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Abstract: The remediation of copper and nickel-afflicted sites is challenged by the different physiolog-
ical effects imposed by each metal on a given plant system. Pinus banksiana is resilient against copper
and nickel, providing an opportunity to build a valuable resource to investigate the responding gene
expression toward each metal. The objectives of this study were to (1) extend the analysis of the
Pinus banksiana transcriptome exposed to nickel and copper, (2) assess the differential gene expression
in nickel-resistant compared to copper-resistant genotypes, and (3) identify mechanisms specific to
each metal. The Illumina platform was used to sequence RNA that was extracted from seedlings
treated with each of the metals. There were 449 differentially expressed genes (DEGs) between
copper-resistant genotypes (RGs) and nickel-resistant genotypes (RGs) at a high stringency cut-off,
indicating a distinct pattern of gene expression toward each metal. For biological processes, 19.8% of
DEGs were associated with the DNA metabolic process, followed by the response to stress (13.15%)
and the response to chemicals (8.59%). For metabolic function, 27.9% of DEGs were associated with
nuclease activity, followed by nucleotide binding (27.64%) and kinase activity (10.16%). Overall,
21.49% of DEGs were localized to the plasma membrane, followed by the cytosol (16.26%) and
chloroplast (12.43%). Annotation of the top upregulated genes in copper RG compared to nickel RG
identified genes and mechanisms that were specific to copper and not to nickel. NtPDR, AtHIPP10,
and YSL1 were identified as genes associated with copper resistance. Various genes related to cell
wall metabolism were identified, and they included genes encoding for HCT, CslE6, MPG, and
polygalacturonase. Annotation of the top downregulated genes in copper RG compared to nickel RG
revealed genes and mechanisms that were specific to nickel and not copper. Various regulatory and
signaling-related genes associated with the stress response were identified. They included UGT, TIFY,
ACC, dirigent protein, peroxidase, and glyoxyalase I. Additional research is needed to determine the
specific functions of signaling and stress response mechanisms in nickel-resistant plants.

Keywords: biological process; cellular compartment; functional genomic; molecular function; nickel
and copper toxicity; Pinus banksiana; resistance mechanisms

1. Introduction

Nickel and copper are micronutrients that become toxic to plants at high concentra-
tions. The mining and processing of these heavy metals can contaminate soils and the
atmosphere, which negatively impacts human health and the environment [1–3]. The
Greater Sudbury region has an extensive history of copper and nickel pollution and will
continue to export these metals [4–7]. Comparing the responses of plants to copper and
nickel is a crucial step in streamlining the remediation strategy and ensuring efficiency
and long-term sustainability. As redox heavy metals, copper and nickel both play impor-
tant roles in plant physiology [8,9]. Copper is a cofactor for electron carriers such as the
cytochrome B6F complex, plastocyanin, and cytochrome oxidase [10–12]. It is, therefore,
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integral to photosynthesis and cellular respiration. Nickel plays an important role in ni-
trogen cycling as a cofactor for urease, which is essential for the proper functioning of the
ornithine–urea cycle [13,14].

Copper toxicity has many downstream effects and shares symptoms with nickel toxic-
ity. An overabundance of either metal can decrease the concentration of iron, manganese,
and zinc, which poses risks to processes that correspond to these metals [15–20]. Copper
or nickel toxicity can inhibit photosynthesis and cause chlorosis by different means. Ex-
cess copper reduces electron transfer in photosystem II by displacing the iron cofactor in
plastoquinone QA, inhibiting plastoquinone QB, and preventing the transfer of electrons
from tyrosine to P680+ [21,22]. Excess nickel hinders electron transfer by altering the
protein conformation of plastoquinone QB and replacing calcium in the oxygen-evolving
complex [23,24]. Both excess copper and nickel have been shown to displace magnesium in
chlorophyll, leading to decreased chlorophyll content, reduced function, and a decreased
capacity to transfer energy to the reaction center [25–28]. Excess copper also facilitates
the Haber–Weiss reaction and Fenton-like reactions, generating superoxide radicals, hy-
droxyl radicals, and hydrogen peroxide [29–31]. Comparatively, excess nickel increases
ROS generation by decreasing the activity of antioxidative enzymes such as SOD, CAT,
APX, POD, and GSH-Px [32,33]. An abundance of both metals can also cause severe water
loss by altering stomata morphology and altering the rate of transpiration on the surface
of leaves [34–37]. Studies on various plants have shown that an overabundance of either
metal can lead to necrosis and overall decreased plant growth [38].

Genes associated with copper or nickel resistance have been reported in various
species. Membrane-bound transporters such as ZIP and COPT can export copper from
the cytosol to the outside of the cell, reducing the initial uptake of copper into the root
area [39–42]. Upregulation of the IREG2 transporter can increase the transport of nickel into
the vacuoles of root cells, contributing to vacuolar sequestration [43]. NRAMP transporters
may be involved in unloading excess copper or nickel into the xylem prior to root-to-
shoot translocation [44,45]. Reports of elevated HMA transporter expression were found
to enhance the translocation of excess copper to aerial tissue in some plants, increasing
copper resistance [41,46,47]. HMA9, in particular, may be involved in the loading of excess
copper in both the xylem and phloem [48]. HMA1 and HMA6/PAA1 can transport excess
copper to the stroma of the chloroplasts, while HMA8/PAA2 could transport copper to the
thylakoid lumen and plastocyanin [49–54]. The delivery of copper to components in the
chloroplasts suggests an increase in photosynthesis activity to counteract stress and ensure
the homeostasis of metabolites [54,55]. HMA7 may also counteract stress by transporting
excess copper to ethylene receptors in the ER, which are involved in the modulation of
growth and development [41,56]. Excess copper may also elicit increased CCH expression
to reduce the transport of copper to younger leaves, thereby safeguarding newly developed
tissue [41,46,57]. Chelators such as MT2a, MT2b, nicotianamine, and histidine have been
reported to be present in xylem sap and were correlated with the improved translocation
of copper and nickel [58–61]. In particular, nicotianamine-metal complexes are directly
translocated to the aerial component of the plant and may coordinate with YSL transporters
to facilitate the loading of copper and nickel into the xylem [45,58,62–64]. Glutathione-S-
transferases play several roles in copper and nickel resistance, which include increasing
antioxidative activity, hormone signal transduction, and the production of the chelator
glutathione [65,66].

The discovery of genes in metal-treated plants is crucial to understanding the mecha-
nisms of metal resistance and planning an effective remediation strategy. Many pine species
have been reported as having different responses and strategies toward various heavy
metals [67–69]. The successful utilization of Pinus banksiana in the regreening program in
the Greater Sudbury Region prompts the investigation of the genetic response to copper
toxicity compared to nickel toxicity [70]. Transcriptome analysis will evaluate the genetic
similarities or differences in gene expression between nickel-resistant and copper-resistant
plants. The survival of this species in metal-contaminated soil also provides a unique op-
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portunity to discover genes that are exclusive to each metal, which is especially important
when considering the limitations of the candidate gene identification process. The objec-
tives of this study were to (1) extend the analysis of nickel-resistant and copper-resistant
P. banksiana, (2) assess the differential gene expression in nickel-resistant genotypes (RGs)
compared to copper-resistant genotypes (RGs), and (3) identify mechanisms specific to
each metal.

2. Results
2.1. Nickel and Copper Toxicity

Significant differences were observed in the damage ratings among plants for the
groups treated with 1600 mg/kg Ni. In fact, 25% were considered resistant, 40% moderately
susceptible, and 35% susceptible. Less damage was observed in the seedlings treated with
potassium sulfate. In fact, no significant differences were observed in the seedlings treated
with the salt used as a control compared to the water control. For copper, segregation in
response to Cu was observed in a group treated with 1300 mg/kg of Cu. Overall, 20% were
classified as resistant, 35% as moderately susceptible, and 45% as susceptible. Only resistant
and susceptible genotypes, along with samples treated with potassium sulfate and water,
were selected in triplicate for the transcriptome analysis.

2.2. Transcriptome Analysis

The transcriptome shotgun assembly project has been deposited in the NCBI BioProject
database with the accession number PRJNA962116. Differentially expressed genes between
copper and nickel-resistant genotypes are described in Table 1. The DEG between copper
SG and nickel SG is presented in Table 2. Heatmaps of each pairwise comparison included
every DEG between each group, providing an encompassing representation of dynamic
gene expression patterns (Figure 1). Both heatmaps showed a high degree of uniformity
in gene expression for individuals within a genotype (Figure 1). A heatmap of the DEGs
between copper RG and nickel RG revealed a contrast in gene expression for each genotype
(Figure 1). Copper RG had a slightly higher number of upregulated genes in comparison to
nickel RG, indicating an upregulation of protein production and corresponding processes
(Figure 1). A slightly higher number of downregulated genes in nickel RG may suggest
the modulation or negative regulation of proteins and associated processes (Figure 1).
For copper SG in comparison to nickel SG, the opposite pattern of gene expression was
observed, as the majority of genes were upregulated in nickel SG and downregulated in
copper SG (Figure 1).

Table 1. Differentially expressed genes between copper and nickel-resistant genotypes.

Cut-Off Standard (Two Fold and
FDR 0.05)

Low Stringency (Two Fold
and p Value 0.01)

Upregulated genes 269 3387
Downregulated genes 180 3815

Total genes 449 7202
FDR = False discovery rate.

Table 2. Differentially expressed genes between copper and nickel-susceptible genotypes.

Cut-Off Standard (Two Fold and
FDR 0.05)

Low Stringency (Two Fold
and p Value 0.01)

Upregulated genes 6 2494
Downregulated genes 35 2626

Total genes 41 5120
FDR = False discovery rate.

The volcano plots showed the degree of spread between the upregulated and down-
regulated genes in each pairwise comparison (Figure 2). For copper RG in comparison
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to nickel RG, the majority of DEGs had a fold change of less than 5 and a lower false
discovery rate (FDR) in comparison to genes with a higher gene expression fold change
or FDR (Figure 2). DEGs with the highest fold change had a lower FDR in comparison to
other DEGs (Figure 2). For copper SG, in comparison to nickel SG, there was a relatively
small number of DEGs that surpassed the FDR threshold (Figure 2). In addition, there was
a larger number of downregulated genes with a relatively even distribution (Figure 2).
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susceptible genotypes. Differentially expressed gene values for each pairwise comparison were 
based on the Log2 normalized fold change. Red data represent different levels of upregulation, 
whereas blue data represent different levels of downregulation. The labels Nir57, Nir30, and Nir5 
represent seedlings from the nickel-resistant genotypes. The labels Cur872, Cur33, and Cur67 rep-
resent seedlings from the copper-resistant genotypes. The labels Nis15, Nis31, and Nis58 represent 
seedlings from the nickel-susceptible genotypes. The labels Cus42, Cus16, and Cus542 represent 
seedlings from the copper-susceptible genotype. 
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regulated genes in each pairwise comparison (Figure 2). For copper RG in comparison to 

Figure 1. Heatmap of differentially expressed genes in Pinus banksiana seedlings for (a) the copper
resistant compared to nickel resistant genotypes and (b) the copper susceptible compared to nickel
susceptible genotypes. Differentially expressed gene values for each pairwise comparison were based
on the Log2 normalized fold change. Red data represent different levels of upregulation, whereas
blue data represent different levels of downregulation. The labels Nir57, Nir30, and Nir5 represent
seedlings from the nickel-resistant genotypes. The labels Cur872, Cur33, and Cur67 represent
seedlings from the copper-resistant genotypes. The labels Nis15, Nis31, and Nis58 represent seedlings
from the nickel-susceptible genotypes. The labels Cus42, Cus16, and Cus542 represent seedlings from
the copper-susceptible genotype.
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Figure 2. Volcano plot of differentially expressed genes in Pinus banksiana seedlings for (a) the
copper resistance genotype compared to nickel resistance genotypes and (b) the copper susceptible
genotypes compared to nickel susceptible genotypes. Brown data points represent upregulated
gene expression, whereas blue data points represent downregulated gene expression relative to the
susceptible genotypes. Grey points indicate no significant difference from the nickel-susceptible
genotypes. LogFC is the log-fold change of the copper-susceptible genotypes relative to the nickel-
susceptible genotypes. Log10(FDR) is the log10 of the false discovery rate. The barrier between the
nonsignificant data points (grey) and the differentially regulated genes (orange or blue) signifies a
false discovery rate of 0.05 (two-fold).

DEGs from the transcriptomes of copper RG compared to nickel RG were annotated
and allocated to terms within the biological processes category using Omicsbox/Blast2GO
(Figure 3). Table 3 and Table S2 illustrate top upregulated genes when copper RG was
compared to nickel RG. Table 4 and Table S3 illustrate the top downregulated genes for
copper RG compared to nickel RG. Table 5 shows the top upregulated genes when copper
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SG was compared to nickel SG, and Table 6 and Table S4 show the downregulated genes
for copper SG vs. nickel SG.
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Figure 3. Percent distribution of differentially expressed genes (DEGs) for (a) biological processes
for copper resistant (RG) compared to nickel resistant (RG) and (b) molecular functions for copper
RG compared to nickel RG. DEGs from copper RG compared to nickel RG were annotated and
allocated to terms within the biological processes category and molecular function category using
Omicsbox/Blast2GO. Terms that had a total percentage of expressed genes lower than 2% were
collectively categorized under the term “other.”
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Table 3. Top upregulated genes in copper resistant (RG) in comparison to nickel resistant (RG) in Pinus banksiana.

Rank Gene ID Cu
Res1

Cu
Res2

Cu
Res3

Ni
Res1

Ni
Res2

Ni
Res3 logFC Adj. p Value UniProt Description

0 TRINITY_DN2085_c0_g1 29.21 82.28 46.17 0.34 0.57 0.14 7.793 7.10E-05 Predicted Protein
1 TRINITY_DN1891_c0_g2 51.01 52.45 17.61 0.04 2.06 0.7 7.247 0.000114 Predicted Protein
2 TRINITY_DN8469_c0_g1 43.02 275.4 201.9 1.33 8.3 0.46 6.863 6.98E-05 Acid phosphatase 1, EC 3.1.3.2 (Apase-1(1))
3 TRINITY_DN1979_c0_g1 32.13 43.51 47.01 0.21 3.16 0.33 6.702 5.45E-06 Predicted Protein
4 TRINITY_DN4373_c0_g1 35.55 56.98 13.12 0.54 0.5 0.36 6.595 8.44E-05 Predicted Protein
5 TRINITY_DN5_c0_g1 18.7 16.84 12.27 0.1 0.8 0.23 6.538 0.000106363 Pleiotropic drug resistance protein 1 (NtPDR1)

6 TRINITY_DN5_c0_g1 18.7 16.84 12.27 0.1 0.8 0.23 6.538 0.000106
ABC transporter G family member 32, ABC transporter ABCG.32,

AtABCG32 (Pleiotropic drug resistance protein 4) (Protein PERMEABLE
CUTICLE 1)

7 TRINITY_DN5_c0_g1 18.7 16.84 12.27 0.1 0.8 0.23 6.538 0.000106 ABC transporter G family member 36, OsABCG36 (Pleiotropic drug
resistance protein 9, OsPDR9)

8 TRINITY_DN5_c0_g1 18.7 16.84 12.27 0.1 0.8 0.23 6.538 0.000106 Pleiotropic drug resistance protein 1 (NpPDR1)

9 TRINITY_DN5_c0_g1 18.7 16.84 12.27 0.1 0.8 0.23 6.538 0.000106 ABC transporter G family member 44, OsABCG44 (Pleiotropic drug
resistance protein 17, OsPDR17)

10 TRINITY_DN5_c0_g1 18.7 16.84 12.27 0.1 0.8 0.23 6.538 0.000106 ABC transporter G family member 31, OsABCG31 (Pleiotropic drug
resistance protein 6, OsPDR6)

11 TRINITY_DN5_c0_g1 18.7 16.84 12.27 0.1 0.8 0.23 6.538 0.000106 ABC transporter G family member 34, OsABCG34 (Pleiotropic drug
resistance protein 10, OsPDR10)

12 TRINITY_DN5742_c0_g1 25.47 76.4 14.17 0.6 1.07 0.41 6.162 5.17E-05 Predicted Protein
13 TRINITY_DN59895_c0_g1 107.34 136.22 54.47 0.8 4.56 2.36 6.155 1.45E-06 Predicted Protein
14 TRINITY_DN51306_c0_g1 32.05 61.43 35.69 0.53 0.7 1.91 6.153 1.48E-06 Predicted Protein
15 TRINITY_DN8170_c0_g1 50.21 123.33 300.25 1.81 1.13 8.48 6.150 5.72E-05 Predicted Protein

16 TRINITY_DN19606_c0_g1 31.77 21.11 20.22 0.5 1.66 0.29 5.866 4.22E-06 Granule-bound starch synthase 1, chloroplastic/amyloplastic, EC
2.4.1.242 (Granule-bound starch synthase I, GBSS-I)

17 TRINITY_DN6541_c0_g1 251.91 62.08 39.98 3.22 2.8 1.68 5.744 4.07E-05 Heavy metal-associated isoprenylated plant protein 20, AtHIP20,
AtHIPP20

18 TRINITY_DN6541_c0_g1 251.91 62.08 39.98 3.22 2.8 1.68 5.744 4.07E-05 Heavy metal-associated isoprenylated plant protein 26, AtHIP26,
AtHIPP26 (Farnesylated protein 6, AtFP6)

19 TRINITY_DN47729_c0_g2 7.89 24.87 20.63 0.46 0.23 0.87 5.668 0.000146 Predicted Protein

20 TRINITY_DN430_c0_g1 123.72 65.04 52.06 1.02 8.95 2.15 5.441 8.58E-06 Cytochrome P450 86A22, EC 1.14.14.129 (Long-chain acyl-CoA
omega-monooxygenase)

21 TRINITY_DN1790_c0_g1 9.55 18.4 18.66 0.23 2.08 0.31 5.440 4.00E-05 Receptor-like protein kinase HSL1, EC 2.7.11.1 (Protein HAESA-LIKE1)
22 TRINITY_DN1072_c0_g1 97.21 115.92 41.8 4.4 9.29 0.62 5.334 6.56E-05 Predicted Protein
23 TRINITY_DN6055_c0_g1 18.79 22.98 21.77 0.56 1.18 0.81 5.330 5.78E-07 Predicted Protein
24 TRINITY_DN6813_c0_g1 235.35 117.07 35.45 1.7 10.19 3.65 5.309 6.74E-05 Predicted Protein
25 TRINITY_DN11710_c0_g2 150.88 92.2 20.39 1.17 7.66 2.13 5.304 0.000137 Predicted Protein
26 TRINITY_DN63319_c0_g1 28.39 21.29 22.62 0.58 1.05 1.41 5.255 8.92E-07 Predicted Protein
27 TRINITY_DN82353_c0_g1 13.94 23.06 17.36 0.87 0.98 0.45 5.156 2.89E-06 Predicted Protein
28 TRINITY_DN48473_c0_g1 56.5 107.55 80.8 1.68 5.59 4.91 5.085 9.27E-07 Predicted Protein
29 TRINITY_DN2130_c0_g1 22.32 44.82 44.69 2.2 1.09 1.68 5.050 4.23E-06 Predicted Protein
30 TRINITY_DN1441_c0_g2 340.37 453.06 121.8 13.03 19.89 9.5 4.943 5.01E-06 Predicted Protein
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Table 4. Top downregulated genes in copper resistant (RG) in comparison to nickel resistant (RG) in Pinus banksiana.

Rank Gene ID Cu
Res1

Cu
Res2

Cu
Res3

Ni
Res1

Ni
Res2

Ni
Res3 logFC Adj. p Value UniProt Description

0 TRINITY_DN43547_c0_g1 0 0 0 24.15 39.01 23.93 −10.382 6.42E-05 Predicted Protein
1 TRINITY_DN1456_c0_g1 1.37 0 1.34 306.48 253.1 155.47 −9.527 0.000128719 Predicted Protein

2 TRINITY_DN2126_c0_g1 1.31 0.24 0.4 954.55 193.03 448.85 −9.030 4.26E-05
UDP-glycosyltransferase 75C1, Abscisic acid beta-glucosyltransferase,

Indole-3-acetate beta-glucosyltransferase, SlUGT75C1, EC 2.4.1.121,
EC 2.4.1.263

3 TRINITY_DN5965_c0_g1 0.28 0.12 1.02 159.21 70.92 203.21 −8.429 5.08E-05 Predicted Protein
4 TRINITY_DN5240_c1_g1 0.06 0.2 0.38 75.64 57.88 47.63 −7.894 0.000131675 Predicted Protein
5 TRINITY_DN2786_c0_g1 7.97 1.28 0.09 767.81 197.57 545.86 −7.817 0.000147002 Predicted Protein
6 TRINITY_DN7685_c0_g1 0.35 0.17 0.18 69.15 75.78 88.19 −7.718 1.68E-05 Predicted Protein

7 TRINITY_DN3685_c0_g2 7.54 1.2 0.09 524.13 169.45 298.36 −7.315 0.000146393 Copia protein (Gag-int-pol protein) [Cleaved into: Copia VLP protein;
Copia protease, EC 3.4.23.-]

8 TRINITY_DN2463_c0_g1 5.21 0.97 0.68 301.76 196.16 568.86 −7.021 8.44E-06 Predicted Protein
9 TRINITY_DN2040_c0_g1 28.51 6 12.87 3943.91 1043.09 3644.25 −6.950 1.04E-05 Predicted Protein

10 TRINITY_DN5795_c0_g1 13.6 5.09 0.4 753.52 420.03 412.9 −6.580 5.36E-05 Predicted Protein
11 TRINITY_DN735_c0_g1 5.88 1.92 0.26 401.38 124.53 198.21 −6.422 9.90E-05 Predicted Protein
12 TRINITY_DN41085_c0_g1 1.46 0.55 8.2 230.93 100.32 461.71 −6.396 8.67E-05 Predicted Protein

13 TRINITY_DN5240_c0_g1 0.4 0.48 1.48 86.62 78.96 59.64 −6.375 1.11E-06 Protein TIFY 10b, OsTIFY10b (Jasmonate ZIM domain-containing protein 7,
OsJAZ7) (OsJAZ6)

14 TRINITY_DN17_c0_g2 0.65 0.15 0.58 50.63 58.32 26.97 −6.307 1.89E-05 RING-H2 finger protein ATL60, EC 2.3.2.27 (RING-type E3 ubiquitin
transferase ATL60)

15 TRINITY_DN800_c1_g1 2.53 0.34 0.33 127.84 44.55 121.22 −6.264 0.000103509 Predicted Protein
16 TRINITY_DN1755_c0_g1 0.73 0.19 0.22 37.36 42.04 37.53 −6.143 1.54E-05 Predicted Protein
17 TRINITY_DN1067_c0_g1 0.21 0.63 2.66 74.75 51.13 62.5 −6.138 1.50E-05 Predicted Protein
18 TRINITY_DN4963_c0_g1 1.2 1.08 0.26 107.91 63.25 101.25 −6.114 6.05E-06 Predicted Protein
19 TRINITY_DN3889_c0_g1 8.77 0.85 2.51 414.11 167.54 300.23 −6.071 3.22E-05 Predicted Protein
20 TRINITY_DN6289_c0_g1 0.34 0.08 0.38 23.79 21.01 21.41 −5.988 0.000135072 Predicted Protein
21 TRINITY_DN6111_c0_g1 0.47 0.11 0.98 29.31 29.12 29.02 −5.932 1.49E-05 Predicted Protein
22 TRINITY_DN4477_c0_g1 1.32 1.08 0.77 67.92 163.48 92.08 −5.924 1.74E-07 Predicted Protein
23 TRINITY_DN71807_c0_g1 0.75 0.09 1.03 29.61 23.8 49.04 −5.903 8.02E-05 Predicted Protein

24 TRINITY_DN971_c0_g1 0.32 0.18 3.12 40.71 30.9 35.98 −5.891 3.15E-05 1-aminocyclopropane-1-carboxylate synthase 7, ACC synthase 7,
EC 4.4.1.14 (S-adenosyl-L-methionine methylthioadenosine-lyase 7)

25 TRINITY_DN971_c0_g1 0.32 0.18 3.12 40.71 30.9 35.98 −5.891 3.15E-05 1-aminocyclopropane-1-carboxylate synthase, ACC synthase, EC 1.4.-.-,
EC 4.4.1.14 (S-adenosyl-L-methionine methylthioadenosine-lyase)

26 TRINITY_DN971_c0_g1 0.32 0.18 3.12 40.71 30.9 35.98 −5.891 3.15E-05 1-aminocyclopropane-1-carboxylate synthase 6, ACC synthase 6,
EC 4.4.1.14 (S-adenosyl-L-methionine methylthioadenosine-lyase 6)

27 TRINITY_DN971_c0_g1 0.32 0.18 3.12 40.71 30.9 35.98 −5.891 3.15E-05 1-aminocyclopropane-1-carboxylate synthase 3, ACC synthase 3, EC 4.4.1.14
(Le-ACS3, ACS-3) (S-adenosyl-L-methionine methylthioadenosine-lyase 3)

28 TRINITY_DN971_c0_g1 0.32 0.18 3.12 40.71 30.9 35.98 −5.891 3.15E-05 1-aminocyclopropane-1-carboxylate synthase 1, ACC synthase 1, EC 4.4.1.14
(S-adenosyl-L-methionine methylthioadenosine-lyase)

29 TRINITY_DN756_c0_g1 7.06 0.88 8.25 578.57 195.91 235.86 −5.769 7.82E-05 Dirigent protein 21, AtDIR21
30 TRINITY_DN6061_c0_g1 3.75 2.9 7.44 355.22 178.84 637.66 −5.730 1.01E-05 Predicted Protein
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Table 5. Top upregulated genes in copper susceptible (SG) in comparison to nickel susceptible (SG) in Pinus banksiana.

Rank Gene ID Cu
Sus 1

Cu
Sus 2

Cu
Sus 3

Ni
Sus 1

Ni
Sus 2

Ni
Sus 3 logFC Adj. p Value UniProt Description

0 TRINITY_DN3441_c0_g1 161.51 141.19 99.42 14.73 4.54 4.16 4.327038 4.74E-06 Predicted Protein
1 TRINITY_DN29629_c0_g1 130.48 102.59 87.52 8.98 4.39 3.79 4.292084 1.72E-06 Predicted Protein

2 TRINITY_DN25822_c0_g1 52.29 67.97 55.74 7.15 2.61 2.46 3.959541 7.45E-06 Sugar transport protein MST3 (Monosaccharide transporter 3,
OsMST3) (Sugar:proton symporter MST3)

3 TRINITY_DN324_c0_g1 122.98 261.98 186.02 18.74 13.27 19.44 3.330385 5.86E-06 Inositol oxygenase 1, EC 1.13.99.1 (Myo-inositol oxygenase 1,
AtMIOX1, MI oxygenase 1)

4 TRINITY_DN324_c0_g1 122.98 261.98 186.02 18.74 13.27 19.44 3.330385 5.86E-06 Inositol oxygenase 5, EC 1.13.99.1 (Myo-inositol oxygenase 5,
AtMIOX5, MI oxygenase 5)

5 TRINITY_DN324_c0_g1 122.98 261.98 186.02 18.74 13.27 19.44 3.330385 5.86E-06 Probable inositol oxygenase, EC 1.13.99.1 (Myo-inositol
oxygenase, MI oxygenase)

6 TRINITY_DN324_c0_g1 122.98 261.98 186.02 18.74 13.27 19.44 3.330385 5.86E-06 Inositol oxygenase 4, EC 1.13.99.1 (Myo-inositol oxygenase 4,
AtMIOX4, MI oxygenase 4)

7 TRINITY_DN13749_c0_g1 87.25 112.1 72.4 18.01 11.02 12.71 2.669987 5.62E-06 Predicted Protein

8 TRINITY_DN1743_c0_g1 398.17 530.25 356.13 126.44 202.71 141.62 1.416768 5.38E-06 G-type lectin S-receptor-like serine/threonine-protein kinase
At5g24080, EC 2.7.11.1
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Table 6. Top downregulated genes in copper susceptible (SG) in comparison to nickel susceptible (SG) in Pinus banksiana.

Rank Gene ID Cu
Sus1

Cu
Sus2

Cu
Sus3

Ni
Sus1

Ni
Sus2

Ni
Sus3 logFC Adj. p Value UniProt Description

0 TRINITY_DN343_c0_g1 1.96 1.42 0.92 54.19 45.61 75.54 −5.26455 7.48E-06 Probable disease resistance protein At4g33300
1 TRINITY_DN1105_c0_g1 3.27 4.87 2.07 76.5 72.45 109.99 −4.74021 8.13E-07 Probable calcium-binding protein CML24 (Calmodulin-like protein 24)
2 TRINITY_DN1140_c1_g1 4.64 8.22 3.13 95.64 64.13 116.13 −4.21256 7.05E-06 Heavy metal-associated isoprenylated plant protein 39, AtHIP39
3 TRINITY_DN9069_c0_g1 3.08 3.94 1.43 39 35.11 55.72 −4.0072 7.49E-06 Predicted Protein
4 TRINITY_DN26455_c0_g1 5.55 5.56 3.67 47.82 81.22 105.73 −3.96197 1.86E-06 Predicted Protein
5 TRINITY_DN709_c0_g1 3.48 4.83 1.97 36.9 41.46 63.36 −3.84112 4.28E-06 Predicted Protein
6 TRINITY_DN24318_c0_g1 4.75 2.79 4.67 40.3 50.05 80.73 −3.79817 8.01E-06 Predicted Protein
7 TRINITY_DN2118_c0_g1 5.31 19.73 5.94 91.04 111.37 142.16 −3.79689 2.20E-06 Predicted Protein
8 TRINITY_DN66111_c1_g1 14.78 24.19 24.59 172.94 234.1 371.3 −3.66779 1.60E-06 Predicted Protein
9 TRINITY_DN9317_c0_g1 9.85 29.45 5.37 142.89 125.63 137.64 −3.56924 7.93E-06 Predicted Protein
10 TRINITY_DN25789_c0_g1 5.35 15.72 3.93 67.56 76.93 92.73 −3.54421 3.52E-06 Predicted Protein
11 TRINITY_DN2751_c0_g1 12.73 8.43 4.46 77.66 76.97 116.69 −3.4682 4.60E-06 Predicted Protein
12 TRINITY_DN1481_c0_g1 31.61 46.43 12.53 248.24 432.11 226.95 −3.44461 5.91E-06 Predicted Protein
13 TRINITY_DN37281_c0_g1 6.17 13.07 6.21 74.35 73.03 101.82 −3.42972 1.93E-06 Predicted Protein
14 TRINITY_DN11462_c0_g1 15.98 31.57 16.82 122.24 278.4 208.28 −3.29128 1.68E-06 Predicted Protein

15 TRINITY_DN3306_c0_g2 18.25 34.56 13.19 154.79 169.1 263.27 −3.27608 1.59E-06 Calcium-binding protein KIC (KCBP-interacting
calcium-binding protein)

16 TRINITY_DN4522_c0_g1 12.58 21.21 9.5 81.86 98.59 152.54 −3.01301 3.71E-06 Predicted Protein
17 TRINITY_DN729_c0_g1 85.61 37.04 35.87 381.71 394.83 348.76 −2.92258 4.38E-06 Alcohol dehydrogenase 2, EC 1.1.1.1
18 TRINITY_DN729_c0_g1 85.61 37.04 35.87 381.71 394.83 348.76 −2.92258 4.38E-06 Alcohol dehydrogenase 1, EC 1.1.1.1 (ADH slow-allele)
19 TRINITY_DN41085_c0_g1 50.47 50.02 52.9 257.45 297.21 485.74 −2.76064 2.45E-06 Predicted Protein
20 TRINITY_DN3066_c1_g1 13.73 15.11 13.46 55.99 116.42 118.98 −2.74976 6.97E-06 Predicted Protein
21 TRINITY_DN2515_c0_g1 42.66 64 22.61 203.34 269.87 276.58 −2.66249 6.45E-07 Probable disease resistance protein At5g04720
22 TRINITY_DN1690_c0_g1 82.49 125.29 74.33 334.26 557.98 584.67 −2.43231 2.73E-07 Predicted Protein
23 TRINITY_DN1454_c0_g1 36.11 69.11 23.97 190.96 205.3 220.09 −2.42405 3.20E-06 Probable disease resistance protein At4g33300
24 TRINITY_DN1454_c0_g1 36.11 69.11 23.97 190.96 205.3 220.09 −2.42405 3.20E-06 Disease resistance protein ADR1 (Activated disease resistance protein 1)
25 TRINITY_DN187_c0_g2 34.07 59.55 27.12 157.12 214.46 204.87 −2.36432 8.35E-07 Probable disease resistance protein At4g33300
26 TRINITY_DN187_c0_g2 34.07 59.55 27.12 157.12 214.46 204.87 −2.36432 8.35E-07 Probable RNA-binding protein 19 (RNA-binding motif protein 19)

27 TRINITY_DN2581_c0_g1 73.03 104.45 74.62 307.26 360.65 549.82 −2.30639 2.39E-06 Ubiquitin-40S ribosomal protein S27a-1 [Cleaved into: Ubiquitin;
40S ribosomal protein S27a-1 ]

28 TRINITY_DN829_c0_g1 36.79 52.72 34.25 136.33 187.57 265.96 −2.27764 4.73E-06 Predicted Protein

29 TRINITY_DN871_c0_g1 77.17 92.43 46.57 254.71 317.44 342.34 −2.14567 5.09E-07 Lipase-like PAD4, EC 2.3.1.- (Protein ENHANCED DISEASE
SUSCEPTIBILITY 9) (Protein PHYTOALEXIN DEFICIENT 4, AtPAD4)

30 TRINITY_DN2157_c0_g1 68.38 76.54 36.2 215.2 233.04 270.04 −2.06397 3.08E-06 Predicted Protein
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Overall, 449 DEGs were annotated and organized into the following subcategories
of biological processes: DNA metabolic process (19.80%), response to stress (13.15%),
response to chemicals (8.59%), signal transduction (7.68%), response to biotic stimulus
(6.01%), catabolic process (5.85%), protein modification process (5.43%), transport (5.19%),
response to endogenous stimulus (4.79%), carbohydrate metabolic process (3.10%), lipid
metabolic process (2.76%), cell death (2.55%), and cell differentiation (2.19%) (Figure 3a)
Terms that had a total percentage of expressed genes lower than 2% were collectively
categorized under the term “other” (12.88%).

DEGs from copper RG compared to nickel RG were annotated and allocated to terms
within the metabolic function category using Omicsbox/Blast2GO (Figure 3b). Overall,
449 DEGs were annotated and organized into the following subcategories of metabolic
functions: nuclease activity (27.90%), nucleotide binding (27.64%), kinase activity (10.16%),
RNA binding (8.26%), transporter activity (6.75%), DNA binding (6.60%), and DNA binding
transcription factor (3.47%). Terms that had a total percentage of expressed genes lower
than 2% were collectively categorized under the term “other” (9.22%).

DEGs from copper RG compared to nickel RG were annotated and allocated to terms
within the cellular compartment category using Omicsbox/Blast2GO (Figure S1). The
449 DEGs were annotated and organized into the following cellular compartment locations:
plasma membrane (21.49%), cytosol (16.26%), chloroplast (12.43%), extracellular region
(11.31%), mitochondrion (9.48%), Golgi apparatus (5.90%), endoplasmic reticulum (5.47%),
and nucleoplasm (3.37%). Terms that had a total percentage of expressed genes lower
than 2% were collectively categorized under the term “other” (14.28%).

The top upregulated genes from copper RG compared to nickel RG were annotated
and allocated to terms within the biological process category using Omicsbox/Blast2GO
(Figure 4a). The upregulated genes were annotated and organized into the following
subcategories of biological processes: biosynthetic process (11.67%) and response to chemi-
cals (10%), carbohydrate metabolic process (10%), response to external stimulus (8.33%),
response to stress (8.33%), response to biotic stimulus (6.67%), response to endogenous
stimulus (5%), cellular component organization (5%), nucleobase-containing compound
metabolic process (3.33%), flower development (3.33%), lipid metabolic process (3.33%),
response to light stimulus (3.33%), signal transduction (3.33%), protein modification process
(3.33%), and catabolic process (3.33%). Terms that had a total percentage of expressed genes
lower than 2% were collectively categorized under the term “other” (11.67%).

The top downregulated genes from copper RG compared to nickel RG were annotated
and allocated to terms within the biological process category using Omicsbox/Blast2GO
(Figure 4b). The downregulated genes were annotated and organized into the following sub-
categories of biological processes: response to stress (20.9%), signal transduction (11.94%),
response to endogenous stimulus (10.45%), response to chemicals (10.45%), catabolic
process (7.46%), lipid metabolic process (5.97%), response to external stimulus (4.48%),
biosynthetic process (4.48%), protein modification process (4.48%), response to biotic stim-
ulus (4.48%), and fruit ripening (2.99%). Terms that had a total percentage of expressed
genes lower than 2% were collectively categorized under the term “other” (11.94%).

The top upregulated genes from copper RG compared to nickel RG were annotated
and allocated to terms within the molecular function category using Omicsbox/Blast2GO
(Figure 5a). The upregulated genes were annotated and organized into the following sub-
categories of molecular function: hydrolase activity (29.41%), nucleotide binding (23.53%),
RNA binding (11.76%), kinase activity (11.76%), transporter activity (11.76%), signal recep-
tor activity (5.88%), and signaling receptor binding (5.88%).
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Figure 4. Percent distribution of the (a) top 100 upregulated genes in biological processes for copper
resistant (RG) compared to nickel resistant (RG) and the (b) top 100 downregulated genes in biological
processes for copper RG compared to nickel RG. The top upregulated and downregulated genes
from copper RG compared to nickel RG were annotated and allocated to terms within the biological
process category using Omicsbox/Blast2GO. Terms that had a total percentage of expressed genes
lower than 2% were collectively categorized under the term “other.”
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Figure 5. Percent distribution of the (a) top 100 upregulated genes in molecular function for copper
resistant RG compared to nickel resistant (RG) and the (b) top 100 downregulated genes in molecular
function for copper RG compared to nickel RG. The top upregulated and downregulated genes
from copper RG compared to nickel RG were annotated and allocated to terms within the molecular
function category using Omicsbox/Blast2GO. Terms that had a total percentage of expressed genes
lower than 2% were collectively categorized under the term “other.”
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The top downregulated genes from copper RG compared to nickel RG were annotated
and allocated to terms within the molecular function category using Omicsbox/Blast2GO
(Figure 5b). The downregulated genes were annotated and organized according to the
following subcategories of molecular function: transferase activity (30%), hydrolase activity
(25%), nucleotide binding (20%), protein binding (10%), DNA binding (5%), DNA-binding
transcription factor activity (5%), and transporter activity (5%).

The top upregulated genes from copper RG compared to nickel RG were annotated
and allocated to terms within the cellular compartment category using Omicsbox/Blast2GO
(Figure 6a). The upregulated genes were annotated and organized into the following cellular
compartment locations: plasma membrane (21.49%), cytosol (16.26%), chloroplast (12.43%),
extracellular region (11.31%), mitochondrion (9.48%), Golgi apparatus (5.90%), endoplasmic
reticulum (5.47%), and nucleoplasm (3.37%). Terms that had a total percentage of expressed
genes lower than 2% were collectively categorized under the term “other” (14.28%).

The top downregulated genes from copper RG compared to nickel RG were annotated
and allocated to terms within the cellular compartment category using Omicsbox/Blast2GO
(Figure 6b). The downregulated genes were annotated and organized into the follow-
ing cellular compartment locations: nucleus (40%), extracellular region (20%), plasma
membrane (13.33%), mitochondrion (6.67%), cell wall (6.67%), chloroplast (6.67%), and
vacuole (6.67%).
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Figure 6. Percent distribution of the (a) top 100 upregulated genes in cellular compartment location for
copper resistant (RG) in comparison to nickel resistant (RG) and the (b) top 100 downregulated genes
in cellular compartment location for copper RG in comparison to nickel RG. The top upregulated
and downregulated genes from copper RG compared to nickel RG were annotated and allocated to
terms within the cellular compartment category using Omicsbox/Blast2GO. Terms that had a total
percentage of expressed genes lower than 2% were collectively categorized under the term “other.”

3. Discussion
3.1. Physiological Mechanisms in P. banksiana Dealing with Soil Nickel and Copper Contamination

Plants growing on metal-contaminated soils are classified as resistant and have
adapted to this stressed environment. The physiological copying mechanism of P. banksiana
has been described by Moarefi and Nkongolo [71]. In general, plants cope with metal
contamination by using either avoidance and/or tolerance strategies. Metal-avoider plants
use a strategy that prevents the entry of metal ions into their cells. Tolerant plants detoxify
metal ions that have entered their cells by crossing the plasma membrane or the biomem-
branes of internal organelles. Three categories have been identified among tolerant plants.
Excluders maintain a low level of metal in their aerial tissues when growing on metal-
contaminated soils. Metals enter root cells, but they prevent their movement from the root
to aerial tissues. Indicators accumulate metals in their above-ground tissues, but the levels
found in these areal tissues are reflective of the metal concentration in the soil (the metal
concentration in their above-ground tissues is similar to the levels found in the soil). In
accumulators/hyperaccumulators, metals that have entered the roots are translocated and
accumulated in their areal tissues [72,73]. Based on this classification, P. bnkasiana was
classified as a metal indicator [71].

3.2. DEG Analysis Reveals Different Patterns of Gene Expression between Copper RG and
Nickel RG

The number of DEGs between genotypes can provide information on the overall
response of the copper-resistant genotype in comparison to the nickel-resistant genotype.
The hundreds of DEGs between copper RG and nickel RG suggest that some mechanisms
are differentially regulated in response to metal stress. Although the majority of the tran-
scriptome was similar, a small number of genes can often orchestrate significant processes
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and changes pertaining to heavy metal resistance [74,75]. The presence of 449 DEGs at
high stringency most likely contributed to differences between the response to copper and
the response to nickel. The different number of upregulated and downregulated genes
between genotypes infers the use of different physiological mechanisms to achieve a similar
endpoint phenotype. The presence of more upregulated genes in copper RG suggests more
direct mechanisms that confront copper toxicity with the increased production of proteins
and associated processes. In contrast, the presence of more downregulated genes in nickel
RG indicates the negative regulation of certain processes or signaling pathways. For exam-
ple, some phytohormones and pathways may require a controlled response with limitations
on protein production as a means to optimize the heavy metal stress response and prevent
cellular toxicity [76]. For copper SG compared to nickel SG, there were only 41 DEGs at
high stringency, indicating a high similarity in gene expression between susceptible plants.
This finding suggests that susceptible plants have less targeted specificity when responding
to copper or nickel stress. Susceptible plants often lack the expressed genes needed to
ameliorate heavy metal toxicity [76–78]. The similarity between the genotypes suggests
that gene expression was not directly involved with the detoxification of heavy metals
but was instead managing downstream stress mechanisms and tissue damage. After a
certain point, the cascading effect of heavy metals can manifest itself as a blanket stress
effect, causing nonspecific tissue damage and cytotoxicity [37,79]. The higher number of
upregulated genes in nickel SG may indicate attempts to increase processes that mitigate
nickel stress, counteract cascading downstream effects, or restrict the accumulation of
toxic secondary metabolites induced by excess nickel. In contrast, the higher number of
downregulated genes in copper SG may suggest the negative regulation of proteins and
metabolites that would be otherwise toxic at higher concentrations [66]. Susceptible plants
may utilize shared stress mechanisms associated with reducing tissue damage, managing
the turnover of metabolites, and responding to necrosis [80–83]. No biomarkers specific to
copper or nickel susceptibility were identified in susceptible genotypes, although general
stress response mechanisms were identified.

The DNA metabolic process had the highest proportion of gene expression, which
suggests different levels of DNA regulation between copper and nickel. The DNA metabolic
process encompasses processes such as DNA methylation, modification, repair, processing,
maintenance of repetitive sequences, and telomere maintenance [84]. Excess copper causes
double-stranded breaks, DNA oxidation, and an overall reduction in DNA content [85–87].
Excess nickel has also been shown to elicit DNA damage and reduce DNA content, although
the specific mechanisms are not well documented in plants [88,89]. The high proportion of
genes associated with nuclease activity indicates different levels of DNA repair mechanisms,
which may be used to mitigate the oxidative stress on DNA induced by heavy metals [90].
It implies a possible function related to DNA methylation and the epigenetic modulation
of gene expression. Multiple plants differ in global methylation patterns elicited by excess
copper and nickel [88,91–93]. Different methylation patterns may also persist in later
developmental stages to facilitate long-term adaptation to metal-contaminated sites [91].
DNA methylation can orchestrate significant changes to plant physiology, especially at
earlier stages of plant development [94]. Genes were ranked based on Log2 FC from each
pairwise comparison.

Considering that the samples were replicated three times and only the DEG detected
at high stringency cut-offs, based on the false discovery rate (FDR) analysis, were selected,
it is highly unlikely that the reported gene expression variations were due to chance.

The response to stress and other related terms had a high proportion of gene expres-
sion that indicated physiological differences in stress mitigation toward copper and nickel.
Both excess copper and nickel can alter the homeostasis of other heavy metal ions, decrease
photosystem II functionality, reduce chlorophyll function, and alter phytohormone dis-
tribution during early development [15,16,18,21,23,95–98]. The response to stress term is
also highly expressed in the top upregulated and downregulated genes for copper RG and
nickel RG, with nickel RG having a comparatively higher allocation of gene expression.



Plants 2024, 13, 1042 17 of 40

Differences in the physiological impact of copper and nickel are likely responsible for this
significant difference.

3.3. Analysis of the Top Upregulated Genes in Copper-Resistant Plants Compared to
Nickel-Resistant Genotypes Reveals Mechanisms That Are Associated with Copper Resistance in
Pinus banksiana

Describing the top upregulated genes of copper-resistant plants compared to nickel-
resistant plants allowed for the identification of mechanisms associated with the response
to copper. Analysis of the top upregulated genes also corroborated previous findings on
copper resistance, establishing mechanisms that are specific to copper and are potentially
involved in copper detoxification and tolerance [99]. Additionally, another transporter as-
sociated with copper resistance was identified, demonstrating the efficacy of transcriptome
analyses on multiple pairwise comparisons for describing gene expression.

Two heavy metal transporters were identified as exclusive to copper in comparison
to nickel. One of the most expressed genes with several isoforms encodes the pleiotropic
drug resistance protein 1 (NtPDR1), which is an ATP-binding cassette (ABC) transporter
belonging to the ABC G subfamily [100,101]. ABC transporters are membrane-bound and
use ATP hydrolysis to facilitate the active transport of entities [102,103]. The conserved pro-
tein regions of ABC transporters include two nucleotide-binding folds associated with ATP
hydrolysis and two hydrophobic transmembrane domains involved in the determination
of substrate specificity [102,104]. Upregulation of AtPDR family transporters in Arabidopsis
thaliana increased cadmium resistance and lead resistance by exporting these metals from
the cytosol to the apoplast [105,106]. It has been proposed that PDR may serve a similar
function in Pinus banksiana by exporting excess copper from the cytosol and reducing the
overall concentration of copper in the cell. PDR may also be involved in the general stress
response, as demonstrated by the upregulation of Ospdr9 in response to hormones such as
jasmonic acid and ABA [107,108].

One of the top upregulated genes encoded for the Yellow Stripe 1 (YS1) transporter
is a transmembrane transporter that facilitates the movement of heavy metals between
intercellular and intracellular compartments (Table 3a) [64,109,110]. YSLs have a conserved
oligopeptide transporter domain that binds to metal complexes and oligopeptides [111].
YS1 has been shown to import various heavy metals complexed with nicotianamine (NA)
from the rhizosphere into the root cells [109,112]. YSL3 can initiate the loading of metal-NA
complexes from the apoplast into the xylem and mediate the root-to-shoot translocation of
iron and cadmium [64,113,114]. In Brachypodium distachyon, BdYSL3 can load copper-NA
into the phloem and redistribute copper-NA complexes to the flowers and reproductive
organs [110]. Similarly, OsYSL16 in Orzya sativa redistributes copper-NA complexes from
the phloem to the seeds and younger leaves [115]. The dynamic response of YSL family
proteins to alterations in heavy metal content may differ between species, highlighting
the different strategies that may be utilized in response to excess heavy metals. In Oryza
sativa, YSL6 conferred manganese resistance by increasing the import of manganese into
the symplast, which reduced manganese accumulation and subsequent damage in the
apoplast [116]. The upregulation of YSL7 in transgenic tobacco conferred resistance to
excess iron, cadmium, and nickel by increasing the translocation of these metals to the
shoots and seeds, which may have allowed for effective sequestration [117]. The role
of YSL in mediating xylem loading and translocation has yet to be described in copper-
treated plants. In response to excess copper, AtYSL2 transports copper-NA complexes
laterally within the xylem and phloem [118]. Upregulation of YSL3.1 in transgenic tobacco
and Oryza sativa led to copper accumulation in younger leaves and conferred copper
resistance [119]. Nicotianamine is the most commonly reported chelator for copper due to
having a higher binding affinity in comparison to other metals, although it is also possible
for copper to form a complex with phytosiderophore or be transported as an ion in rare
circumstances [109,111]. It is, therefore, possible for YSL upregulation to be associated
with lateral transport in the vasculature or the redistribution of copper from the phloem
to younger leaves in Pinus banksiana [110,118]. Redistribution of copper to the younger
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needles may serve as a sync for copper sequestration, especially if older needles are weaker
or more prone to potential toxicity. It is unlikely for YSL to redistribute excess copper to
the seeds, as this area is commonly targeted by heavy metals to hinder development and
germination [120,121].

Another highly expressed gene was the heavy metal-associated isoprenylated plant
(HIPP), which is a metallochaperone that captures and transports heavy metal ions to
proteins located in other cellular compartments (Table 3a) [122]. HIPPs comprise a heavy
metal-associated (HMA) domain associated with directly binding to free metal ions and
a cysteine-rich isoprenylation site that interacts with other proteins, enzymes, and mem-
branes [122,123]. Variation in the isoprenylation site may modify cellular compartment
localization, the site of protein targeting, and overall signal transduction [122,124–126]. As
a divalent ion, copper can bind to other metallochaperones, such as ATFP3 and ATFP6 in
Arabidopsis thaliana, supporting the potential role of HIPP in copper chelation and home-
ostasis [122,126,127]. HIPP may be involved in copper resistance, as it has been shown
to confer heavy metal resistance in yeast and Arabidopsis thaliana [128,129]. HIPP con-
ferred resistance to excess copper and cadmium in Camellia sinensis exposed to excess
copper or cadmium [130]. The in vitro binding of HIPP to copper, cadmium, and zinc
also corroborates this proposed function [126,127]. Knockout of OsHIPP17 in Oryza sativa
reduced the expression of copper transporters and cytokinin-related genes, demonstrating
crosstalk with other transporters and signaling proteins [131]. In Pinus banksiana, HIPP
may potentially bind to and trap copper, reducing the effects of copper toxicity on plant
physiology [132].

Among the top DEGs were two genes associated with photosystem II, encompassing
the GO terms response to light stimulus and response to stress. One of the top upregulated
genes encodes the blue copper protein (BCP), which catalyzes the reduction and oxidation
of substrates, subsequently facilitating the transport of electrons from an electron donor
to an electron acceptor [133,134]. Excess copper can reduce chloroplast function and
inhibit photosynthesis by replacing ions in enzymes involved in the electron transport
chain [21,23,95]. Increased plastocyanin expression can recover the frequency of electron
transfer reactions and improve photosynthesis, thereby counteracting copper-induced
photodamage and maintaining a usable pool of carbohydrates for other metabolic needs.
In Glycine max, excess copper upregulated plastocyanin expression as part of a concerted
effort to increase the rate of photosynthesis [135]. Alternatively, the BCP gene may also
encode proteins in the stellacyanin subfamily, which could be involved in facilitating redox
reactions with substrates in the cell wall [136,137]. In addition to having a low redox
potential, stellacyanin has a redox-active copper-binding domain, which can aid in lignin
synthesis or mediate the stress response [136–138]. The upregulated expression of BCP
in some plants resulted in higher lignin production, which could act as a counteractive
response to heavy metal stress by strengthening the cell wall and enhancing its defense
properties [139,140]. The lignin production function of the BCP gene is supported by the
expression of other top regulated genes in Pinus banksiana, which are involved in enhancing
the structural integrity of the cell wall. Further research is needed to reveal the molecular
structure, function, and subfamily classification of the blue-collar protein.

Another top upregulated gene that was associated with photosynthesis function is a
gene encoding the 22 kDa Photosystem II protein, which facilitates the non-photochemical
quenching of energy released by pigment-mediated fluorescence (Table 3a) [141,142]. Light
absorption causes chlorophyll a, chlorophyll b, and xanthophyll to fluoresce, releasing
energy that can be utilized in photosynthesis reactions and O2 radical production [143–146].
Non-photochemical quenching captures and dissipates the released energy as heat, prevent-
ing the production of O2 radicals, which damage components of the photosynthetic pro-
cess [141–143]. Excess copper has been shown to decrease chlorophyll concentration, alter
chlorophyll morphology, and reduce enzyme activity associated with photosystem II [95].
The copper-mediated generation of ROS can further exasperate these symptoms by tar-
geting thylakoid membranes and chloroplast membranes [29–31]. The upregulation of
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the 22 kDa photosystem II protein could increase non-photochemical quenching, thereby
reducing ROS-mediated damage and subsequent photodamage [146,147]. The 22 kDa
Photosystem II protein and the blue copper protein may be upregulated to prevent pho-
todamage caused by copper and protect photosynthesis machinery. Both proteins have
a similar function to the light-inducible protein, which was identified in a transcriptome
analysis between copper-resistant and susceptible plants [99].

The high proportion of genes associated with the biosynthetic process and the
carbohydrate metabolic process play a crucial role in cell wall metabolism (Table 3a).
Many of the top upregulated genes have annotated functions that correspond to the
protection and reinforcement of the cell wall. One of the top upregulated genes en-
coded for Shikimate O-hydroxycinnamoyltransferase (HCT), which is involved in lignin
synthesis [148,149]. HCT catalyzes the conversion of p-coumaroyl-CoA, shikimate, or
quinic acid to 4-coumaroylshikimate [148–150]. HCT also catalyzes the conversion of 5-o-
caffeoylshikimic to caffeoyl-CoA and the subsequent conversion of caffeoyl-CoA to shiki-
mate [151]. The initial set of reactions in the phenylpropanoid pathway directs substrates
and intermediates through a reaction cycle that eventually yields the lignin monomers
S-lignin, H-lignin, and G-lignin [152]. HCT can thus act as a crucial control point for
lignin synthesis [153,154]. In addition to altering the proportions of monolignin subunits,
silencing HCT can lead to an overall reduction in lignin content, an increase in cellulose,
a decrease in cell wall thickness, and an increase in lumen diameter [154–158]. In Zoysia
japonica, upregulation of HCT increased the ratio of the S-lignin monomer and elevated
the activity of lignin-associated enzymes via phytohormone signaling [151]. In transgenic
tobacco, overexpression of HCT increased lignification and the number of secondary cell
layers, which provided increased stem strength and rigidity [159]. Lignin is an important
contributor to the formation of secondary cell walls in fibers and vasculature [160]. The
hydrophobic domains in lignin provide waterproofing properties that are essential for
separating anatomical structures [161]. Lignin also crosslinks with xylan and cellulose,
providing additional mechanical strength, rigidity, and thickness to the cell wall [162,163].
Some researchers have proposed that lignin may be able to block and reduce the transport
of heavy metals to other areas of the plant [164]. Polysaccharides, or functional groups,
in the cell wall can bind to copper and act as a sync for copper sequestration, which may
prevent the intracellular transport of copper to other organelles, such as the chloroplast
and vacuole [165]. The identification of top upregulated genes involved in protecting the
photosynthesis machinery and the chloroplast corroborates this proposed function.

A gene encoding the cellulose synthase-like E6 (CslE6) protein was also among the top
upregulated genes related to cell wall metabolism (Table 3a). Csl family proteins catalyze
the addition of UDP-glucose to the beta-1,4 glycan polymer within cellulose [166]. Csl
family proteins have also been shown to catalyze the synthesis of hemicelluloses such as
mannans, glucomannans, xylans, xyloglucans, and homogalacturonan [167–171]. Cellulose
comprises the most abundant portion of the primary and secondary cell walls, whereas
hemicellulose comprises a considerable portion of the secondary cell wall [172]. Cellulose
functions as a load-bearing microfibril that imparts tensile strength and turgor pressure to
the cell wall, thereby maintaining the structure and morphology of the cell wall [173–175].
Hemicellulose crosslinks with cellulose and lignin, providing structural support and rein-
forcement for the cell wall [176]. In particular, the presence of hemicellulose lignin matrices
provides resilience against shearing forces [177]. In cadmium-tolerant Arabidopsis thaliana,
cadmium has been found to bind to cellulose and hemicellulose [178]. In some plants, Csl
can maintain cell division for normal development and provide thickness and density to
the cell wall [171,179]. Overexpression of CslD3 in defective Arabidopsis has been shown to
increase cell elongation and rescue the integrity of the cell wall [180]. The upregulation of
Csl genes can lead to higher cellulose production, mechanical strength, and overall mass in
the primary and secondary cell walls [181].

Another top upregulated gene that was associated with cell wall metabolism en-
coded mannose-1-phosphate guanylyltransferase (MPG). MPG catalyzes the production
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of GDP-mannose, which is involved in the N-glycosylation of proteins embedded in
the cell wall [182]. N-glycosylation is a post-translational modification that attaches a
sugar residue to the free amine group of asparagine within the sequence asparagine-X-
Serine/Threonine [183]. N-glycosylation can alter various properties such as polarity,
solubility, reactivity, and cell compartment localization, which can alter protein confor-
mation and overall function [183–186]. GDP mannose is also a precursor for GDP-fucose,
which is a component of the cell wall that is involved in adhesion, polysaccharide crosslink-
ing, and lignification [187–190]. Additionally, GDP mannose is a precursor for ascorbic
acid, which is a multifunctional compound involved in stress signaling, defense processes,
and crosstalk with phytohormones [188,191,192]. In Arabidopsis thaliana, knockout of the
MPG gene leads to callose deposition in the primary cell wall, incomplete construction of
the cell wall, and a considerable decrease in cellulose content [182]. Upregulation of MPG
in Pinus banksiana could potentially mitigate copper toxicity by producing GDP-mannose,
which contributes to the reinforcement of the cell wall.

A top upregulated gene associated with cell wall metabolism is encoded for polygalac-
turonase (pectinase). Polylgalacturonase catalyzes the hydrolysis of alpha-1,4 glycosidic
bonds in polygalacturonan (pectin) into monosaccharide subunits [193]. Pectin comprises a
large portion of the primary cell wall in plants, although some studies suggest a minimal
presence in wood tissue [194,195]. Pectin plays various roles within the cell wall, which
include mediating cell-to-cell adhesion, facilitating ion transport, and contributing to poros-
ity [196–198]. The variable sidechains of pectin can link to cellulose and hemicellulose,
contributing to the overall mechanical strength of the cell wall [199]. The modification of
pectin and the reorganization of cell wall components is a mechanism that can be utilized
against heavy metal-induced stress [200,201]. Changes in the proportion of cell wall con-
stituents may impart certain strategic advantages, depending on the structure of the cell
wall and metabolic requirements [202]. Downregulation of pectinase in various plants also
improved tolerance to multiple stressors by decreasing cell expansion and cell separation
and increasing cell density [193,203,204]. Moy et al. found that polygalacturonate was
among the most downregulated genes in copper-resistant trees in comparison to copper-
susceptible trees, indicating an association with copper tolerance. In a previous study on
Pinus banksiana, other cell wall synthesis-related genes were found to be among the top
upregulated genes in copper RG compared to copper SG, indicating an association with
copper resistance [99].

Information from the top upregulated genes and a previous study comparing copper
RG with copper SG can be used to propose a model of copper resistance [99]. In comparison
to nickel-treated plants, a lower proportion of genes were associated with the response
to stress and signal transduction, indicating that Pinus banksiana may prioritize the direct
detoxification of copper ions as opposed to counteracting symptoms caused by copper
ions. NtPDR could export copper from the cytosol to the apoplast, at which point copper
ions may interact with the cell wall [105,106]. HCT, CslE6, and MPG are involved with the
reinforcement of the cell wall. In addition, the downregulation of beta-glucosidase and
polygalacturonase in copper RG further supports this function [99]. Copper may then be
sequestered in the cell wall and bind to ligands to decrease mobility and accumulation.
Alternatively, cell wall synthesis could be driven by a higher amount of ROS mitigation in
copper-resistant plants, as ROS may induce oxidative damage. Copper also seems to target
photosynthesis machinery and inhibit photosynthesis. In copper-resistant plants, the early
light-induced protein (ELIP) was upregulated, supporting the function of photosynthesis
protection for the blue copper protein and the 22 KDA protein. Metabolic and protein-based
assays should be performed to validate this proposed model.

3.4. Analysis of the Top Downregulated Genes for Copper-Resistant Plants Compared to
Nickel-Resistant Genotypes Reveal Mechanisms That Are Associated with the Response to
Excess Nickel

In nickel-resistant trees, the highest proportion of the top regulated gene expression
was associated with the response to stress and signal transduction, indicating the imple-
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mentation of distinct strategies in response to elevated levels of nickel. Stress response
mechanisms may be used to alleviate symptoms of nickel toxicity, such as tissue damage,
decreased photosynthesis, reduced plant biomass, and water loss [18,23,97]. Mechanisms
that were associated with photosystem II and mitigating photodamage were more exclu-
sive to copper than nickel. The differences in stress mechanisms could be explained by
nickel and copper targeting different components of photosystem II. Excess copper inhibits
plastoquinone QA and QB function, whereas excess nickel inhibits plastoquinone QB and
the functionality of the oxygen-evolving complex [21,23,24]. Differences in ROS production
may explain a higher proportion of genes allocated to cell wall metabolism in copper RG
relative to nickel RG. Excess copper can increase the production of hydrogen peroxide and
hydroxyl radicals from the Haber–Weiss reaction and Fenton-like reactions [29–31,205].
Comparatively, excess nickel may indirectly cause ROS stress by regulating the activity of
antioxidative enzymes such as SOD, catalase, and peroxidase [32,33]. Due to nickel being
less involved in plant physiology and being a cofactor for crucial enzymes, it is possible
that excess nickel negatively impacts fewer areas of plant physiology and is thus relegated
to fewer categories of biological responses. There is also a lack of identified transporters
specific to nickel, which severely limits the physiological strategies that Pinus banksiana can
utilize to detoxify nickel ions.

Among the top downregulated genes was a gene that encoded a UDP-glycosyltransferase
(UGT), which catalyzes the transfer of glucose to abscisic acid [76]. The conversion of ABA
to ABA-GE is a negative feedback mechanism that negatively regulates ABA synthesis
and signaling [206,207]. As a phytohormone, ABA performs crosstalk with other stress-
related hormones, modulating various aspects of stress mitigation such as transpiration
rate, cell death, stomatal closure, photosynthesis, germination, and growth [208–215].
However, multiple instances of ABA application were found to decrease growth and cell
replication in lieu of mediating physiological changes [215–217]. Application of ABA to
cadmium-treated plants reduced root-to-shoot translocation and decreased IRT1, which
is a nonspecific transporter that also mediates nickel uptake [218,219]. Reduction in ABA
can thus be seen as a means to recover growth from nickel-mediated stress or indirectly
influence nickel transport. In aluminum-stressed Glycine max, high UGT expression leads
to the alteration of cell wall components, reducing callose, hemicellulose, glucose, and
xylose [220]. In transgenic Arabidopsis thaliana, UGT interacted with metallothionein, facil-
itated hormone crosstalk, and alleviated oxidative stress in response to heat stress [221].
Overexpression of UGT in various species subjected to different abiotic stressors leads
to decreases in auxin signaling, increases in seed germination, higher growth rates, and
elevated flavonoid content [222–225]. The impact of UGT upregulation in nickel-treated
Pinus banksiana may depend on various physiological parameters, necessitating future
measurement and correlation.

A gene encoding TIFY was one of the most downregulated genes in copper RG in com-
parison to nickel RG. TIFY are transcription factors that constitutively suppress jasmonate-
mediated signaling and are modulated by the ubiquitin-proteasome pathway [226,227].
Among the other jasmonate-related proteins identified in nickel RG in comparison to wa-
ter, TIFY was the only protein to be highly upregulated in the nickel-resistant genotype
compared to the copper-resistant genotype. TIFY responds to a variety of stressors and
can be induced by the jasmonate and ABA signaling pathways [228,229]. In Glycine max,
upregulated TIFY led to increases in peroxidase and catalase activity to counteract salt-
induced stress [230]. In several plants subjected to various abiotic stressors, upregulated
TIFY led to an increase in proline content and a reduction in MDA content, which is a
toxic byproduct of lipid peroxidation [231–234]. Upregulation of TIFY in nickel could be
a counteractive response to jasmonate production, as jasmonate is a phytohormone that
reduces cell replication, photosynthesis, and overall growth in exchange for an elevated
stress response [235–237]. Jasmonate inhibitors have been found to increase heavy metal
tolerance by decreasing the impact of heavy metals on photosystem II and preventing
chlorophyll loss [234,238,239]. Depending on the species, increased methyl jasmonate or
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jasmonic acid production may forego growth and development in exchange for increased
heavy metal tolerance [240–243].

Among the top downregulated genes was a gene encoding for 1-aminocyclopropane-1-
carboxylate synthase 7 (ACC synthase 7), which catalyzes the synthesis of 1-aminocyclopropane-
1-carboxylate (ACC) [244]. ACC undergoes a rate-limiting oxidation reaction to produce
ethylene, which is a phytohormone involved in stress processes, growth processes, and
overall plant development [245,246]. Ethylene is a multifaceted phytohormone that may
induce large alterations in stress tolerance when overexpressed or underexpressed. In
Arabidopsis thaliana, ethylene can transcriptionally regulate the reduction in root growth and
is also involved in photosynthesis recovery [247–249]. Ethylene mediates crosstalk with
several hormones and signaling molecules, which include jasmonates, ABA, and nitrogen
oxide [249–251]. In some instances, ethylene can indirectly alter antioxidative enzyme
activity or influence glutathione-S-transferase synthesis [249,252–254]. In Nelumbo nucifera,
the upregulation of ACC synthase increased both ACC and ethylene content, which led to
higher sensitivity to cadmium-induced stress [254]. The increase in ethylene also caused the
inhibition of catalase, ascorbate peroxidase, and glutathione reductase. In cadmium-treated
Nicotiana, ethylene was decreased in the roots and increased in the shoots, resulting in
higher shoot growth and photosynthesis recovery [255]. The endpoint phenotype for ethy-
lene regulation seems to depend on the specific phytohormone crosstalk and the growth or
photosynthetic requirements of the plant responding to stress [249,252]. Ethylene may also
induce different outcomes based on the type of stressor involved [256]. Being the precursor
to ethylene, the upregulation of ACC in nickel-resistant plants may indicate prioritization
of photosynthesis recovery, ROS detoxification, and the stress response in exchange for
tissue growth and development.

A top downregulated gene encodes for the dirigent protein, which is involved in the
stress response, defense, and reorganization of the cell wall [257]. Dirigent proteins are
involved in the production of lignins and lignans, which alter cell wall composition to coun-
teract nickel-induced stress [258]. Dirigent proteins specifically mediate the phenoxy radical
coupling of coniferyl alcohol to stereoselective pinoresinol [259]. Other genes involved
in the synthesis of other cell wall components are not specific to nickel-resistant plants in
comparison to copper-resistant plants. The upregulation of dirigent proteins and lignin may
increase the mechanical strength and rigidity of the secondary cell wall [159,162,163]. The
upregulation of lignin has also been correlated with increased cadmium deposition within
the cell wall [260]. In Arabidopsis thaliana, DIR is involved in Casparian strip formation,
which reinforces the impermeability of the cell wall [261,262]. Casparian strip formation
may increase the blocking or reduction in heavy metal transport. In addition to being a
reserve precursor for lignin formation, lignan is also a secondary metabolite that may be
involved in the regulation of oxidative stress and flavonoid production [263–265]. Reduced
lignan has been shown to strongly mediate ROS scavenging in the xylem, serving a strong
protective function for the vasculature [264,266].

Another top downregulated gene is encoded for peroxidase, which is an enzyme
involved in ROS scavenging [267]. Although not specific to any given stressor, peroxi-
dase expression is a strong biomarker for oxidative stress, most notably in response to
peroxide [268]. Peroxidase facilitates the electron transfer from hydrogen peroxide to a
given substrate [267]. Peroxidase can quench radical peroxide and oxygen species, which
leads to decreased levels of ROS [269]. In some trees, the upregulation of peroxidase is
associated with increased lignin production, as peroxidase can oxidize monolignol rad-
icals while simultaneously reducing peroxide [160]. The dual functionality of targeting
oxidative stress and cell wall reinforcement could significantly contribute to heavy metal
tolerance [270–273]. Peroxidase and peroxide levels may also negatively regulate auxin
levels, which can impact plant growth and development [274]. Decreased auxin levels can
impede apical meristem cell division, apical meristem differentiation, shoot branching, root
branching, and overall plant growth [274–277].
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A gene encoding for glyoxalase I was among the top downregulated genes. Gly-
oxalase I catalyzes the conversion of methylglyoxal (MG) to the inert compound S-D-
lactoylgluathion, which is subsequently converted to D-lactate by glyoxalase II [278,279].
The conversion of MG to an inert compound serves dual roles by diminishing MG tox-
icity in plant tissue and generating D-lactate, which is a substrate involved in glucose
metabolism [280]. As a byproduct of glycolysis, MG is involved in signaling pathways that
modulate various areas of plant physiology. At low concentrations, MG can regulate ROS
content, control stomatal closing, and activate potassium channels [281,282]. Excess nickel
induces the overproduction of MG [283]. At higher concentrations, MG can reduce pho-
tosynthesis activity, impede root growth, decrease seed germination, cause chlorosis, and
prevent ethylene synthesis [284–289]. Excess MG can also be detrimental to the function of
critical enzymes and proteins, as MG facilitates the glycation of arginine and lysine [290].
The high expression of glyoxalase I in nickel RG could suggest a counteractive measure to
reduce MG and the corresponding side effects causing cytotoxicity.

3.5. Analysis of the Top Upregulated Genes for Copper-Susceptible Plants Compared to
Nickel-Susceptible Plants

Comparing the top regulated genes between copper-susceptible plants and nickel-
susceptible plants may show tolerance mechanisms that are specific to either metal or
reveal biomarkers indicative of copper or nickel vulnerability. Alternatively, DEGs in the
susceptible genotype may not be associated with the response to heavy metals but could
instead be associated with the management of cell death and tissue necrosis.

Among the top upregulated genes was a gene encoding inositol oxygenase, which
catalyzes the oxidation of myto-inositol to D-glucuronic acid [291]. D-glucuronic acid is
a critical component for hemicelluloses such as xylan and xyloses and can increase the
level of binding and stability between components of the cell wall [292–294]. Upregulating
the synthesis of UDP glucuronic acid can establish a pool of precursors to be utilized for
building cell wall carbohydrates [295]. In Arabidopsis thaliana, mutants that did not produce
D-glucuronic acid had altered hemicellulose, which resulted in a lower binding capacity
and the accumulation of aluminum in the cell wall [296]. Many studies have shown the
upregulation of inositol oxygenase to various stresses, with some studies demonstrating an
improved stress response correlated to increased ROS mitigation activity [297,298].

A top upregulated gene encodes for a monosaccharide transporter, which facilitates the
transport of glucose, xylose, and 3-O-methylglucose across different compartments [299,300].
In Oryza sativa, the expression of monosaccharide transporters in leaf cells, xylem cells, and
sclerenchyma cells suggests a function that may pertain to cell wall reinforcement [299].
In response to stress, the upregulation of monosaccharide transporters may imply the
accumulation of constituents in a pool to be utilized for either cell wall development
or fulfilling metabolic requirements [299–301]. In many plants, increased expression of
monosaccharide transporters led to increased production of protein, lipids, and overall
development [302]. Fulfilling metabolic requirements could induce further growth and
reproduction to counteract stress-induced damage [301,302].

A top downregulated gene encodes for a calmodulin-related protein, which binds
calcium and is a critical component of the calmodulin signaling pathway [303]. As a
calcium-binding sensor, the activity of calmodulin is dependent on cytosolic calcium
levels, which are subject to alteration by a variety of different stressors [304]. In response
to various stressors, calmodulin can facilitate crosstalk with signaling proteins, interact
with secondary metabolites, interact with ion channels, and modulate enzymes to alter
various aspects of physiology [305–309]. Many ion channels, phosphatases, and kinases are
calmodulin-dependent, although the corresponding functions are too broad to attribute a
specific function toward heavy metals [310–314]. Similar to other general stress responses,
increased calmodulin is correlated with increased ROS scavenging [308]. In transgenic
Nicotiana tabacum, overexpression of calmodulin conferred nickel tolerance, possibly by
providing binding sites for nickel, which obstructs the channel or alters functionality [315].
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Calmodulin has also been shown to nonspecifically facilitate the transport of other heavy
metals, such as lead.

It should be pointed out that the validation of gene expression was performed by
analyzing each treatment in triplicate and by applying a stringent pairwise comparison
test. Additional validation by RT-qPCR can be considered for further study. Considering
the scope of this study, such analysis will be time-consuming and not cost-effective.

4. Materials and Methods
4.1. Plant Growth and Treatment

The protocols for Pinus banksiana seedling growth, incubation, storage conditions, and
metal treatment were similar to previous studies [316]. The College Boreal Plant Center in
Sudbury, Ontario, provided six-month-old Pinus banksiana seedlings. These seedlings were
transplanted into square plantar pots containing a 1:1 composition of sand with a mixture
of 79% Sphagnum moss, 17% perlite, and 5% composted peat moss. The seedlings were
incubated in a growth chamber for a month, receiving consistent water and fertilizer to
ensure adequate growth. Plants were watered as needed and fertilized twice a week with
equal amounts of nitrogen, phosphorus, and potassium (20–20–20). All treatments were
applied in a randomized block design to account for variability among individual seedlings.
Fifteen seedlings were given 1300 mg of copper sulfate per 1 kg of soil, administered
through an aqueous solution in the soil. Another fifteen seedlings were treated in the same
manner with 1600 mg of nickel sulfate per 1 kg of soil. The concentration of each treatment
was representative of metal-contaminated sites in the Greater Sudbury Region [6]. Fifteen
seedlings were given deionized water, which represented the negative control. Fifteen
seedlings were treated with 1300 mg/kg of potassium sulfate as a salt control for the
copper sulfate treatment. Fifteen seedlings were given 1600 mg/kg of potassium sulfate to
represent the salt control for the nickel sulfate treatment.

After two weeks of incubation with continued monitoring, damages were recorded to iden-
tify the most resistant and susceptible seedlings using the 1 to 9 scale, where 1 to 3 represent re-
sistant plants, 4 to 6 represent moderately resistant/susceptible plants, and 7 to 9 represent
susceptible plants. Details of the rating scale are described in Table S1. Needles from
resistant genotypes (RGs) with no symptoms and green needles from susceptible genotypes
(SG) were harvested and wrapped in individual aluminum foils for RNA extraction. For
longer-term storage, the needles were flash-frozen using liquid nitrogen and stored in a
freezer at −80 ◦C.

4.2. Transcriptome Analysis of Pinus banksiana

Total RNA extraction, sequencing and transcriptome assembly, annotation of Pinus
banksiana using BLAT matching, quantification of gene expression, and quality control (QC)
analysis were described in Moy et al., 2023 [316]. Likewise, differential gene expression
(DGE) analysis of pairwise comparisons and the identification of top upregulated and
downregulated genes followed the procedure detailed in Moy et al., 2023 [316]. Three
biological samples of each group, which include copper-resistant genotypes (RGs), Ni
RGs, copper susceptible (SG), and Ni SG, along with water-treated samples and potassium
sulfate-treated plants, were used for transcriptome analysis.

4.3. RNA Extraction

RNA extraction was conducted in accordance with the protocol outlined in the
NORGEN BIOTEK Plant/Fungi Total RNA Purification Kit (https://norgenbiotek.com/
product/plantfungi-total-rna-purification-kit, accessed on 1 September 2022). RNA quality
was examined using agarose gel electrophoresis, and RNA quantification was performed
using the Qubit™ RNA BR assay kit (Qubit RNA BR Assay Kit by Invitrogen Life tech-
nologies Corp., Eugene, OR, USA). The extracted RNA was stored at −80 ◦C in a freezer
until use.

https://norgenbiotek.com/product/plantfungi-total-rna-purification-kit
https://norgenbiotek.com/product/plantfungi-total-rna-purification-kit
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4.4. RNA Sequencing and De Novo Transcriptome Assembly

For every sample, messenger RNA was purified from the total RNA by using poly(dt)
oligomers to target and bind to poly(A) tails. RNA fragmentation was performed to
account for the size limitation of the sequencing platform. Reverse transcriptase was
added to catalyze the reverse transcription of mRNA into cDNA. RNAse was added
to prevent the unnecessary ligation or bonding of certain nucleotide pairs and strands.
Second-strand synthesis was performed, followed by 3′ end ligation with adaptors and
adenosine caps. Polymerase chain reaction (PCR) was used to synthesize and amplify the
cDNA libraries of every sample. The cDNA libraries were sequenced using the Illumina
sequencing platform at Seqmatic in Fremont, CA, USA. FASTQC files were generated
from the cDNA libraries for each sample. The FASTQC program was used to assess
the quality of the raw data from the files and generate characteristics for each sequence,
which included average sequence length, percentage of guanine/cytosine content, the
total percentage of deduplicated sequences, and sequences flagged as having poor quality.
The Cutadapt program was used to delete adaptor sequences and low-quality bases from
the raw sequence read data. The Bowtie2 algorithm in Trinity was used to map the RNA
sequence raw reads to the Trinity transcript assembly, generating sequence alignment map
(SAM) files, which were then converted to BAM (binary form of SAM) files. Transcript
assembly was performed by inputting RNA sequence data from every sample into the
TRINITY program, which quantified the number of genes based on the number of detected
genes and corresponding isoforms.

4.5. BLAT Matching and Annotation of Pinus banksiana Genes

A two-way BLAST-like alignment tool (BLAT) was used to match and align the tran-
scripts from the assembly to the reference genome of Pinus taeda. The characteristics of
each transcript were provided, and they included the transcript ID, gene ID, and the corre-
sponding log (E-value) for sequence similarity in relation to the reference genome. Other
attributes that were acquired from the BLAT alignment included transcript sequence size,
query sequence size, and the percentage of net match for each attribute. Every transcript
was mapped to protein sequences in the UniProt database, generating corresponding
UniProt IDs. Protein matches with the highest level of similarity were used to annotate
genes and assign gene ontology information, such as the functions and cellular localization
of the gene product.

4.6. Quantification of Gene Expression and Quality Control (QC) Analysis

The RNA-Seq by expectation–maximization (RSEM) abundance estimation method
was used to quantify the expression level of each gene/transcript, as well as related
isoforms. A quality control assessment was conducted for each read count to validate and
assess the number of counts expressed for each gene. Raw reads were filtered and selected
for counts of at least 1, 2, 10, 50, or 100. Genes with one read were considered noise. Genes
with two or more counts were used as an estimate for the number of genes expressed.
Genes with 10 or more counts were considered an adequate indication of the number of
genes that had enough reads for downstream statistical analysis. For each treatment group,
genes with counts per million (CPM) values of one or higher in at least two samples were
included in the downstream analysis. Genes with a CPM value of less than one in at least
two samples were considered unexpressed and removed. Normalization factors for raw
counts were generated using a trimmed mean of M-values (TMM) from the edge R package
(version 4.2) to normalize sample sizes and remove variations between samples.

The normalized read counts underwent log scale transformation using the voom
method (log2 scale) from the R limma package. Boxplots of the transformed expression
values were generated to show the mean distribution of every sample. Deviation from
the mean distribution in a particular sample may indicate variations among experimental
conditions, sample contamination, or the batch effect. Samples that deviated significantly
from the mean distribution within the same objective group were excluded.
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Multidimensional scaling plots were generated to show the amount of clustering for
sample groups based on the leading log fold change (logFC) of normalized data. Groups
of samples that deviated significantly from other groups of samples were considered
differentially regulated. Samples that deviated significantly from the other samples within
the same group were considered outliers and were excluded from the downstream analysis.

A heatmap was generated from the logFC of 5000 genes to show the visual relationship
of differential gene expression between the samples. Samples that did not have a similar
logFC pattern of gene expression as other samples within the same group were considered
outliers and were excluded from the downstream analysis. The proportion of raw reads
expressed by the top 100 upregulated and downregulated genes was also assessed in every
sample to identify potential bottlenecking issues.

4.7. Differential Gene Expression (DGE) Analysis of Pairwise Comparisons

The cut-off for pairwise comparisons was calculated to be equivalent to 10 raw counts.
A CPM of 0.413 was determined as the minimum threshold required for each pairwise
comparison as calculated from the average of the total counts in all of the included samples.
Genes that had a CPM higher than the cut-off in at least three samples were included in
downstream analysis, whereas genes that did not fulfill these parameters were excluded.
Out of 435,293 total genes, 150,739 genes were included in the differential gene expression
analysis. The pairwise comparisons of transcript expression were performed at high-
stringency and low-stringency cut-offs based on the false discovery rate and on p values
(0.01) analyses, respectively. The pairwise comparisons were comprised of copper-resistant
samples in comparison to nickel-resistant samples and copper-susceptible samples in
comparison to nickel-susceptible samples. Differential gene expression expressed as logFC
values was evaluated using the R limma package. To assess the interference of sulfate ions
on the treatment regimen, pairwise comparisons of expressed genes were also conducted
between each sample and the potassium sulfate control. Every gene for each pairwise
comparison was annotated using Trinotate and Trinity. Gene ontology was performed by
assigning GO terms and gene IDs from available databases to the set of genes for a given
pairwise comparison. Genes that could not be annotated were filtered out of the set of
annotated genes. Each gene set was run through a plant slim function using the Omicsbox
(formally known as BLAST2GO) program. For each pairwise comparison, gene ontology
charts were generated to functionally categorize biological processes, metabolic functions,
and cellular components. For each functional category, sequences were distributed and
organized by the NodeScore of each assigned GO term.

4.8. Analysis of Top Differentially Regulated Genes

The top 100 upregulated genes and downregulated genes were ranked for copper RG
in comparison to nickel RG. Genes were ranked based on LogFC and the fulfillment of high-
stringency parameters. This process was repeated for copper SG in comparison to nickel SG.
UniProt annotation and a review of the current literature were conducted to characterize
genes associated with copper detoxification or tolerance mechanisms. Genes associated
with copper or nickel resistance were considered candidate genes for metal resistance. Gene
ontology charts were generated to functionally categorize biological processes, metabolic
functions, and cellular component localization for the top 100 regulated genes using the
aforementioned process in DGE analysis. Charts comprised of the top 50 genes were
provided for each pairwise comparison group.

5. Conclusions

The transcriptome analysis of Pinus banksiana treated with copper and nickel provided
a deeper insight into the distinct genetic response of Pinus banksiana to excess Cu and Ni
ions. At high stringency, there were 449 DEGs in copper RG in comparison to nickel RG,
indicating a similar level of gene expression for the majority of the transcriptome. Out of
the 449 genes, various terms in all three main categories were identified as differentially
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expressed. The decreased proportion of terms associated with DNA processes in the top
DEGs suggests the presence of DNA methylation and regulation in the modulation of gene
expression. There were not enough DEGs between copper SG and nickel SG to facilitate
a GO categorical comparison. Annotation of the top upregulated genes in copper RG
compared to nickel RG identified genes and mechanisms that were specific to copper and
not to nickel. For biological processes, the biosynthetic process, response to chemicals,
and carbohydrate metabolic process comprised the highest proportion of genes. NtPDR,
AtHIPP10, and YSL1 were identified as genes associated with copper resistance. Genes
encoding the blue copper protein and the 22 kDa Photosystem II protein were associated
with the mitigation of photodamage and photosynthesis protection. Various genes related
to cell wall metabolism were identified and included genes encoding for HCT, CslE6,
MPG, and polygalacturonase. Annotation of the top downregulated genes in copper RG
compared to nickel RG identified genes and mechanisms that were specific to nickel and
not copper. For biological processes, the majority of gene expression was associated with
the response to stress and signal transduction. Various regulatory and signaling-related
genes associated with the stress response were identified, and they included UGT, TIFY,
ACC, dirigent protein, peroxidase, and glyoxyalase I. Transcriptome analysis revealed the
different strategies that are used by Pinus banksiana toward copper and nickel. The identified
genes associated with copper resistance can be further researched and implemented in
various industries. Additional research is needed to determine the specific functions of
various signaling and stress response mechanisms in nickel-resistant plants.
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www.mdpi.com/article/10.3390/plants13071042/s1, Figure S1: Percent distribution of differentially
expressed genes (DEGs) for cell compartment localization when copper resistant (RG) and nickel
resistant (RG) were compared; Table S1: Damage rating scale and plant classification based on reaction
to nickel and copper treatments; Table S2: Top 108 upregulated genes in copper RG in comparison to
Nickel RG in Pinus banksiana; Table S3: Top 112 downregulated genes in copper RG in comparison
to Nickel RG in Pinus banksiana; Table S4: Top 40 downregulated genes in copper SG in comparison
to nickel SG in Pinus banksiana
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