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Abstract: Mulberry (Morus alba L.), a significant fruit tree crop, requires magnesium (Mg) for its
optimal growth and productivity. Nonetheless, our understanding of the molecular basis underlying
magnesium stress tolerance in mulberry plants remains unexplored. In our previous study, we
identified several differential candidate genes associated with Mg homeostasis via transcriptome
analysis, including the xyloglucan endotransglucosylase/hydrolase (XTH) gene family. The XTH
gene family is crucial for plant cell wall reconstruction and stress responses. These genes have been
identified and thoroughly investigated in various plant species. However, there is no research per-
taining to XTH genes within the M. alba plant. This research systematically examined the M. alba XTH
(MaXTH) gene family at the genomic level using a bioinformatic approach. In total, 22 MaXTH genes
were discovered and contained the Glyco_hydro_16 and XET_C conserved domains. The MaXTHs
were categorized into five distinct groups by their phylogenetic relationships. The gene structure
possesses four exons and three introns. Furthermore, the MaXTH gene promoter analysis reveals a
plethora of cis-regulatory elements, mainly stress responsiveness, phytohormone responsiveness,
and growth and development. GO analysis indicated that MaXTHs encode proteins that exhibit
xyloglucan xyloglucosyl transferase and hydrolase activities in addition to cell wall biogenesis as
well as xyloglucan and carbohydrate metabolic processes. Moreover, a synteny analysis unveiled
an evolutionary relationship between the XTH genes in M. alba and those in three other species:
A. thaliana, P. trichocarpa, and Zea mays. Expression profiles from RNA-Seq data displayed distinct
expression patterns of XTH genes in M. alba leaf tissue during Mg treatments. Real-time quantitative
PCR analysis confirmed the expression of the MaXTH genes in Mg stress response. Overall, this
research enhances our understanding of the characteristics of MaXTH gene family members and lays
the foundation for future functional genomic study in M. alba.

Keywords: Morus alba; xyloglucan endotransglucosylase/hydrolase (XTH); phylogeny; magnesium
stress; expression patterns

1. Introduction

Mulberry (Morus spp.) is an essential plant in many Chinese provinces, primarily
cultivated for its leaves and fruits. It holds particular significance in sericulture, as mulberry
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leaves serve as the exclusive food source for domestic silkworms (Bombyx mori L.) [1,2].
Besides its historical role in silkworm rearing, mulberry, especially Morus alba (M. alba),
demonstrates potential as a pioneer tree species in marginal environments [3]. Moreover,
the leaves of M. alba are of high medicinal value [4] and are believed to possess antioxidant,
anti-inflammatory, and anti-allergic properties attributed to various bioactive phytochem-
icals, including polyphenolic compounds, triterpenoids, and anthocyanins. Although
M. alba is of significant economic importance, its growth and development are subject to
the influence of nutrient concentrations. High magnesium (Mg) levels or Mg deficiency are
among the key factors affecting the growth and development of the plant [5]. Neverthe-
less, M. alba’s stress response to different Mg concentrations is unclear, especially at the
genomic level.

Mg deficiency frequently hinders crop yield in sandy or highly acidic soils, primarily
attributable to the high leaching susceptibility of Mg. This occurrence is widely observed
and has notable implications for agricultural productivity in such soil conditions [6]. Exten-
sive investigations have scrutinized and unveiled the consequences of Mg deficiency on
plant physiological aspects, including biomass distribution, carbon dioxide (CO2) uptake,
and protection against photooxidative stress [7], resulting in yield reduction and poor fruit
quality [8,9]. In response to these challenges, plants have developed intricate regulatory
mechanisms, including the involvement of distinct gene families, such as Xyloglucan endo-
transglucosylase/hydrolases (XTHs) [10]. XTHs genes are classified within the glycoside
hydrolase family 16 and are an essential group of enzymes primarily responsible for cleav-
ing and rearranging the xyloglucan backbones within plant cell walls [11–13]. Specifically,
family members of this gene carry out two distinct biochemical processes that are catalyzed
by two specific enzymes: xyloglucan endotransglycosylase (XET) and xyloglucan endo-
hydrolase (XEH) [14]. XET catalyzes the transfer of one xyloglucan molecule to another,
resulting in the elongation of xyloglucan, whereas XEH is characterized by hydrolyzing
an individual xyloglucan molecule, causing an irreversible reduction in the length of the
xyloglucan chain [13].

Several XTHs exhibit catalytic properties and play an essential role in regulating the
extensibility of plant cell walls, root elongation, and plant growth [11,15]. Due to the ad-
vancement of sequencing technology and data availability, an expanding repertoire of XTH
genes has been discovered and characterized in a broader range of species including Ananas
comosus (48) [16], Arachis hypogaea L. (58) [17], Glycine max (61) [18] Arabidopsis thaliana [19],
lpomoea batatas (36) [20], Oryza sativa (29) [21], Solanum lycopersicum L. (37) [11], Nicotiana
tabacum (56) [22] Brassica rapa (53) and Brassica oleracea (35) [23]. Nonetheless, the XTH fam-
ily constituents in mulberry remain undisclosed. Earlier investigations have demonstrated
the involvement of XTH genes in numerous crucial processes, particularly the development
and growth of plants via the remodelling of plant cell walls. For instance, in Arabidopsis,
genes such as AtXTH17, AtXTH18, AtXTH19, and AtXTH20 exhibited specific expression
patterns in the root tissues and were significantly involved in the processes of root elonga-
tion and the initiation of root hair formation [19,24]. GhXTH1 gene overexpressed in cotton,
elongated cotton fibers by 15–20% [25]. In addition, some XTH genes have been reported
to play active roles in fruit softening and ripening. PavXTH14 and PavXTH15 expression in
cherry fruits resulted in a significant decrease in fruit firmness and altered the constitution
of hemicellulose and pectin in the cell wall of the transgenic fruit [26]. Likewise, XTH
influenced the softening and ripening of fruits, including tomatoes [27], strawberries [28],
kiwi [29], and pears [29]. Several other XTH genes are involved in flower development [29]
and leaves [30].

Numerous investigations have also suggested that plant hormones play a role in
regulating the activity of XTH genes. For instance, the application of abscisic acid increased
the expression of Arabidopsis AtXTH23 [19]. Similarly, the ethylene application induced
the expression of banana MA-XETI, which is involved in the ripening and softening of
the peel and pulp [30]. Furthermore, under ethylene induction, three CaXTH genes were
significantly upregulated in the leaf tissue of hot pepper [31]. Members of the XTH gene
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family primarily regulate cell wall responses to biotic and abiotic stressors, which affect
plant growth. The overexpression of DkXTHI was found to augment the resistance of trans-
genic Arabidopsis plants to salt, drought-induced stress, and abscisic acid, consequently
impacting the development of roots and leaves [32]. Similarly, XTH genes in Chinese
cabbage (Brassica rapa L.) exhibited an upregulated expression in response to elevated
temperatures [33]. Furthermore, under low temperatures, the DkXTH6 gene in persimmons
decreased in expression, while the DkXTH7 gene showed noticeably high transcription
levels [34]. A prior proteomic study in maize revealed that XTHs were differently regulated
in response to drought stress [35]. Moreover, xyloglucan content was decreased in the
Arabidopsis AtXTH31 mutant, which lowered the amount of absorbed Al3+ and increased
resistance to aluminum stress [36]. The overexpression of the xyloglucan endotransgluco-
sylase/hydrolase gene in Populus euphratica resulted in increased resistance to cadmium
tolerance by limiting cadmium absorption in the root system of transgenic tobacco plants.
In addition, the transgenic plants had 56–87% more xyloglucan degrading activity (XDA)
than the wild type, which resulted in a 25–27% decrease in the amount of xyloglucan in
the root cell walls [37]. Moreover, in Arabidopsis, aluminum tolerance was imparted by the
induction of ZmXTH, a gene encoding xyloglucan endotransglucosylase/hydrolase from
maize [38]. Similarly, Arabidopsis mutants xth15 and xthI7 exhibited elevated aluminum
tolerance in contrast to wild-type plants [36].

These preliminary studies highlight the key role of XTHs in various plants’ responses
to various stresses. However, to the best of our knowledge, there is no functional charac-
terization of mulberry XTH gene family members. Consequently, there is a necessity for a
systemic and comprehensive exploration of the M. alba XTH gene family across the genome.
The present investigation conducted an analysis of the XTH gene family within M. alba
based on our previous transcriptomic analysis after Mg stress treatment using the available
genome data. Subsequently, detailed information, including phylogenetic analysis, gene
structure characterization, chromosomal localization, motif analysis, promoter analysis,
and syntenic relationships of MaXTH genes, were examined. Furthermore, real-time quanti-
tative PCR (qRT-PCR) was employed to determine the expression patterns of XTH genes in
the leaf tissues of M. alba that were subjected to various levels of Mg stress. The findings of
this study are poised to offer significant insights into the XTH genes in M. alba, contributing
to deeper comprehension and setting the groundwork for the functional analysis of plant
XTH genes in mulberry plants.

2. Materials and Methods
2.1. Growth Conditions and Magnesium Treatment for the Mulberry Plant (Morus alba)

Mulberry (Yu-711), a member of the M. alba species, was obtained from the National
Mulberry GenBank at Jiangsu University of Science and Technology in Zhenjiang, Jiangsu,
China. Growth of the mulberry plant materials and Mg treatments followed the methods
of our previous study [5]. In brief, mulberry seedlings that had been grafted were carefully
chosen and then planted in pots with a diameter of 35 cm. These pots included a mixture
of loamy soil and vermiculite. The optimal circumstances for the plant’s growth in the
greenhouse consist of 14 h of light, 10 h of darkness, a temperature of 25 ◦C during the
day and 20 ◦C at night, and a humidity level ranging from 70 to 80%. A total of 18 pots
were utilized, with each pot housing three plant seedlings as duplicates. The seedlings
were watered daily and provided with a solution of MS culture medium consisting of
4.37 g of MS media dissolved in 1000 mL of water (pH = 7.0) every three days for a total
of 7 days. The plants were subjected to a 7-day treatment with deionized water following
complete leaf growth. Mg (MgSO4) treatments were then administered. A total of six
concentration gradients, 0 mM (T1) as Mg deficiency, 1 mM and 2 mM (T2 and T3) as low
Mg, 3 mM as sufficiency (CK), and 6 mM and 9 mM (T4 and T5) as Mg excess, were applied
to the mulberry plants for 20 days. On the 20th day, leaves from all experimental groups
and control were collected. Leaf samples harvested from the control and treated plants
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were wrapped separately in plain plastic bags and temporarily preserved (one week) at a
temperature of −80 ◦C for subsequent studies, including transcriptome analysis [39].

2.2. Data Collection and Identification of XTH Gene Family Members in Morus alba

Genetic data in the form of genome sequences (fasta) and annotation files (gff) for
three plant species, Arabidopsis thaliana, Populus trichocarpa, and Zea mays, were obtained
from the official NCBI website (https://www.ncbi.nlm.nih.gov (accessed on 5 July 2023).
M. alba genome sequence annotation file (fasta) was downloaded from NCBI
(https://www.ncbi.nlm.nih.gov/datasets/genome/GCA_012066045.3/ (accessed on 7 July
2023)). However, the gff was obtained from Professor Weiguo Zhao of Jiangsu Uni-
versity of Science and Technology. To determine the XTH gene in the mulberry plant
genome, an HMMER search was executed utilizing a hidden Markov model (HMM) pro-
file comprising binding domains PF00722 and PF06955, sourced from the Pfam database
(http://Pfam.xfam.org/ (accessed on 12 July 2023)). Sequences with E values < 1 were
scrutinized, and any short open reading frames (less than 100 in length) were manually
sorted out. The filtered sequences with putative of both PF00722 and PF06955 domains or
either one of them were screened as primary candidates for M. alba XTH genes (MaXTH).

2.3. Gene Structure, Motif Analysis and Sequence Alignment

Each MaXTH gene structure was visualized in TBtools software v1.098769 [40] by
utilizing the genome sequence in conjunction with its corresponding annotation file. Em-
ploying the online MEME suite (available at https://meme-suite.org/meme/ (accessed
on 15 July 2023), the conserved motifs within MaXTHs were identified using specific pa-
rameters: a search for 10 motifs, with a minimum width of 6 and a maximum width of
55. The consensus motif sequence was conducted, and a web logo was generated through
the utilization of the MEME tool. Subsequently, the individual motifs were searched in
motif scan (https://myhits.sib.swiss/cgi-bin/motif_scan (accessed on 15 January 2024)
to identify the Glyco_hydro_16 and XET_C domains. Furthermore, the extracted motif
sequences of the MaXTH protein sequences exhibiting the Glyco_hydro_16 and XET_C
domains were aligned in Bioedit software (v7.2).

2.4. Physicochemical Properties of the MaXTH Gene Family

The ExPASy online platform (https://web.expasy.org/protparam/ (accessed on 15 July
2023) was used to obtain the molecular weight (Mw), isoelectric point (pI), and grand
average of hydropathy (GRAVY) data for individual XTH proteins. Additionally, the sub-
cellular localization of MaXTH proteins was predicted using the CELLO online resource
(http://cello.life.nctu.edu.tw/ (accessed on 25 July 2023) [41].

2.5. Phylogenetic Analysis

In the present investigation, two phylogenetic trees were constructed to categorize
the MaXTH gene family. The first tree encompassed only the MaXTH protein sequences
from M. alba, and the second tree included M. alba, P. trichocarpa, and A. thaliana XTH
genes. The evolutionary relationships of the XTH genes in the different groups were
assessed following the alignment of XTH protein sequences in MEGA 7 software using
Clustal W [42]. A phylogenetic tree, based on the maximum likelihood method, with
1000 bootstrap replications was generated employing the MEGA 7.0 software (v7.0.26). All
the phylogeny trees were performed following the same specifications indicated above.

2.6. Analysis of Cis-Regulatory Elements of MaXTH Genes and GO Analysis

The promoter regions located 2000 base pairs prior to the initiation codon (ATG) of
MaXTH genes were extracted from the genome of M. alba. Utilizing the PlantCARE online
tool (https://bioinformatics.psb.ugent.be/webtools/plantcare/html/ (accessed on 12 July
2023) [43], the inherent regulatory elements in these promoter regions were predicted.
Subsequently, the outcomes of this predictive analysis were rendered visible through the
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TBtool software. Gene Ontology (GO) analysis was performed using the web tool Shiny
GO (http://bioinformatics.sdstate.edu/go74/ (accessed on 2 August 2023).

2.7. Chromosomal Localization, Circos, and Synteny Analyses

The length of each chromosome and the chromosomal position of all XTH genes
were obtained from the annotated dataset of the M. alba genome. The positional mapping
of genes on the chromosomes was visualized through the utilization of TBtools software
v1.098769 [40]. Based on the alignment and further examination of the phylogenetic relation-
ship of the MaXTH genes, paralogous genes were discovered [20], and the interconnections
of the paralogous genes according to their locations on the chromosomes were exhibited
on the circos map constructed in the Tbtools (v2.026). The Multiple Collinearity Scan
toolkit (MCScanX), integrated into the TBtool (v2.026), was applied for the identification of
syntenic blocks and specific gene pairs, adhering to its default configurations [44]. Addi-
tionally, the Multiple Synteny Plotter program within the TBtool (v2.026) was employed to
visually represent the synteny associations among orthologous XTH genes across M. alba,
A. thaliana, Zea mays, and Populus trichocarp [45].

2.8. Gene Expression Analysis and qRT-PCR Gene Validation

By using the RNA-seq data obtained from our transcriptome analysis after Mg appli-
cation (https://ncbi.nlm.nih.gov; accession number: PRJNA951543), this study examined
the expression of the XTH genes in M. alba treated with different levels of Mg after 20 days
(about 3 weeks) and compared it to the expression of the gene in optimum Mg supply
(the control) according to our previous study [5]. To validate the XTH genes identified
through high-throughput sequencing, six differentially expressed genes (DEGs) were cho-
sen for real-time quantitative polymerase chain reaction (qRT-PCR) validation, following
the established protocol detailed in a prior study [46]. Mulberry leaf samples used for
the RNA-seq analysis were also used for total RNA and cDNA synthesis for qRT-PCR
validation. Furthermore, the 2−∆∆Ct method [47] was applied to estimate the fold changes
in gene expression. The primer sequences and gene names for qRT-PCR validation are
enlisted in Supplementary File S1.

3. Results
3.1. Identification and Physiological Features XTH Genes in M. alba

In our previous investigation, RNA-Seq transcriptome analysis of M. alba leaf tissues
was conducted to ascertain candidate genes possibly influenced by high magnesium (Mg)
levels or magnesium nutrient starvation. A comprehensive examination of the transcrip-
tome data resulted in the identification of 12 XTH genes. Among them, the candidate
MaXTH-1 with the gene ID LOC21405692 had a higher expression level and, therefore,
was selected and used as a query gene for the search against the Morus genome using
BLASTP and HMMER search. Twenty-four putative XTH proteins were obtained after
the search and confirmed in the M. alba genome using their transcript ID. After which,
the short and redundant sequences underwent manual scrutiny. Subsequently, the iden-
tification of conserved domains was carried out utilizing the Pfam and CDD databases.
Finally, the 22 XTH proteins obtained were named MaXTH-1 to MaXTH-22 (Table 1 and
Supplementary File S2). Coding sequences (CDS) of the 22 MaXTH proteins ranged from
645 bp (LOC21407360; MaXTH-21) to 1509 bp (LOC21403517; MaXTH-18), with an average
length of 915 bp. The amino acid sequence length of the MaXTH proteins spanned from
214–502, where MaXTH-18 was the longest sequence (501 aa), and MaXTH-21 (214 aa) had
the shortest sequence. The molecular weights of MaXTH proteins varied between 24.071
kDa (MaXTH-21) and 56.843 kDa (MaXTH-18), averaging 34.40 kDa. The GRAVYs for
all MaXTH genes were negative, ranging from −1003 to −0.099 (Supplementary File S2),
suggesting that MaXTHs are likely hydrophilic. The predicted putative localization of the
M. alba XTH was prevalent in the extracellular region, while a small number were located in
the plasma membrane, mitochondrion, cytoplasmic, vacuole, and nuclear region (Table 1).

http://bioinformatics.sdstate.edu/go74/
https://ncbi.nlm.nih.gov
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Table 1. Physiological characteristics of XTH gene family in Morus alba.

Gene ID Gene Name Chromosome CDS (bp) Protein
Length (aa) Exons pI

Protein
Molecular

Weight (kDa)
Sublocalization

LOC21405692 MaXTH-1 1 855 284 3 8.15 32.220 Extracellular
LOC21405693 MaXTH-2 1 870 289 3 6.31 32.211 Extracellular
LOC21405698 MaXTH-3 1 894 297 3 5.95 33.323 Extracellular
LOC21405697 MaXTH-4 1 861 286 3 4.96 32.655 Extracellular
LOC21405696 MaXTH-5 1 867 288 3 6.21 32.501 Extracellular
LOC21404263 MaXTH-6 10 870 289 3 8.94 32.771 Extracellular
LOC21405699 MaXTH-7 1 918 305 3 6.6 35.306 Extracellular
LOC21387185 MaXTH-8 9 867 288 4 8.96 32.893 Extracellular
LOC21404262 MaXTH-9 10 813 231 4 5.28 25.884 Extracellular
LOC21404346 MaXTH-10 13 894 297 5 8.87 34.529 Extracellular
LOC21391157 MaXTH-11 9 873 290 4 6.24 33.270 Extracellular
LOC21387254 MaXTH-12 7 885 294 4 8.56 34.306 Extracellular
LOC21401284 MaXTH-13 10 885 291 4 5.71 33.172 Extracellular
LOC21396095 MaXTH-14 4 912 303 4 4.72 35.292 Extracellular
LOC21390452 MaXTH-15 7 873 290 4 5.09 33.165 Extracellular

LOC21405370 MaXTH-16 3 849 282 4 9.34 32.603 Extracellular,
Mitochondrial

LOC21410403 MaXTH-17 14 945 314 4 7.67 35.265 Extracellular,
Vacuole

LOC21403517 MaXTH-18 6 1509 502 4 9.74 56.843 Plasma
membrane

LOC21402237 MaXTH-19 14 1023 340 4 6.27 38.748 Extracellular
LOC21391267 MaXTH-20 12 1083 360 4 8.73 41.304 Extracellular

LOC21407360 MaXTH-21 9 645 214 1 5.52 24.071 Cytoplasmic,
Extracellular

LOC21390860 MaXTH-22 7 945 314 3 5.68 35.599 Cytoplasmic,
Nuclear

3.2. Gene Structure, Conserved Domain, and Motif Analysis

The structural diversity of the 22 MaXTH genes was investigated by determining their
exon and intron structures through the alignment of their genomic and CDS sequences
using the TBtool software. In addition, a phylogenetic tree was constructed using the
complete MaXTH protein sequences, depicted with the distribution of introns and exons
(Figure 1). The resulting phylogenetic analysis revealed the categorization of MaXTH
genes into five distinct groups: I, II, III, IV, and V, constituting 7, 3, 8, 3, and 1 MaXTH
genes, respectively (Figure 1A). In general, genes that are grouped together share similar
structures. For instance, all members of group 1 (MaXTH-1, MaXTH-2, MaXTH-3, MaXTH-4,
MaXTH-5, MaXTH-6, and MaXTH-9) contained three exons in their coding region, and
two introns (Figure 1B). Members of group II also possessed four exons and three introns,
except for MaXTH-7, which had three exons. MaXTH group III members constituted four
exons, excluding MaXTH-21 and MaXTH-22. Moreover, MaXTH-21 contained no intron.
Interestingly, MaXTH-15 had no 5′ or 3′ UTRs.

The Pfam and CDD databases were employed to investigate the conserved domains
of the 22 MaXTH genes. From the results obtained, only four genes, MaXTH-9, MaXTH-18,
MaXTH-21, and MaXTH-22, contained a single conserved domain (Glyco_hydro_16). In
contrast, the remaining 16 MaXTH genes exhibited the presence of both Glyco_hydro_16
and XET_C conserved domains, as illustrated in Figure 2. MaXTH proteins were fur-
ther characterized by predicting their potentially conserved motifs employing the MEME
online software. The differences between the MaXTH genes were analyzed through mul-
tiple sequence alignment. The findings revealed that 21 members of MaXTH proteins
exhibited a typical highly conserved Glyco_hydro_16 domain (Figure 3A). This domain
comprised 50 amino acid letters, as illustrated by the sequence logo (QGKGNREQRFYL-
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WFDPTADFHTYSILWNPQHIVFYVDGVPIRVFKNLESK). Though all the 22 XTH proteins
identified in this study contained the Glyco_hydro conserved domain by searching the
Pfam database, MaXTH 22 lacked the conserved motif sequences. In addition, 19 MaXTHs
were identified to consist of the XEC_T domain represented by 31 amino residues (QELD-
SAQERRLKWVQKNYMIYBYCTDTKRFP).
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3.3. Evolutionary Relationship of the MaXTH Proteins

To comprehend the evolution and classification of MaXTH proteins, a phylogenetic
tree based on the maximum likelihood method was constructed using the 22 MaXTH
protein sequences with other XTH sequences from Arabidopsis thaliana (16) and Populus
trichocarpa (15). From the results obtained, MaXTH proteins formed 5 different groups
with XTH proteins from A. thaliana and P. trichocarpa (Figure 4). Groups I, II, III, IV, and V
contained 7, 3, 9, 2, and 1 member, respectively. Generally, the phylogenetic analysis depicts
that MaXTH genes clustered with XTH orthologs from P. trichocarpa and A. thaliana. Among
the five groups, group 1 was the largest, which comprised 11 members each from A. thaliana
and P. trichocarpa. Group III was the second largest but mainly consisted of MaXTH genes
and only one XTH ortholog from P. trichocarpa. In addition, Group V contained only
MaXTH 14 and did not cluster with any of the XTHs from A. thaliana and P. trichocarpa. The
non-correlation of the Group 5 member and the limited association between MaXTH genes
and P. trichocarpa XTH proteins within Group III suggests that the MaXTH proteins present
in the branch might be less evolutionarily conserved or more primitive.

3.4. Cis-Acting Regulatory Elements of XTH Genes from Morus alba

To comprehend the transcriptional regulation of MaXTH genes, the 2000 bp promoter
sequence of all the MaXTH genes was retrieved from the M. alba genome and analyzed
using the PlantCare online database. The data obtained infer that MaXTH promoters
possessed several cis-regulatory elements involved in processes such as stress response,
hormone regulation, and cell development (Figure 5). Defense and stress-responsive cis-
elements were identified for 10 MaXTH genes, including MaXTH-3, MaXTH-5, MaXTH-6,
MaXTH-7, MaXTH-12, MaXTH-13, MaXTH-14, MaXTH-15, MaXTH-16 and MaXTH-21. In
terms of hormone-responsive elements, 11, 14, 10, and 13 MaXTH genes contained salicylic
acid-responsive elements, auxin-responsive elements, Methyl jasmonate (MeJa)-responsive
regulatory elements, and gibberellin-responsive elements.

Drought-inducible response elements were detected in 13 MaXTH genes. The pro-
moter sequences of two MaXTH genes constituting MaXTH-8 and MaXTH-18 exhibited
cis-regulatory elements associated with wound responsiveness. The promoter sequences of
two MaXTH genes constituting MaXTH-8 and MaXTH-18 exhibited cis-regulatory elements
associated with wound responsiveness. Anaerobic induction-responsive elements were
abundantly detected across all 22 MaXTH genes. Other MaXTH genes, including MaXTH-5,
MaXTH-9, and MaXTH-12, were identified to contain cell cycle response elements that are
associated with cell development. These results inferred that MaXTH genes participate
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in diverse biological processes and exhibit responsiveness to different biotic and abiotic
stress factors.
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Gene ontology (GO) analysis was conducted to elucidate the roles of MaXTH genes.
The proteins encoded by MaXTH gene members exhibited both xyloglucan xyloglucosyl
transferase and hydrolase activities (Figure 6A and Supplementary File S3). In addition,
MaXTH genes were observed to play crucial roles in various biological activities, including
the organization of the cell wall, the biogenesis of the cell wall, and processes related to
xyloglucan metabolism.

Further, GO analysis revealed that certain members of MaXTH genes were localized
in the apoplast and cell wall regions. This observed localization aligns with the predictions
made through subcellular localization analysis (Table 1). Notably, MaXTH genes are
implicated in cellular glucan metabolic processes and carbohydrate metabolic processes.
Additionally, the hierarchical clustering of the functional enrichment pathways depicted in
Figure 6B reveals that MaXTH genes collaborate to perform various functions.
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3.5. Chromosomal Localization, Circos, and Synteny Analyses

The chromosomal positions of XTH genes in M. alba were located through genome
annotation in the TB tools. As depicted in Figure 7, the 22 MaXTH genes were unevenly
distributed among the chromosomes across the genome of M. alba (Figure 7). The most
significant MaXTH genes were positioned on chromosome one with six members. Three
MaXTH genes were allotted on chromosomes 7, 9, and 10, and two on chromosome 14.
Chromosomes 3, 4, 6, 12, and 13 contained one MaXTH each. Interestingly, no MaXTH
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genes were found in chromosomes 2, 5, 8, and 11 (Figure 7A). Based on the phylogenetic
relationships of the MaXTH protein sequences (Figure 1A), a total of five MaXTH gene
pairs were identified, as shown in the circos map (Figure 7B). It was discovered that three
(MaXTH-10 and MaXTH-11, MaXTH-16 and MaXTH-18, MaXTH-19, and MaXTH-20) and
two pairs (MaXTH-9 and MaXTH-6, MaXTH-2 and MaXTH-5) of the MaXTHs gene pairs
belonged to inter-chromosomal and intra chromosomal segments (Figure 7B). Furthermore,
the gene pairs were associated with the same phylogenetic group. MaXTH-16 and MaXTH-
18, MaXTH-19 and MaXTH-20 belonged to group III, MaXTH-10 and MaXTH-11 were
in group IV (Figure 1), whereas MaXTH-9 and MaXTH-6, MaXTH-2 and MaXTH-5 were
affiliated to group I.
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To delve deeper into the evolutionary correlations and genetic linkage occurrences
within the XTH gene family, a systemic map of XTH genes across M. alba and three addi-
tional species, encompassing one monocotyledonous (Zea mays) and two dicotyledonous
(Populus trichocarpa and Arabidopsis thaliana) plants were constructed using TBtools software
(Figure 8).

According to the results of the collinearity analysis, 12 covariate pairs were generally
discovered. Among them, 7 pairs were identified in Populus trichocarpa (represented in blue
lines), 4 pairs in A. thaliana (represented in green lines), and only one pair was observed
in Zea mays (represented in red lines). Furthermore, MaXTH-14 displayed a significant
degree of collinearity with three comparable species (two in P. trichocarpa and one each
in A. thaliana and Zea mays), inferring that MaXTH genes displayed greater evolutionary
differences in P. trichocarpa in contrast to A. thaliana, and Zea mays.

3.6. Expression Profiling of MaXTH Genes under Different Magnesium Treatments and
qRT-PCR Validation

Several studies have reported that the XTH gene family plays an important role in plant
response to abiotic stresses [17,18,20]. To validate these accessions, the expression patterns
of M. alba XTH genes responding to different treatments of magnesium concentrations were
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investigated by RNA-seq. RNA from M. alba leaf tissues was sampled on day 20. The XTH
genes with expression changes according to the significant differential expression standard
(|log2 (Fold change)| ≥ 1 and false discovery rate (FDR) < 0.05) were analyzed. The
results from our investigation exhibited different expression levels of XTH genes at various
concentrations (Figure 9A–E). At the least concentration of 0 mM (T1), 10 MaXTHs were
identified, among which six were significantly downregulated. Four XTHs genes, including
LOC21410403, LOC21405693, and LOC21401284, showed higher expression concentrations
(Figure 9A).
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In the 1 mM (T2), we detected 14 MaXTHs, of which LOC21462237 was upregulated
and had the highest expression level (Figure 9B). In contrast, the remaining 3 XTH genes
showed downregulated expressions (LOC21390860, LOC21404346, and LOC21405696).
M. alba treatment with 2 mM (T3) revealed 10 MaXTHs (Figure 9C). For 6 mM treat-
ments (T4), it was observed that 3 XTHs (LOC21404346, LOC21404262 and LOC21407360)
were low in expression (Figure 9D). In contrast, four XTHs (LOC21410403, LOC21405693,
LOC210401284 and LOC21405696) were upregulated (Figure 9D). At the excess Mg of
9 mM (T5), all 10 MaXTH genes identified were significantly upregulated (Figure 9E), with
LOC21387254 and LOC21404346 being down-regulated.

Furthermore, six MaXTH genes, including MaXTH-17 (LOC21410403), MaXTH-13
(LOC21401284), MaXTH-21 (LOC21407360), MaXTH-1 (LOC21405692), MaXTH-6
(LOC21404263) and MaXTH-10 (LOC21404346) in response to Mg stresses, were selected to
verify their relative expression level in mulberry leaves through qRT-PCR analysis. The
results reveal that the selected genes could be expressed in the mulberry leaves, prov-
ing the reliability of the XTH genes identified by the transcriptome data (Figure 10A–E).
LOC21410403 (MaXTH-17) exhibited a low expression level at 3 mM (CK; optimum concen-
tration for M. alba growth); however, it was highly expressed at an elevated concentration
of 6 mM (Figure 10A). For LOC21401284 (MaXTH 13), the highest expression level was
observed at Mg deficiency (0 mM) (Figure 10B). LOC21407360 (MaXTH-21) was moderately
expressed at 0 mM but was highly expressed at 3 and 9 mM (Figure 10C). The expres-
sion of LOC21404263 (MaXTH-6) was highly expressed in 0. 3 and 9 mM Mg treatments
(Figure 10D). For the LOC21405692 (MaXTH-10), the highest expression level was observed
at 3 mM, and the expression level was reduced at 6 mM concentration (Figure 10E). Fi-
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nally, the expression of LOC21404346 (MaXTH-1) was higher in 0 and 2 mM concentrations
(Figure 10E). Altogether, our findings confirm that the XTH genes family is highly present in
the M. alba genome and expressed in M. alba leaf tissues in response to Mg imbalances. This
outcome strongly suggests that the XTH gene family is important in M. alba development
and nutritional regulation.

Plants 2024, 13, x FOR PEER REVIEW 13 of 20 
 

 

According to the results of the collinearity analysis, 12 covariate pairs were generally 
discovered. Among them, 7 pairs were identified in Populus trichocarpa (represented in 
blue lines), 4 pairs in A. thaliana (represented in green lines), and only one pair was ob-
served in Zea mays (represented in red lines). Furthermore, MaXTH-14 displayed a signif-
icant degree of collinearity with three comparable species (two in P. trichocarpa and one 
each in A. thaliana and Zea mays), inferring that MaXTH genes displayed greater evolu-
tionary differences in P. trichocarpa in contrast to A. thaliana, and Zea mays. 

3.6. Expression Profiling of MaXTH Genes under Different Magnesium Treatments and  
qRT-PCR Validation 

Several studies have reported that the XTH gene family plays an important role in 
plant response to abiotic stresses [17,18,20]. To validate these accessions, the expression 
pa erns of M. alba XTH genes responding to different treatments of magnesium concen-
trations were investigated by RNA-seq. RNA from M. alba leaf tissues was sampled on 
day 20. The XTH genes with expression changes according to the significant differential 
expression standard (|log2 (Fold change)| ≥ 1 and false discovery rate (FDR) < 0.05) were 
analyzed. The results from our investigation exhibited different expression levels of XTH 
genes at various concentrations (Figure 9A–E). At the least concentration of 0 mM (T1), 10 
MaXTHs were identified, among which six were significantly downregulated. Four XTHs 
genes, including LOC21410403, LOC21405693, and LOC21401284, showed higher expres-
sion concentrations (Figure 9A). 

 
Figure 9. Heatmap of the relative gene expression pa ern of the XTH gene family based on gene 
relative expression in Morus alba under different magnesium treatments. (A) T1; 0 mM, (B) T2; 1 
mM, (C) T3; 2 mM, (D) T4; 6 mM and (E) T5; 9 mM. CK represents the optimum concentration of 
magnesium for M. alba growth (3 mM). From red to green, show the concentration level of the gene 
expression. 

In the 1 mM (T2), we detected 14 MaXTHs, of which LOC21462237 was upregulated 
and had the highest expression level (Figure 9B). In contrast, the remaining 3 XTH genes 
showed downregulated expressions (LOC21390860, LOC21404346, and LOC21405696). 
M. alba treatment with 2 mM (T3) revealed 10 MaXTHs (Figure 9C). For 6 mM treatments 
(T4), it was observed that 3 XTHs (LOC21404346, LOC21404262 and LOC21407360) were 
low in expression (Figure 9D). In contrast, four XTHs (LOC21410403, LOC21405693, 

Figure 9. Heatmap of the relative gene expression pattern of the XTH gene family based on gene
relative expression in Morus alba under different magnesium treatments. (A) T1; 0 mM, (B) T2;
1 mM, (C) T3; 2 mM, (D) T4; 6 mM and (E) T5; 9 mM. CK represents the optimum concentration
of magnesium for M. alba growth (3 mM). From red to green, show the concentration level of the
gene expression.
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Figure 10. The verification of relative expression levels of six MaXTH genes by RT-qPCR under
different magnesium treatments. (A) LOC21410403 gene, (B) LOC21401284 gene, (C) LOC21407360
gene, (D) LOC21404263 gene, (E) LOC21405692 gene, and (F) LOC21404346 gene. Bars are means of
three replicates.
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4. Discussion

Mulberry (M. alba) is a plant of considerable economic importance, yet its growth
and development are influenced by various abiotic factors such as Mg deficits [5]. Mg
serves diverse functions in biological systems [48]. Consequently, gaining insights into
how plants respond to both Mg deficiency and excess at the genomic level is essential
for effective plant nutrient management. Past research indicates that plants have evolved
sophisticated regulatory mechanisms, engaging specific gene families like xyloglucan
endotransglucosylase/hydrolases (XTHs) [10] to facilitate their adaptation to Mg stress.

XTHs represent a category of plant enzymes responsible for regulating xyloglucan
crosslinking within cell walls, playing a pivotal role in the control of plant growth and
development [49,50]. The role of XTH genes is not only limited to cell wall elongation
but also plays a part in plant responses to various environmental stresses. The XTH gene
family has been identified across diverse plant species, such as A. thaliana [51], wheat [52],
grapevine [53], rice [21], peanut [17], barley [54], sweet potato [20] and poplar [55]. Within
the scope of this investigation, we present the discovery and characterization of the XTH
gene family within the M. alba genome. This includes exploring their phylogenetic re-
lationships, conserved motifs, gene structures, cis-acting regulatory elements, and gene
expression patterns in response to Mg starvation, low or high concentrations.

Based on the M. alba genome, 22 XTH genes were identified based on our strictest
identification workflow and labeled as MaXTH-1 to MaXTH-22. The number of identified
XTH genes was notably less compared to various other species, including tobacco (56),
wheat (71), Solanum lycopersicum (37), and Glycine max (61) [11,18,22,52]. It is widely
acknowledged that the functional attributes of genes are intricately linked to their structural
and physicochemical characteristics [20,56]. In this study, the 22 MaXTH protein members
displayed significant disparities with respect to protein sequence length, molecular weight,
isoelectric point (pI), and intron and exon distributions (Table 1). This variation implicates
a high diversity among XTH family members in M. alba. Additionally, most MaXTH
genes were predicted to be in the extracellular space, while a few were in the plasma
membrane, vacuole, mitochondrion, and nuclear region. This is contrary to previous
reports for other XTH protein members in other plant species, where the majority of the
XTH proteins were in the plasma membrane rather than the extracellular space and other
locations [22,53,55]. Further, phylogenetic analysis indicated that MaXTH protein families
were clustered into five groups (Figure 1), similar to those observed for XTH proteins
from sweet cherry [26]. Interestingly, the MaXTH proteins belonging to the same group
demonstrated similar gene structures (Figure 1) and conserved sequence expression, which
is consistent with previously documented literature [11,20], suggesting that XTH members
within the same group may exhibit analogous functionalities. Moreover, most of the
MaXTH genes demonstrate the presence of two main conserved domains (Glyco_hydro_16
and XET_C domain) (Figure 2). Nevertheless, MaXTH-9, MaXTH-18, MaXTH-21, and
MaXTH-22 lacked the XET_C domain. This absence suggests a potential evolutionary
divergence, indicating a loss of the XET_C domain during the evolutionary trajectory of
XTH proteins in M. alba.

Phylogenetic distribution of XTH proteins from M. alba, A. thaliana, and P. trichocarpa
revealed that MaXTH genes could be categorized into five groups (group I–V) (Figure 4).
Earlier studies have documented the categorization of XTH gene families into distinct
groups in various plant species. In tobacco, for instance, eight family groups were identi-
fied [22], while three groups were observed in peanut [17], barley [54], and sweet potato [20].
Poplar, on the other hand, exhibited four distinct groups [55]. The MaXTH genes were
observed to cluster better with XTH proteins from P. trichocarpa than A. thaliana, implying a
closer evolutionary relationship between XTH proteins in M. alba and those of P. trichocarpa
rather than A. thaliana. According to chromosomal localization analysis, it was observed
that MaXTHs were heterogeneously distributed on 10 out of the 14 chromosomes of M. alba
(Figure 7). Further investigation revealed five gene pairs among the XTH gene families in
the M. alba genome. Previous research has indicated that a set of gene functions exhibit
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high conservation across various plant species [57,58]. Consequently, it is imperative to
identify true orthologs in different plant species through the application of synteny analysis.
The results obtained from the synteny analysis depicted a significant degree of synteny
between the M. alba genome and those of P. trichocarpa and A. thaliana, exhibiting 7 and
4 synthetic blocks of MaXTH between P. trichocarpa and A. thaliana, respectively. In contrast,
one synthetic block was identified between Zea mays (Figure 8).

Cis-regulatory elements are essential for regulating gene expression. The compre-
hension of cis-regulatory elements within the promoter region of genes has the potential
to clarify the roles and regulatory mechanisms of specific genes that engage in collabora-
tive interactions with other genes [59,60]. Investigating the cis-regulatory elements of the
22 MaXTH exhibited a number of core promoters involved in hormone responsiveness (Ab-
scisic acid, Salicylic acid, MeJA, Gibberellin), stress responsiveness (stress defense, drought,
anoxic, and anaerobic inducibility), growth and development elements (Figure 5). MaXTH
promoters contain a variety of elements that respond to environmental and plant hormone
stimuli, which might indicate various regulatory or functional mechanisms in response to
biotic and abiotic stress factors [20,61]. Besides, there were significant variations in terms of
type and quantity, and certain elements related to metabolism and gene expression were
unique to specific MaXTH genes. The structural variations of MaXTH proteins could result
in modifying protein functions. Several studies have demonstrated that plant XTH proteins
have essential roles in plant growth, development, and stress resistance. The presence of
numerous cis-elements identified in the promoter region of the M. alba XTH genes suggests
that the XTH genes within M. alba possess the capability to adapt to diverse modifications
in the plant, particularly responsiveness to several hormones and numerous stress response
elements (anaerobic and anoxic specific inducibility).

Analyzing gene expression profiles can advance our understanding of XTHs functions
in M. alba growth and development. Analysis of transcriptome data at day 20 after the
various magnesium treatments indicated that several XTHs were expressed in response to
the treatments (Figure 9A–E). XTH genes, including MaXTH-17 (LOC21410403), MaXTH-13
(LOC21401284), MaXTH-21 (LOC21407360), MaXTH-6 (LOC21404263), and MaXTH-10
(LOC21404346) highly expressed at 0, 1, 2, 6, and 9 mM of Mg concentration, respectively
(Figure 10A–F) compared to control (3 mM, optimum Mg for M. alba growth). Mean-
while, MaXTH-6 (LOC21404263) was downregulated at 2 and 6 mM, while MaXTH-1
(LOC21405692) exhibited low expression at 6 mM. Prior findings indicate that abiotic
stressors can induce transcript-level changes in XTH genes. For example, in response to
cadmium (Cd) stress, the expression of BnXTH1, BnXTH3, BnXTH6, and BnXTH15 was
observed to be upregulated in Boehmeria nivea. Conversely, BnXTH18, BnXTH16, BnXTH17,
and BnXTH5 exhibited notable downregulation under the same Cd stress conditions [62].

Similar contrasting expression patterns of the XTH gene family were identified in
Camellia sinensis under fluorine stress where CsXTH7, CsXTH1, CsXTH6, and CsXTH1 were
upregulated, while that of CsXTH3 was down-regulated [63]. Additionally, the expression
of PeXTH experienced a notable upregulation in the roots and leaves of P. euphratica when
exposed to Cd stress [37]. Likewise, under Al stress, AtXTH15 and AtXTH14 demonstrated
a significant decrease, leading to a reduction in xyloglucan endo transferase (XET) activity
and consequently enhancing the aluminum tolerance of A. thaliana [64]. In this study, we
observed different expression patterns of MaXTH genes. Changes in the expression of
MaXTH genes can affect cell wall flexibility and strength, which are important factors in
stress adaptation. The increased expression of certain MaXTH genes might contribute to
cell wall remodeling, allowing for better flexibility and adaptation to magnesium stress.
Conversely, decreased expression could be associated with a more rigid cell wall structure.
These findings indicate the capacity of MaXTH genes to provide a defense to the M. alba
plant during magnesium starvation, undersupply, and excess application. Future works in
M. alba should investigate the functional genomic validation of these identified XTH genes
and how they regulate Mg nutrition.
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Taken together, the results of this research offer novel insights into the expression of
MaXTH genes under different Mg concentrations. It could be inferred that the MaXTHs
might exhibit heightened functionalities related to the cell wall in stressful conditions
through interaction with xyloglucan. However, additional molecular and genetic research
is required to confirm their roles.

5. Conclusions

In this current investigation, an extensive examination of the M. alba XTH gene family
was conducted. The results from the investigation successfully identified and further
characterized a total of 22 MaXTH genes. These genes were subsequently categorized into
five groups (I to V) based on their phylogenetic relationships. Gene structure and motif
composition were observed to be consistent within each group. A thorough analysis of gene
synteny uncovered evidence of evolutionary relationships among XTH genes in M. alba
and three other species, A. thaliana, P. trichocarpa, and Zea mays. Gene ontology analysis
revealed that MaXTHs are responsible for encoding proteins demonstrating both xyloglucan
xyloglucosyl transferase and hydrolase activities. Moreover, MaXTHs actively contribute
to the processes of cell wall biogenesis, as well as the metabolic pathways associated
with xyloglucan and carbohydrates. Furthermore, specific Cis-acting regulatory elements
detected in the promoter region of MaXTH genes suggest their potential involvement in
various biological processes such as development, phytohormone responses, and stress
adaptation. Moreover, investigating the expression profiles of MaXTH genes within leaf
tissues exposed to different magnesium concentrations revealed diverse patterns of gene
expression. Collectively, the findings from this research provide valuable insights into the
functions of XTH genes within M. alba and present a better understanding of how mulberry
plants respond to various magnesium treatments.
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