarkia (Onagraceae) sister taxa. Consistent with our predictions, one outcrosser (C. unguiculata) exhibited faster pollen germination and less variation in pollen tube growth rate (PTGR) among pollen donors than its selfing sister species, C. exilis. Contrary to our predictions, the selfing C. xantiana ssp. parviflora exhibited faster PTGR than the outcrossing ssp. xantiana, and these taxa showed similar levels of variation in this trait. Pollen performance following self- vs. cross-pollinations did not differ within either selfing or outcrossing taxa. While these findings suggest that mating system and pollen performance may jointly evolve in Clarkia, other factors clearly contribute to pollen performance in natural populations. Full article
(This article belongs to the Special Issue Pollen Tube Growth)
Open AccessArticle Abaxial Greening Phenotype in Hybrid Aspen
Plants 2013, 2(2), 279-301; doi:10.3390/plants2020279
Received: 16 February 2013 / Revised: 6 April 2013 / Accepted: 18 April 2013 / Published: 24 April 2013
PDF Full-text (571 KB) | HTML Full-text | XML Full-text
Abstract
The typical angiosperm leaf, as in Arabidopsis, is bifacial consisting of top (adaxial) and bottom (abaxial) surfaces readily distinguishable by the underlying cell type (palisade and spongy mesophyll, respectively). Species of the genus Populus have leaves that are either conventionally bifacial or
[...] Read more.
The typical angiosperm leaf, as in Arabidopsis, is bifacial consisting of top (adaxial) and bottom (abaxial) surfaces readily distinguishable by the underlying cell type (palisade and spongy mesophyll, respectively). Species of the genus Populus have leaves that are either conventionally bifacial or isobilateral. Isobilateral leaves have palisade mesophyll on the top and bottom of the leaf, making the two sides virtually indistinguishable at the macroscopic level. In poplars this has been termed the “abaxial greening” phenotype. Previous work has implicated ASYMMETRIC LEAVES1 (AS1) as an essential determinant of palisade mesophyll development. This gene, as well as other genes (84 in all) putatively involved in setting the dorsiventral axis of leaves, were investigated in two Populus species: black cottonwood (Populus trichocarpa) and hybrid aspen (P. tremula x tremuloides), representative of each leaf type (bifacial and isobilateral, respectively). Poplar orthologs of AS1 have significantly higher expression in aspen leaf blade and lower in the petiole, suggestive of a potential role in the isobilateral leaf phenotype consistent with the previously observed phenotypes. Furthermore, an ABERRANT TESTA SHAPE (ATS) ortholog has significantly lower expression in aspen leaf tissue, also suggesting a possible contribution of this gene to abaxial greening. Full article
(This article belongs to the Special Issue Leaf Development)
Open AccessArticle Extractions of High Quality RNA from the Seeds of Jerusalem Artichoke and Other Plant Species with High Levels of Starch and Lipid
Plants 2013, 2(2), 302-316; doi:10.3390/plants2020302
Received: 19 February 2013 / Revised: 4 April 2013 / Accepted: 8 April 2013 / Published: 29 April 2013
Cited by 3 | PDF Full-text (977 KB) | HTML Full-text | XML Full-text
Abstract
Jerusalem artichoke (Helianthus tuberosus L.) is an important tuber crop. However, Jerusalem artichoke seeds contain high levels of starch and lipid, making the extraction of high-quality RNA extremely difficult and the gene expression analysis challenging. This study was aimed to improve existing
[...] Read more.
Jerusalem artichoke (Helianthus tuberosus L.) is an important tuber crop. However, Jerusalem artichoke seeds contain high levels of starch and lipid, making the extraction of high-quality RNA extremely difficult and the gene expression analysis challenging. This study was aimed to improve existing methods for extracting total RNA from Jerusalem artichoke dry seeds and to assess the applicability of the improved method in other plant species. Five RNA extraction methods were evaluated on Jerusalem artichoke seeds and two were modified. One modified method with the significant improvement was applied to assay seeds of diverse Jerusalem artichoke accessions, sunflower, rice, maize, peanut and marigold. The effectiveness of the improved method to extract total RNA from seeds was assessed using qPCR analysis of four selected genes. The improved method of Ma and Yang (2011) yielded a maximum RNA solubility and removed most interfering substances. The improved protocol generated 29 to 41 µg RNA/30 mg fresh weight. An A260/A280 ratio of 1.79 to 2.22 showed their RNA purity. Extracted RNA was effective for downstream applications such as first-stranded cDNA synthesis, cDNA cloning and qPCR. The improved method was also effective to extract total RNA from seeds of sunflower, rice, maize and peanut that are rich in polyphenols, lipids and polysaccharides. Full article
Open AccessArticle The Hybridization Barrier between Herbaceous Medicago sativa and Woody M. arborea Is Weakened by Selection of Seed Parents
Plants 2013, 2(2), 343-353; doi:10.3390/plants2020343
Received: 14 April 2013 / Revised: 12 May 2013 / Accepted: 23 May 2013 / Published: 31 May 2013
Cited by 1 | PDF Full-text (771 KB) | HTML Full-text | XML Full-text
Abstract
Medicago sativa, alfalfa or lucerne, and M. arborea were considered reproductively isolated until recently. Then, in 2003, an alfalfa genotype was identified that produced a few seeds and progeny with hybrid traits after a large number of pollinations by M. arborea.
[...] Read more.
Medicago sativa, alfalfa or lucerne, and M. arborea were considered reproductively isolated until recently. Then, in 2003, an alfalfa genotype was identified that produced a few seeds and progeny with hybrid traits after a large number of pollinations by M. arborea. A derivative of this alfalfa genotype also produced a low frequency of progeny with hybrid traits. Thus, the hybridization barrier was weakened by selection of seed parents. Hybrids from both events expressed traits from M. arborea and M. arborea-specific DNA bands, although more of the M. sativa genome was retained, based on the DNA results. Thus, there was chromatin elimination during embryogenesis, resulting in partial hybrids (hereafter hybrids). However, more than 30 hybrids with an array of M. arborea traits have been obtained thus far, and research continues on the nature of the hybrids. Traits have been genetically transmitted in crosses, and selected traits are in use for alfalfa breeding. This paper reviews the first hybrids and then focuses on further weakening of the hybridization barrier with the discovery of a more efficient hybridizer derived from crossing Medicago sativa subspecies, sativa, coerulea and falcata. This genotype was found to have reproductive abnormalities associated with its complex subspecies origin that are best described as hybrid breakdown. In effect, this subspecies derivative is a bridge-cross parent that consistently produces hybrids. Reproductive abnormalities in the bridge-cross parent are reported and discussed. Full article
(This article belongs to the Special Issue Developmental Biology and Biotechnology of Plant Sexual Reproduction)

Review

Jump to: Research, Other

Open AccessReview The Leaf Adaxial-Abaxial Boundary and Lamina Growth
Plants 2013, 2(2), 174-202; doi:10.3390/plants2020174
Received: 6 February 2013 / Revised: 4 March 2013 / Accepted: 14 March 2013 / Published: 26 March 2013
Cited by 6 | PDF Full-text (886 KB) | HTML Full-text | XML Full-text
Abstract
In multicellular organisms, boundaries have a role in preventing the intermingling of two different cell populations and in organizing the morphogenesis of organs and the entire organism. Plant leaves have two different cell populations, the adaxial (or upper) and abaxial (or lower) cell
[...] Read more.
In multicellular organisms, boundaries have a role in preventing the intermingling of two different cell populations and in organizing the morphogenesis of organs and the entire organism. Plant leaves have two different cell populations, the adaxial (or upper) and abaxial (or lower) cell populations, and the boundary is considered to be important for lamina growth. At the boundary between the adaxial and abaxial epidermis, corresponding to the margin, margin-specific structures are developed and structurally separate the adaxial and abaxial epidermis from each other. The adaxial and abaxial cells are determined by the adaxial and abaxial regulatory genes (including transcription factors and small RNAs), respectively. Among many lamina-growth regulators identified by recent genetic analyses, it has been revealed that the phytohormone, auxin, and the WOX family transcription factors act at the adaxial-abaxial boundary downstream of the adaxial-abaxial pattern. Furthermore, mutant analyses of the WOX genes shed light on the role of the adaxial-abaxial boundary in preventing the mixing of the adaxial and abaxial features during lamina growth. In this review, we highlight the recent studies on the dual role of the adaxial-abaxial boundary. Full article
(This article belongs to the Special Issue Leaf Development)
Open AccessReview Endocytic Pathways and Recycling in Growing Pollen Tubes
Plants 2013, 2(2), 211-229; doi:10.3390/plants2020211
Received: 15 February 2013 / Revised: 21 March 2013 / Accepted: 26 March 2013 / Published: 3 April 2013
Cited by 13 | PDF Full-text (784 KB) | HTML Full-text | XML Full-text
Abstract
Pollen tube growth is based on transport of secretory vesicles into the apical region where they fuse with a small area of the plasma membrane. The amount of secretion greatly exceeds the quantity of membrane required for growth. Mechanisms of membrane retrieval have
[...] Read more.
Pollen tube growth is based on transport of secretory vesicles into the apical region where they fuse with a small area of the plasma membrane. The amount of secretion greatly exceeds the quantity of membrane required for growth. Mechanisms of membrane retrieval have recently been demonstrated and partially characterized using FM (Fei Mao) dyes or charged nanogold. Both these probes reveal that clathrin-dependent and -independent endocytosis occur in pollen tubes and are involved in distinct degradation pathways and membrane recycling. Exocytosis, internalization and sorting of PM proteins/lipids depend on the integrity of the actin cytoskeleton and are involved in actin filament organization. However, some kinds of endocytic and exocytic processes occurring in the central area of the tip still need to be characterized. Analysis of secretion dynamics and data derived from endocytosis highlight the complexity of events occurring in the tip region and suggest a new model of pollen tube growth. Full article
(This article belongs to the Special Issue Pollen Tube Growth)
Open AccessReview TALE and Shape: How to Make a Leaf Different
Plants 2013, 2(2), 317-342; doi:10.3390/plants2020317
Received: 18 February 2013 / Revised: 10 April 2013 / Accepted: 19 April 2013 / Published: 6 May 2013
Cited by 9 | PDF Full-text (774 KB) | HTML Full-text | XML Full-text
Abstract
The Three Amino acid Loop Extension (TALE) proteins constitute an ancestral superclass of homeodomain transcription factors conserved in animals, plants and fungi. In plants they comprise two classes, KNOTTED1-LIKE homeobox (KNOX) and BEL1-like homeobox (BLH or BELL, hereafter referred to as BLH), which
[...] Read more.
The Three Amino acid Loop Extension (TALE) proteins constitute an ancestral superclass of homeodomain transcription factors conserved in animals, plants and fungi. In plants they comprise two classes, KNOTTED1-LIKE homeobox (KNOX) and BEL1-like homeobox (BLH or BELL, hereafter referred to as BLH), which are involved in shoot apical meristem (SAM) function, as well as in the determination and morphological development of leaves, stems and inflorescences. Selective protein-protein interactions between KNOXs and BLHs affect heterodimer subcellular localization and target affinity. KNOXs exert their roles by maintaining a proper balance between undifferentiated and differentiated cell state through the modulation of multiple hormonal pathways. A pivotal function of KNOX in evolutionary diversification of leaf morphology has been assessed. In the SAM of both simple- and compound-leafed seed species, downregulation of most class 1 KNOX (KNOX1) genes marks the sites of leaf primordia initiation. However, KNOX1 expression is re-established during leaf primordia development of compound-leafed species to maintain transient indeterminacy and morphogenetic activity at the leaf margins. Despite the increasing knowledge available about KNOX1 protein function in plant development, a comprehensive view on their downstream effectors remains elusive. This review highlights the role of TALE proteins in leaf initiation and morphological plasticity with a focus on recent advances in the identification of downstream target genes and pathways. Full article
(This article belongs to the Special Issue Leaf Development)
Figures

Other

Jump to: Research, Review

Open AccessShort Note Microsatellite Markers of Willow Species and Characterization of 11 Polymorphic Microsatellites for Salix eriocephala (Salicaceae), a Potential Native Species for Biomass Production in Canada
Plants 2013, 2(2), 203-210; doi:10.3390/plants2020203
Received: 21 January 2013 / Revised: 8 March 2013 / Accepted: 20 March 2013 / Published: 27 March 2013
Cited by 2 | PDF Full-text (765 KB) | HTML Full-text | XML Full-text
Abstract
Biomass produced from dedicated plantations constitutes a source of renewable energy and is expected to play an important role in several countries in the coming decades. The cultivation of woody crops such as willows therefore raises several environmental issues. In North America, several
[...] Read more.
Biomass produced from dedicated plantations constitutes a source of renewable energy and is expected to play an important role in several countries in the coming decades. The cultivation of woody crops such as willows therefore raises several environmental issues. In North America, several native willows are potentially interesting for biomass producers. Willow trees are diverse but few species used for environmental applications have been the object of molecular genetic studies. Based on the sequenced poplar genome, 24 microsatellite markers were assayed on five native North American willow species: Salix amygdaloides, S. discolor, S. eriocephala, S. interior and S. nigra. Polymorphic microsatellite markers were used to characterize the allele data on the shrub Salix eriocephala, a North American species with economic potential. Eleven markers amplified and confirmed the potential of this species. Analysis of samples from six populations in eastern Canada showed that all markers were variable as well as polymorphic in at least one population. The number of alleles per locus ranged from 1 to 9 (mean 2.95) and showed that these microsatellite markers can be used to assess genetic diversity of North American willow species. Full article

Journal Contact

MDPI AG
Plants Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
plants@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Plants
Back to Top