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Abstract: The classification system for the genus Aconitum is highly complex. It is also the subject of
ongoing debate. Aconitum pendulum Busch and Aconitum flavum Hand.-Mazz. are perennial herbs
of the genus Aconitum. Dried roots of these two plants are used in traditional Chinese medicine. In
this study, morphological observations and ISSR molecular markers were employed to discriminate
between A. flavum and A. pendulum, with the objective of gaining insights into the interspecies classifi-
cation of Aconitum. The pubescence on the inflorescence of A. flavum was found to be appressed, while
that on the inflorescence of A. pendulum was spread. UPGMA (unweighted pair-group method with
arithmetic average) cluster analysis, PCoA (principal coordinates analysis), and Bayesian structural
analysis divided the 199 individuals (99 individuals from DWM population and 100 individuals
from QHL population) into two main branches, which is consistent with the observations of the
morphology of pubescence on the inflorescence. These analyses indicated that A. flavum and A. pen-
dulum are distinct species. No diagnostic bands were found between the two species. Two primer
combinations (UBC808 and UBC853) were ultimately selected for species identification of A. flavum
and A. pendulum. This study revealed high levels of genetic diversity in both A. flavum (He = 0.254,
I = 0.395, PPB = 95.85%) and A. pendulum (He = 0.291, I = 0.445, PPB = 94.58%). We may say, therefore,
that ISSR molecular markers are useful for distinguishing A. flavum and A. pendulum, and they are
also suitable for revealing genetic diversity and population structure.

Keywords: Aconitum pendulum; Aconitum flavum; pubescence on the inflorescence; inter-simple
sequence repeat (ISSR); cluster analysis; species identification

1. Introduction

The genus Aconitum, which belongs to the Ranunculaceae family, occurs in temperate
regions of the Northern Hemisphere. This genus encompasses about 400 species, including
211 species that are distributed in China, of which 166 are endemic [1]. Despite the fact
that most Aconitum species are poisonous, many species have been utilized for medicinal
purposes [2,3]. Aconitum pendulum Busch and Aconitum flavum Hand.-Mazz. are perennial
herbaceous plants of the genus Aconitum. They are mainly distributed in Qinghai, Gansu,
Nei Mongol, southern Ningxia, northwestern Sichuan, and northern Tibet. They grow
on grassy slopes and in forest margins at altitudes of 2000–3700 m [1]. A. flavum and
A. pendulum are the dominant toxic weeds in the alpine meadows of the Qinghai–Tibet
Plateau [4]. They are known to exhibit allelopathic effects. Secretions from their roots,
stems, and leaves inhibit the growth of other plants and thus pose a certain level of threat
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to grassland ecology and to the development of animal husbandry [5]. Additionally,
the dried roots of these two plants are used to make one of the most famous Tibetan
medicines, namely, Tiebangchui (TBC). To date, a total of 84 alkaloids have been obtained
from TBC [6]. Diterpenoid alkaloids, such as aconitine and 3-acetylaconitine, are the
characteristic compounds in most of the Aconitum species [7]. These phytochemicals have
been shown to exhibit a wide range of pharmacological properties, such as dispelling cold,
alleviating pain, and inhibiting bacteria, as well as treating injuries, rheumatic lumbar pain,
and chilblains [8,9].

More than 20 Aconitum species are used as sources of TBC because of their morpholog-
ical similarities and species diversity [6]. To avoid species confusion, only A. flavum and
A. pendulum have been approved by the Chinese Pharmacopoeia Commission; these are
now listed in the Pharmacopoeia Standards of Ministry of Health of the People’s Republic
of China: Tibetan medicine and Qiang and Hui medicines [10,11]. At present, the artificial
domestication of Aconitum species is still in its early stages, and commercial demand for
A. flavum and A. pendulum is being met mainly by wild resources. With the development
and production of new drugs, demand for these species is increasing year by year, and
wild resources are declining dramatically due to excessive collection [12]. In addition,
because of the need to ensure stability in clinical efficacy, the adulteration of A. flavum
and A. pendulum is also a matter of increasing importance today. The hairs on the pedicels
are often considered to be among the most important taxonomic characteristics within
the Aconitum genus. In the classification of Aconitum species, much attention has been
paid to the different types of hairs on the pedicels [13]. These hairs have been considered
important evidence by researchers speculating on the origin of hybrids [14]. A. flavum and
A. pendulum are closely related in terms of their morphologies [15], and species delimitation
is difficult to achieve using the naked eye. Traditionally, morphological characteristics have
been utilized for species classification within the Aconitum genus. However, more accurate
identifications and phylogenetic analyses of closely related species can be obtained using
molecular methods [16].

Studies on A. flavum and A. pendulum have mainly focused on their chemical composi-
tion, pharmacological properties, and toxic effects [12,17]. Consequently, little is known
regarding their species differentiation and genetic diversity. Inter-simple sequence repeat
(ISSR) has been widely used for genetic diversity and plant breeding in various plant
species [18–21], including Mentha L. [22], Hypericum L. [23], Ammopiptanthus nanus [24],
and Habenaria dentata [25]. ISSR utilizes primers with designs based on the repeating
motif (microsatellite) of the eukaryotic genome, without prior knowledge of the DNA
sequence [26,27]. Because of the higher annealing temperatures and longer sequences of
ISSR primers, they exhibit good stability and high polymorphism. ISSR might also be used
to address taxonomic and systematic issues [22,28]. Cheng et al. [29] demonstrated that
ISSR was more effective in identifying Alcea species. ISSR was also used by Akhta et al. [30]
to identify different species of the genus Jasminum from Pakistan. In addition, ISSR has been
employed to investigate genetic diversity in Aconitum species such as A. kongboense L. [31],
A. leucostomum Worosch [32], and A. carmichaeli [33]. Although the two Aconitum species
have medicinal and commercial value, they are often used without species identification.
The ability to distinguish the two species could result in improved medicinal potential,
quality control, and stability in commercial products containing material from these plants.
However, to the best of our knowledge, there have been no published reports on the genetic
diversity in A. flavum and A. pendulum.

Due to the apparently similar morphologies and the overlapping geographical dis-
tributions of A. flavum and A. pendulum, the boundary between the two species is unclear.
Increasingly, researchers are asking whether the two species might be the same. Based on
the ITS sequence, Luo et al. [34] showed that A. flavum and A. pendulum were not sister
groups. In contrast, A. flavum and A. pendulum were identified as sister groups from 25 mor-
phological characters by the authors of Cui et al. [35]. After conducting chloroplast genome
and whole-genome SNP analyses, Li [36] proposed that A. flavum and A. pendulum should
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be merged into one species. Additionally, Ren [37] recommended that A. hezuoense and
A. lianhuashanicum should be treated as synonyms for A. flavum. In light of the previous
research, we sought to prove whether or not A. flavum and A. pendulum are the same species
by means of morphological observation and molecular analysis.

The main objectives of this study were as follows: (1) to identify A. flavum and A.
pendulum by observing morphologies of pubescence on inflorescence characters and ISSR
markers, and (2) to assess genetic diversity and genetic variation in A. flavum and A. pendulum.

2. Results
2.1. Identification of Morphologies of Pubescence on Inflorescence

In the classification of the genus Aconitum, hairs on the pedicels are often regarded
as important taxonomic traits. In the present study, to identify A. flavum and A. pendulum,
morphologies of the hairs on the rachis and pedicels were observed with a stereoscopic
microscope (Figure 1). We found that the rachis and pedicels of A. flavum are covered with
densely appressed pubescence, which are generally white in color. The stem of A. flavum is
basally glabrous; it is also apically retrorse and appressed pubescent. In A. pendulum, the
rachis and pedicels have densely spread pubescence, which are yellow in color. The stem of
A. pendulum is basally glabrous; it is also apically sparse and spreading yellow pubescent.
The most important difference between these two species concerns the spreading hairs in
inflorescence. In A. flavum, these are appressed; in A. pendulum, they are spread. During
specimen observation, no intermediate forms were found.
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(B) pedicels of A. flavum; (C) rachis of A. pendulum; (D) pedicels of A. pendulum.

2.2. Individual Identification and Validation

Figure 2 presents a dendrogram obtained using the unweighted pair-group method
with arithmetic average (UPGMA), based on a Jaccard genetic similarity coefficient and
11 ISSR primers. The individuals were divided into two groups. Group I included
99 individuals of A. flavum; group II contained all 100 individuals of A. pendulum. The
genetic relationships among 199 genotypes were also visualized using PCoA (principal
coordinates analysis); the extent of the relatedness and disparity among the genotypes
is shown in Figure 3. The PCoA plot produced two major clusters which were clearly
separated, and this plot supported the results of the UPGMA cluster analysis. In addition,
the relationships among individuals were further examined using STRUCTURE (Figure 4),
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and similar results were obtained. Bayesian cluster analysis partitioned all the individuals
into two distinct groups (Figure 4B). The highest peak in ∆K revealed the best value for
K = 2 (∆K = 126.151) (Figure 4A). This was confirmed by results obtained using BAPS
(Bayesian analysis of population structure). The number of clusters in optimal partition
assignment with BAPS was determined as K = 2 (Figure S1), with a log marginal likelihood
of optimal partition of −32,586.38, and with posterior probability reaching its highest value
(~1). The results of the Bayesian cluster analysis were in line with the UPGMA clustering
and the PCoA plot. Taken together, the results showed that the two species (A. flavum and
A. pendulum) could be clearly divided into two branches via ISSR molecular markers. We
may say, therefore, that ISSR molecular primers can be used to identify individuals of these
two species.

Initially, we sought to identify distinctive bands for A. flavum and A. pendulum via
the process of band selection. However, no diagnostic bands were found between these
two species. More seriously still, no single specific primer was found between A. flavum
and A. pendulum. Finally, the two primer combinations UBC808 and UBC853 were used
to identify the two species. The UPGMA dendrogram based on the genetic similarity
coefficient then revealed that all individuals could be clustered into two well-defined and
separate groups (Figure 5).
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Subsequently, a standard database was established using two primer combinations
(UBC808 and UBC853) for species identification of A. flavum and A. pendulum. Sixty-nine blind
individuals from four populations (B, BM, GQ, SL populations) were tested to determine
whether they were A. flavum or A. pendulum using the established identification system.

The results indicated that the blind individuals from the B and BM populations were
clustered into the branch of A. flavum (Figure S2A). The blind individuals from the GQ and
SL populations were clustered into the branch of A. pendulum (Figure S2B). This further
confirmed that the selected primer combinations (UBC808 and UBC853) could effectively
identify A. flavum and A. pendulum using ISSR molecular markers.
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2.3. ISSR Genetic Diversity Analysis

A total of 11 primers with high repeatability and good polymorphism were selected for
ISSR–PCR amplification. Details of these primers are presented in Table S1. A photograph of
gel electrophoresis was presented in Figure S3. For 135 individuals of A. flavum, 193 bands
were amplified, with 185 polymorphic bands (PPB = 95.85%). The PPB ranged from
78.57% (UBC811) to 100% (UBC824, UBC825, UBC826, UBC846, UBC887, and UBC890).
For 133 individuals of A. pendulum, 203 bands were amplified, of which 94.58% were
polymorphic bands, resulting in an average of 17.45 polymorphic bands per primer. The
PPB of A. pendulum ranged from 82.35% (UBC807) to 100% (UBC824, UBC825, UBC826,
UBC846, UBC853, and UBC887).

Details of genetic diversity parameters are presented in Table 1. Genetic diversity in
A. pendulum (PPB = 94.58%, He = 0.291 ± 0.160, I = 0.445 ± 0.209) was slightly higher than
that in A. flavum (PPB = 95.58%, He = 0.254 ± 0.170, I = 0.395 ± 0.223). Genetic variation
among A. pendulum populations (Gst = 0.342) was higher than among A. flavum popula-
tions (Gst = 0.252). Gene flow in A. flavum (Nm = 1.488) was higher than in A. pendulum
(Nm = 0.961). The fixation index in A. pendulum (Fst = 0.375) was higher than in A. flavum
(Fst = 0.303).



Plants 2024, 13, 885 7 of 13

Table 1. Genetic diversity and differentiation in A. flavum and A. pendulum based on ISSR marker system.

Pop ID He * I PPB Gst Nm Fst

DWM 0.230 ± 0.187 0.354 ± 0.257 80.31% - - -
DWB 0.219 ± 0.190 0.334 ± 0.268 68.91% - - -
BM 0.148 ± 0.195 0.221 ± 0.281 40.93% - - -

A. flavum 0.254 ± 0.170 0.395 ± 0.223 95.85% 0.252 1.488 0.303
QHL 0.278 ± 0.171 0.424 ± 0.231 88.18% - - -
GQ 0.127 ± 0.190 0.188 ± 0.276 33.00% - - -
SL 0.129 ± 0.192 0.191 ± 0.276 34.48% - - -

A. pendulum 0.291 ± 0.160 0.445 ± 0.209 94.58% 0.342 0.961 0.375
* He—Nei’s gene diversity; I—Shannon’s information index (= −∑ Pilog2Pi , where Pi is initial frequency for the
ith allele); PPB—percentage of polymorphic bands; Gst—coefficient of gene differentiation (= (Ht − Hs)/Ht);
Nm—gene flow (= (1 − Gst)/2Gst); Fst—fixation index (=

(
σa

2 + σb
2)/σ2, where σa and σb are the expected

value of the variance components between groups and within groups, respectively, with σ being the total of
genetic variation).

AMOVA analysis indicated that most of the genetic differentiation was distributed
within populations (69.66% in the case of A. flavum, 62.52% in the case of A. pendulum)
(Table S2). AMOVA testing also revealed significant differentiation among and within
populations (p < 0.001, Table S2). A similar result was obtained from the HICKORY
calculation: interspecies differentiation (θB) was found to be 0.265 under the f = full
model, which had the smallest DIC value (Table S3), and a corresponding f value of 0.554.
Additionally, gene flow (Nm = 4.619) was calculated based on Gst.

3. Discussion

The taxa of the genus Aconitum are considered to be complicated and controver-
sial because of the morphological similarities among species. The relationship between
A. flavum and A. pendulum is especially noteworthy in this regard. Previous studies have
revealed that the main phenotypic differences between A. flavum and A. pendulum involve
the spreading hairs on the rachis and pedicels [14]. In the present study, A. flavum and
A. pendulum were clearly distinguished through stereomicroscopy. The spreading hairs
on the inflorescence of A. flavum were found to be appressed, while those of A. pendulum
were spread. This result demonstrated that these qualitative characteristics could be used
to effectively differentiate between the two species. In recent years, numerous studies on
the classification and phylogeny of Aconitum have been conducted based on ITS, cpDNA,
complete plastomes, and other molecular markers [38–40]. Aconitum is generally divided
into three subgenera: A. subgenus Aconitum, A. subgenus Lycoctonus, and A. subgenus
Gymnaconitum [41]. Among these subgenera, A. subgenus Aconitum is the most widespread
and diverse; it encompasses numerous species and exhibits complex morphological varia-
tions. Further subdivision of this subgenus therefore involves significant challenges [42].
In the A. subgenus Aconitum, A. flavum, A. pendulum, A. liangshanicum, and A. brachypodum
are classified under ser. Brachypoda W. T. Wang. A chemical composition analysis has
shown that A. flavum, A. pendulum, and A. polyschistum of the ser. Brachypoda exhibit highly
evolved aconitine-type diterpenoid alkaloids, indicating a close genetic relationship be-
tween them [2]. In addition, seed morphology has revealed that the seeds of ser. Brachypoda
have three longitudinal ridges and a relatively smooth surface, suggesting that A. flavum
and A. pendulum might belong to the same natural group [43]. Furthermore, studies of the
chloroplast genomes of A. flavum and A. pendulum reveal only slight differences between
the two, suggesting a close genetic relationship between the two species [44,45]. All these
studies demonstrated a close relationship between the two species. To date, however, no
method of carrying out species identification has been reported with respect to A. flavum
and A. pendulum.

Based on the ITS sequence, Luo et al. showed that A. flavum and A. pendulum are not
sister groups [34]. The limited amount of DNA in the ITS may not be sufficient to resolve
the phylogeny of aconites. On the other hand, ISSR molecular marker technology, which is
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based on the highly repetitive sequences found in eukaryotic genomes, provides additional
genomic information. Due to its longer primer sequences and higher annealing temperature,
ISSR can generate reliable, highly polymorphic, and reproducible amplification bands.
ISSRs segregate mostly as dominant markers following simple Mendelian inheritance.
However, they have also been shown to segregate as co-dominant markers in some cases,
thus enabling the distinction between homozygotes and heterozygotes [21,28,30]. There
are some indications that ISSR could be used to identify species. The ISSR results obtained
by the authors of Boydak et al. [46] supported the idea that the well-known date palms
Phoenix theophrasti and P. dactylifera are different species. The ISSR marker system has also
been used to determine molecular differences between two species of cotton [28]. In light
of these findings, ISSR was used in the present work to study the relationships of different
individuals from A. flavum and A. pendulum. UPGMA cluster analysis, PCoA analysis, and
Bayesian structural analysis divided the 199 individuals into two main branches consistent
with the morphological results. There were significant genetic variations between the two
species (Fst = 0.259, p < 0.001; Table S2). Additionally, a standard database was established
by two primer combinations (UBC808 and UBC853) for species identification of A. flavum
and A. pendulum. The authentications of blind individuals were identified, based on the
database. The ISSR identification system for A. flavum and A. pendulum demonstrates
strong accuracy.

The Qinghai–Tibet Plateau is regarded as a global biodiversity hotspot on account
of its abundant biological diversity. Genetic diversity is fundamental for biodiversity,
and protecting genetic diversity is crucial for the long-term survival of any species in a
constantly changing environment [47,48]. ISSR molecular markers can be used to estimate
genetic diversity and genetic structure within and between species. In the present study,
135 samples of A. flavum and 133 samples of A. pendulum were distinguished using 11 ISSR
primers, and their relationship was elucidated. The results indicated a relatively high level
of genetic diversity in both A. flavum (He = 0.254, I = 0.395, PPB = 95.85%) and A. pendulum
(He = 0.291, I = 0.445, PPB = 94.58%), compared with other Aconitum species (A. firmum
He = 0.209, PPB = 50.30%; A. lasiocarpum He = 0.196, PPB = 43.00% [49]; A. bucovinense
He = 0.080, I = 0.148, PPB = 69.77% [50]). We may state several possible reasons for the
high genetic diversity of A. flavum and A. pendulum, which are the dominant species
in high-altitude meadows. Firstly, the wide distribution range and long lifespans of
A. flavum and A. pendulum contribute to their high genetic diversity. They are long-lived
perennial herbaceous plants that are distributed in Qinghai, Gansu, Nei Mongol, Southern
Ningxia, northwestern Sichuan, and northern Tibet [1]. Secondly, the genetic diversity of
plants is also affected by their mating systems. Previous studies have indicated that the
breeding system of A. flavum involves outcrossing determined by pollen–ovule ratios [51].
In addition, a S–RNase-based self-incompatibility system was found in A. pendulum by the
authors of Li et al. [52]. We may say, then, that an outcrossing breeding system contributes
to the high genetic diversity of the two species. It should also be stated that these species can
produce many winged seeds which are spread by wind. Moreover, they can reproduce not
only from seeds [53] but also by means of vegetative reproduction [54]. Finally, we note that,
in recent years, due to both artificial introduction and natural reproduction, the distribution
range of A. flavum and A. pendulum has expanded. This has contributed to a greater flow of
genes between populations, resulting in a still higher level of genetic diversity.

4. Materials and Methods
4.1. Plant Materials

A total of 268 individuals from six populations were collected from Qinghai Province
in China during July and August 2020 (Table 2). Specifically, 99 individuals of population
DWM and 100 individuals of population QHL were used as samples to establish a species
identification method. The remaining 69 individuals, from DWB, BM, GQ, and SL popula-
tions, were used as blind samples to validate the reliability of the ISSR marker. Healthy
young leaves collected from individuals were dried in silica gel before genomic DNA
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extraction. All voucher specimens were deposited at room temperature in the Herbarium
of the Northwest Institute of Plateau Biology (HNWP), Chinese Academy of Sciences. Then,
they were used for microscopic morphology observation in our laboratory.

Table 2. Sampling information for A. flavum and A. pendulum.

Collection Site Population Longitude (E) Latitude (N) Altitude (m) 2 Sample Size Material

Dawu, Maqin county,
Golog Prefecture DWM 1 100◦17′3′′ 34◦25′50′′ 3762 99 Identification

Dawu, Maqin county,
Golog Prefecture DWB 100◦17′3′′ 34◦25′50′′ 3762 20 Verification

Banma county,
Golog Prefecture BM 100◦43′22.80′′ 32◦43′22.80′′ 4114 16 Verification

Gangcha county,
Haibei Prefecture QHL 100◦14′48′′ 37◦25′22′′ 3510 100 Identification

Guoqing pasture, Yushu city,
Yushu Prefecture GQ 96◦51′17.52′′ 32◦58′48.60′′ 4393 18 Verification

Sulu, Zaduo county,
Yushu Prefecture SL 95◦9′55.14′′ 32◦33′19.20′′ 4518 15 Verification

1 DWM—Meadow of Dawu; DWB—Bareground of Dawu; BM—Banma; QHL—Gangcha; GQ—Guoqing pasture;
SL—Sulu; 2 altitude (m)—meters above sea level.

4.2. Microscopic Morphological Observation

The hairs on the pedicels of A. flavum and A. pendulum specimens were observed
with a stereoscopic microscope (SteREO Discovery V12, Zeiss, Oberkochen, Germany) and
photographed in our laboratory, during June and July 2021. In total, 140 voucher specimens
(only the hairs on the pedicels) were observed under the microscope.

4.3. Genomic DNA Extraction

In our laboratory, genomic DNA was extracted using the modified CTAB method [55,56]
in 2021 and 2022. The concentration and purity of the extracted DNA were determined
by spectrophotometer using NanoDrop 2000c (Thermo Scientific, Waltham, MA, USA)
equipment and 0.8% agarose gel. The isolated genomic DNA was diluted to 30 ng/µL and
stored at −20 ◦C for ISSR amplification.

4.4. ISSR Amplification

One hundred primers from the University of British Columbia primer set 9 (University
of British Columbia, primer set #9) were initially screened for PCR amplification, and
eleven primers that generated clear and reproducible banding patterns were chosen for the
final analysis. PCR amplifications were conducted in a 20 µL reaction volume containing
30 ng of genomic DNA, 2 µL of 10 × PCR buffer (Mg2+ plus), 0.25 mM of dNTP, 10 µM of
primer, and 0.6 U of Taq DNA polymerase (TaKaRa Biotech Co., Ltd., San Jose, CA, USA).
ISSR–PCR amplifications were conducted using a C1000 Touch Thermal Cycler (Bio-Rad,
Hercules, CA, USA). The amplification conditions were as follows: an initial denaturation
step at 95 ◦C for 4 min, followed by 38 cycles of denaturation at 95 ◦C for 30 s, annealing at
50–60 ◦C for 45 s (refer to Table S1 for specific details), and extension at 72 ◦C for 90 s. A
final extension step at 72 ◦C for 7 min was then performed. The amplified products were
separated on a 1.2% agarose gel and visualized using the ChemiDocTM MP Imaging System
(Bio-Rad, Hercules, CA, USA). To ensure the reliability of the ISSR, two replicates for each
PCR were produced in the lab.

4.5. Data Analysis

Only clearly identifiable and reproducibly amplified ISSR bands were designated as
present (1) or absent (0). The resulting binary data matrix was subjected to analysis using
POPGENE 1.32 version [57] to estimate the level of genetic diversity assuming the Hardy–
Weinberg equilibrium. Genetic diversity within and among species was measured by the
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percentage of polymorphic bands (PPB), the observed number of alleles (Na), the effective
number of alleles (Ne), Nei’s gene diversity (He) [58], and Shannon’s information index (I).
Gene differentiation between species was assessed by the coefficient of gene differentiation
(Gst), and gene flow (Nm) was assessed by Gst [59]. In order to test the genetic relationship
between individuals, an unweighted pair-group method with arithmetic average (UPGMA)
dendrogram was constructed based on the Jaccard coefficient using the program NTSYSpc
version 2.2 [60]. PCoA (principal coordinates analysis) based on the Jaccard coefficient was
performed to ordinate relationships among individuals of A. flavum and A. pendulum.

To correct the possible bias in the Hardy–Weinberg equilibrium, the Bayesian genetic
diversity (HB) and population differentiation (θB) were also calculated using HICKORY
version 1.1 with the Bayesian method [61]. Using this Bayesian approach, neither the
Hardy–Weinberg equilibrium within populations nor the treatment of multilocus ISSR
phenotypes as haplotypes were assumed [62,63], but full advantage could be taken of the
information provided by dominant markers. Several runs were carried out with default
sample parameters (burnin = 5000, sample = 100,000, thin = 20) to ensure consistency of
results. Model selection was based on the Deviance Information Criterion (DIC). Models
with smaller DICs are preferred. In addition, we used two Bayesian methods to determine
the genetic structures of A. flavum and A. pendulum. In the first method, population
structures within A. flavum and A. pendulum samples were inferred using a Bayesian model
clustering algorithm implemented in the computer program STRUCTURE version 2.3 [64].
This method uses a Markov Chain Monte Carlo (MCMC) algorithm to cluster individuals
into populations based on multi-locus genotype data [65]. We tested the assignment of
individuals into one to six genetic clusters (K = 1–6) using the admixture model with
correlated allele frequencies. The analysis of each cluster consisted of 8 independent runs
of 10,000 MCMC replicates following an initial burn-in of 10,000. To estimate the number
of clusters, we used the ∆K [65] and the Ln Pr (X|K) plot methods [66], both calculated
with the STRUCTURE HARVESTER [67] online software (http://taylor0.biology.ucla.edu/
structureHarvester/). The algorithm used by STRUCTURE may be poorly suited for
inferring the number of genetic clusters in a data set that has an isolation by distance
relationship [65,68]. Therefore, we used BAPS (Bayesian analysis of population structure)
version 6.0 [69,70], based on the Bayesian clustering method, to confirm the STRUCTURE
result. In contrast with STRUCTURE, this method uses stochastic optimization to infer
the genetic structure [68]. The BAPS program estimates the structure of populations by
clustering individuals into groups. We considered individuals from one locality as one
population sample (one group). Ten independent repetitions for each K from 1 to 2 were
carried out. Arlequin version 3.1 was used to calculate the genetic differentiation index
(Fst) to further reveal the pattern of genetic differentiation between populations [71]. Fst
is also a representation of population differentiation and genetic distance; the larger the
index, the greater the differentiation. The statistical testing of variance components was
conducted using nonparametric randomization tests with 1000 permutations.

5. Conclusions

In this study, we used a combination of morphological and molecular marker methods
to confirm that A. flavum and A. pendulum are indeed two distinct species. Microscopic
observations indicated that the spreading hairs on the inflorescence of A. flavum are ap-
pressed, while they are spread in A. pendulum. Additionally, A. flavum and A. pendulum
were effectively identified using ISSR markers. Two primer combinations UBC808 and
UBC853 successfully distinguished A. flavum from A. pendulum. Finally, a high level of
genetic diversity in A. flavum and A. pendulum was detected via ISSR markers. This is the
first time that ISSR molecular markers have been used to analyze the genetic diversity and
structure of A. flavum and A. pendulum. The established identification system could provide
a solid foundation for distinguishing A. flavum and A. pendulum.

http://taylor0.biology.ucla.edu/structureHarvester/
http://taylor0.biology.ucla.edu/structureHarvester/
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants13060885/s1, Figure S1: Results of BAPS analysis for two
species of Aconitum; Figure S2: UPGMA clustering on verification of blind individuals (UBC808 and
UBC853): (A) blind individuals from DWB and BM; (B) blind individuals from GQ and SL. Green
represents A. flavum individuals; red represents A. pendulum individuals; Figure S3: ISSR profiles of
A. flavum and A. pendulum generated with primer UBC853: (A) DWB population; (B) QHL population;
M = 100 bp + 200 bp TaKaRa DNA Ladder; Table S1: Summary of banding profile and polymorphism
revealed by 11 ISSR primers; Table S2: Analysis of molecular variance (AMOVA) for ISSR variation
surveyed in six populations of A. flavum (3) and A. pendulum (3); Table S3: Genetic differentiation
among species calculated using different Bayesian approaches.
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