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Abstract: Variations in the concentration of glucoraphanin (GRA) and glucoerucin (GER), as well
as the corresponding breakdown products, isothiocyanates (ITCs) and nitriles, were investigated
during the growth of broccoli sprouts. The concentrations of GRA and GER decreased sharply from
33.66 µmol/g to 11.48 µmol/g and 12.98 µmol/g to 8.23 µmol/g, respectively, after seed germination.
From the third to the seventh day, both GRA and GER were maintained as relatively stable. The
highest concentrations of sulforaphane (17.16 µmol/g) and erucin (12.26 µmol/g) were observed on
the first day. Hereafter, the concentrations of nitrile hydrolyzed from GRA or GER were higher than
those of the corresponding ITCs. Moreover, the ratio of sulforaphane to sulforaphane nitrile decreased
from 1.35 to 0.164 from 1 d to 5 d, with a similar trend exhibited for erucin/erucin nitrile after
2 d. RNA-seq analysis showed that BolMYB28 and BolCYP83A1, involved in aliphatic glucosinolate
(GSL) biosynthesis, remained largely unexpressed until the third day. In contrast, the genes operating
within the GSL-myrosinase hydrolysis pathway were highly expressed right from the beginning,
with their expression levels increasing significantly after the third day. Additionally, we identified
two BolESPs and six BolNSPs that might play important roles in promoting the production of nitriles
during the development of broccoli sprouts.

Keywords: broccoli sprout; glucosinolate; RNA-seq; sulforaphane; erucin

1. Introduction

Broccoli sprouts are more and more popular for their high nutritional value, primarily
due to their abundant glucosinolates (GSLs) and the resulting isothiocyanates (ITCs) upon
breakdown [1]. GSLs are thioglucosides widely present in Brassica oleracea vegetables and
wild species [2]. According to their amino acid precursors, GSLs are usually classified
into aliphatic GSLs (methionine, alanine, leucine, isoleucine, and valine), indole GSLs
(tryptophan), and benzenic GSLs (phenylalanine and tyrosine). The biological effects of
GSLs are mainly attributed to their breakdown products, especially ITCs. GSL breakdown is
facilitated by endogenous enzymes known as myrosinases (thioglucoside glucohydrolases
(TGGs), EC 3.2.1.147) [3,4]. These enzymes are stored separately from GSLs but catalyze
GSL hydrolysis when tissue damage occurs. In this TGG-dependent GSL hydrolysis, GSLs
can yield ITCs, simple nitriles, epithionitriles, or thiocyanates, influenced not only by the
GSL structure but also by the type of specifier protein (epithio-specifier protein (ESP),
nitrile-specifier protein (NSP), and thiocyanate-forming protein), pH, and Fe2+.

The breakdown products of GSLs, particularly ITCs, have been extensively studied for
their health benefits, including their anti-carcinogenic and anti-inflammatory properties, as
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well as their protection against cardiovascular diseases [1,5]. Sulforaphane, derived from
glucoraphanin (GRA) according to TGG hydrolysis, is well known for its chemopreventive
and anti-inflammatory properties, in vitro, in vivo, and in preclinical trials [1,5,6]. Erucin,
another ITC hydrolyzed from glucoerucin (GER), also shows various health benefits [7,8].
Furthermore, in vivo studies have shown the inter-conversion between sulforaphane and
erucin in human subjects [9–11]. However, simple nitriles and epithionitriles from GSLs
have shown limited ability to induce quinone reductase or glutathione S-transferase or
inhibit cancer cell growth [12,13]. Moreover, some simple nitriles may even have genotoxic
effects in HepG2 cells [14]. Notably, some intact GSLs themselves have recently been
found to have health-promoting effects. For example, GER possesses good direct as well
as indirect antioxidant activity and effectively decomposes hydrogen peroxide and alkyl
hydroperoxides [15]. Furthermore, GRA and GER could up-regulate cytochrome P450 and
phase II enzyme systems in precision-cut rat lung slices [16]. However, the bioavailability
of ITCs from fresh broccoli sprouts is dramatically higher than the broccoli supplements
lacking TGGs [9]. Given the varying biological effects of GSL metabolites, we need to
clarify the changing patterns of these health-promoting GSL profiles and their breakdown
products during broccoli sprouting.

GRA and GER are aliphatic GSLs derived from methionine and transplanted from
biosynthesis cells to seeds [17,18]. In plants, GER can be catalyzed by a subclade of flavin-
monooxygenases into GRA [19]. GRA and GER are the predominant health-promoting GSL
profiles and greatly accumulate in broccoli seeds [20,21]. However, compared to GRA and
sulforaphane, GER and erucin in broccoli sprouts have received relatively little attention.
Previous studies have reported genetic variation in GSLs and their breakdown products in
broccoli seeds [20] and sprouts [22]. Some studies have highlighted the role of BolESPs in
promoting the production of nitriles in broccoli florets [12,13] and sprouts [23], as well as
Chinese kale sprouts [24]. However, some research on Arabidopsis has shown that some
NSPs also play a role in nitrile production during GSL hydrolysis [25,26]. Nevertheless,
there is limited knowledge regarding the variations in the GRA and GER breakdown
products and the genes involved in TGG-dependent hydrolysis across the different devel-
opmental stages of broccoli sprouts.

In a previous study, we selected some good varieties suitable for sprout production
because their seeds contained high levels of GRA and GER but no alkenyl GSLs [20]. In
this study, we utilized such one variety to investigate the variations in health-promoting
GRA and GER in the sprouts, along with their breakdown products. Based on RNA-seq
data, a comprehensive analysis of the gene expression related to GSL metabolism during
broccoli sprout development was conducted.

2. Materials and Methods
2.1. Plant Materials and Cultivation

The broccoli variety (1001) used in this study was a high-generation inbred line (>F10)
with high levels of GRA and GER in its seeds, which also showed a high ratio of ITCs
derived from GRA and GER [20]. The seeds were soaked in water for 2 h and then
transferred onto non-woven fabric wetted with water in a clear plastic box. The box was
closed and placed in a culture room at 25 ◦C with a 12 h light/12 h dark photoperiod. Water
was added to the fabric to keep it moist. A total of 10 seedlings with no visible defects in
their cotyledon shoot and root systems were randomly selected as normal seedlings and
weighed for analysis.

2.2. Chemicals and Reagents

The ortho-nitrophenyl-D-galactopyranoside (oNPG), 2-propenyl ITC (≥99.7%), propyl-
ITC (≥99%), and 4-pentenyl nitrile (≥97%) were purchased from Merck (Darmstadt, Ger-
many). The 4-(methylsulfinyl)butyl ITC was purchased from Enzo Life Sciences GmbH
(Lörrach, Germany). The 5-(methylsulphinyl)pentyl nitrile (sulforaphane nitrile) was chem-
ically synthesized by Huafu Synthetic Chemicals (Hefei, China). Authentic GSLs were
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purchased from Phytoplan (Heidelberg, Germany). The methylene chloride (GC ultra
grade), acetonitrile (ultra-gradient, HPLC-grade), and methanol (ultra-gradient, HPLC-
grade) were purchased from Tedia Company (Fairfield, OH, USA). The water was of Milli-Q
quality, and the individual GSLs were diluted with water and prepared as mother solu-
tions (100 mM). All the GSL breakdown products were dissolved in methanol as mother
solutions, which were diluted with dichloromethane (10 mM) for GC-FID analysis.

2.3. GSL Determination

GSL detection was performed according to our previous protocol with minor modifi-
cations [27]. Briefly, ten seedlings were weighed and moved into a 15 mL Eppendorf tube.
Then, 5 mL boiling water was added, and the tube was immediately capped and immersed
in boiling water for 15 min. After centrifuging at 12,000× g at 25 ◦C for 10 min, 2 mL
of extraction solution was loaded into a polypropylene column (length, 6 cm, diameter,
0.5 cm) filled with diethylaminoethyl DEAE–Sephadex A-25 (Darmstadt, Germany), which
had been activated with pyridine acetate (0.5 M), to a height of 1 cm. Then, the column
was equilibrated twice with water (2 × 1 mL). The GSLs were converted into their desulfo
analogs after 16 h of treatment or overnight with 100 µL 0.1% (1.4 U) sulfatase (Sigma-
Aldrich, St. Louis, MI, USA) at room temperature. The desulfo GSLs were eluted with
2 × 0.5 mL water into 2 mL Eppendorf tubes.

The 1 mL elution was filtered through a 0.45 µm syringe filter for high-performance
liquid chromatography (HPLC) analysis after the addition of oNPG as an internal standard.
A Waters Breeze HPLC system (Waters, Milford, MA, USA) with an autosampler, a binary
pump, and a UV–visible detector (models 717 Plus, 1525, 2487, respectively, Waters) was
used for the GSL detection. A Spherisorb C18 column (5 µm, 250 × 4.6 mm i.d., Elite
Analytical Instruments, Dalian, China) was used for separation at 25 ◦C. The mobile phases
were water and acetonitrile. Separation was achieved with the following program: 5 min at
1.5% acetonitrile; 15 min gradient from 1.5% to 20% acetonitrile; 5 min at 20% acetonitrile;
1 min gradient to 100% acetonitrile; 5 min at 100% acetonitrile; 1 min gradient to 1.5%
acetonitrile; and 8 min at 1.5% acetonitrile. The flow rate was 1.0 mL/min, and the injection
volume was 20 µL. The concentrations of the GSLs were determined from the HPLC
peak areas, the internal standards, and the published ultraviolet response factors of the
individual desulfo GSLs at 226 nm [27].

2.4. GSL Breakdown Product Determination

The detection method for the breakdown products was performed according to our
published method with some modifications [20]. Briefly, ten fresh seedlings were suspended
in 1 mL of Millipore-filtered water and ground in a mortar. The slurry was transferred into
a 15 mL capped tube, and the residue was washed with water (2 mL) twice. The combined
solution was incubated at 25 ◦C for 2 h to facilitate GSL hydrolysis using endogenous TGG.
After adding 0.2 µmol of the internal standard propyl ITC, dichloromethane (5 mL) was
used for extraction using vortexing for 60 s and then centrifuging at 4000× g at 25 ◦C for
10 min. The extract (~1.8 mL) was centrifuged for 10 min at 12,000× g. The supernatant
(~1 mL) was transferred into a 2 mL autosampler vial for GC-FID detection using an Agilent
7890A Series GC System (Agilent Technologies, Waldbronn, Germany) with an HP5 column
(30 m, 0.25 mm, 0.25 m film), splitless injection at 200 ◦C, and the following temperature
program: 50 ◦C for 3 min, a 20 ◦C/min ramp to 100 ◦C, a 3 ◦C/min ramp to 180 ◦C, hold for
10 min, an 8 ◦C/min to 220 ◦C, hold for 10 min, and then a 20 ◦C/min ramp to 230 ◦C (with
a 1 min post-run at 240 ◦C). Hydrogen was used as the carrier gas with an injection volume
of 1 µL and a flow rate of 1.5 mL/min. Quantification of the breakdown products was
based on the standard curves of the authentic standards. An equal amount of sulforaphane
was used with erucin, and an equal amount of sulforaphane nitrile was used with erucin
nitrile. Six replicates were performed for each sample.
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2.5. RNA-Seq Analysis
2.5.1. RNA Extraction

Total RNA was isolated from the sprouts (at 1 d, 3 d, and 5 d) using TRIzol® Reagent
according to the manufacturer’s instructions (Invitrogen, Waltham, MA, USA), and genomic
DNA was eliminated using DNase I (Takara, Japan). Then, the RNA quality was determined
using a 2100 Bioanalyzer (Agilent Technologies, Waldbronn, Germany) and quantified
using the ND-2000 (NanoDrop Technologies, Pittsfield, MA, USA). A high-quality RNA
sample (OD260/280 = 1.8~2.2, OD260/230 ≥ 2.0, RIN ≥ 6.5, 28S:18S ≥ 1.0, >10 µg) was used
to construct the sequencing library. A total of 20 seedlings were taken together as one
biological repeat. Three biological repeats were performed for each time point.

2.5.2. Library Preparation

Illumina HiSeq sequencing RNA-seq transcriptome libraries were generated using
the TruSeqTM RNA sample preparation kit from Illumina (San Diego, CA, USA) and 1µg
of total RNA. In brief, mRNA was isolated with polyA selection using oligo(dT) beads
and fragmented using fragmentation buffer. cDNA synthesis, end repair, base addition,
and ligation of the Illumina-indexed adaptors were performed according to Illumina’s
instructions. The libraries were then size-selected for cDNA target fragments of 200–300 bp
on 2% Low Range Ultra Agarose, followed by PCR amplification using Phusion DNA
polymerase (NEB) for 15 PCR cycles. After quantification using TBS-380, paired-end
libraries were sequenced using the Illumina NovaSeq 6000 sequencing system (BIOZERON
Co., Ltd., Shanghai, China).

2.5.3. Read Quality Control and Mapping

The raw paired-end reads were trimmed and quality-controlled using Trimmomatic
with the parameters SLIDINGWINDOW:4:15, MINLEN:75 (version 0.36, http://www.
usadellab.org/cms/index.php?page=trimmomatic, accessed on 30 June 2022). Then, clean
reads were separately aligned with a reference genome (the HDEM B. oleracea reference
genome, https://www.genoscope.cns.fr/projet_BKL/cgi-bin/gbrowse/boleracea/, ac-
cessed on 30 June 2022) in orientation mode using the HISAT2 (https://daehwankimlab.
github.io/hisat2/, accessed on 30 June 2022) software. This software was used for mapping
with the default parameters. Quality assessment of these data were undertaken using qual-
imap v2.2.1 (http://qualimap.bioinfo.cipf.es/, accessed on 30 June 2022). The gene reads
were counted using HTSeq (https://htseq.readthedocs.io/en/release_0.11.1/, accessed on
30 June 2022). The sequences of the homologous ESP and NSP genes based on the HDEM
reference genome were blasted in the Brassica Database (http://brassicadb.cn/#/, accessed
on 30 June 2022).

2.5.4. Differential Expression Analysis and Functional Enrichment

To identify the DEGs (differential expression genes) between the two different samples
(3 d vs. 1 d, 5 d vs. 1 d, 5 d vs. 3 d), the expression level for each gene was calculated using
the fragments per kilobase of exon per million mapped reads (FRKM) method, which was
performed by BIOZERON (Shanghai, China). The R statistical package edgeR (Empirical
analysis of Digital Gene Expression in R, http://www.bioconductor.org/packages/release/
bioc/html/edgeR.html/, accessed on 30 June 2022) was used for the differential expression
analysis. In order to determine the DEGs, the following criteria were used: the logarithmic
of fold change should be greater than 2, and the false discovery rate (FDR) should be
less than 0.05. To understand the functions of the GEGs, GO functional enrichment and
KEGG pathway analysis were carried out using goatools (https://github.com/tanghaibao/
Goatools, accessed on 30 June 2022) and KOBAS (http://bioinfo.org/kobas/, accessed on
30 June 2022). DEGs were significantly enriched in GO terms and metabolic pathways
when their Bonferroni-corrected p-value was less than 0.05.

http://www.usadellab.org/cms/index.php?page=trimmomatic
http://www.usadellab.org/cms/index.php?page=trimmomatic
https://www.genoscope.cns.fr/projet_BKL/cgi-bin/gbrowse/boleracea/
https://daehwankimlab.github.io/hisat2/
https://daehwankimlab.github.io/hisat2/
http://qualimap.bioinfo.cipf.es/
https://htseq.readthedocs.io/en/release_0.11.1/
http://brassicadb.cn/#/
http://www.bioconductor.org/packages/release/bioc/html/edgeR.html/
http://www.bioconductor.org/packages/release/bioc/html/edgeR.html/
https://github.com/tanghaibao/Goatools
https://github.com/tanghaibao/Goatools
http://bioinfo.org/kobas/
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2.6. RT-PCR Analysis

Total RNA was extracted using TRIzol Reagent according to the manufacturer’s instruc-
tion (Takara Technology, Dalian, China). PrimeScript RT Master Mix (Takara Technology,
Dalian, China) was used to reverse-transcribe the mRNA into cDNA. qPCR was carried
out using the CFX96 Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). The
primer sequences of the BolNSPs for RT-PCR were designed using the Primer-BLAST on
NCBI (https://www.ncbi.nlm.nih.gov/, accessed on 30 June 2022) and are listed in Table
S1. The primers for BolESPs were designed in a previous study [24]. The relative expression
level of the target genes was computed using the 100 × 2−∆CT method according to our
previous protocol [28].

2.7. Data Analysis

Data analysis and graph creation were carried out using Microsoft Office Excel 2010.
The heatmap of the gene expression was visualized using TBtools-II.

3. Results
3.1. Variation in GRA and GER

Our findings illustrated the concentrations of GRA decreased sharply from 33.66 µmol/g
to 11.48 µmol/g and GER from 12.98 µmol/g to 8.23 µmol/g, respectively, after seed ger-
mination (1 d–3 d; Figure 1). Then, the concentration of GRA and GER, ranging from
12.07 µmol/g to 7.06 µmol/g for GRA and from 9.02 µmol/g to 5.75 µmol/g for GER,
were maintained as relatively stable with a slight enhancement from 5 d to 7 d. Taken
together, the concentrations of GRA and GER declined in the fresh broccoli sprouts as the
seedlings aged.
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Figure 1. Changes in GRA and GER concentrations during the broccoli sprout development. GRA:
glucoraphanin; GER: glucoerucin. Values are expressed as mean ± standard deviation (SD) (n = 6).

3.2. Variation in GRA and GER Breakdown Products

At the early stage of germination (1d), the levels of sulforaphane and erucin were
17.16 µmol/g and 12.26 µmol/g, respectively, basically equivalent to their corresponding
nitriles (Figure 2A). However, the contents of sulforaphane ranged from 4.47 to 0.94 µmol/g
in the broccoli sprouts after 3 d, lower than the corresponding sulforaphane nitrile levels
(11.37 µmol/g to 5.46 µmol/g). A similar change pattern was closely followed by erucin
and erucin nitrile, which ranged from 1.16 µmol/g to 0.29 µmol/g and from 6.29 µmol/g
to 2.94 µmol/g, respectively. These results suggested that the major breakdown products
of GRA and GER in the broccoli sprouts were nitriles rather than ITCs.

https://www.ncbi.nlm.nih.gov/
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Figure 2. Changes in ITCs and nitriles derived from GER and GRA during broccoli sprout devel-
opment. (A) The concentrations of erucin, erucin nitrile, sulforaphane, and sulforaphane nitrile;
(B) the ratio of erucin/erucin nitrile and sulforaphane/sulforaphane nitrile. Values are expressed as
mean ± SD (n = 6).

On the other hand, all four breakdown products displayed a similar decline during
broccoli sprouting. In order to elucidate the changes in the capacity for ITC production, we
also calculated and analyzed the ratio of ITC/nitrile. The results showed that the ratio of
sulforaphane to sulforaphane nitrile exhibited an obvious decline from 1 d to 5 d, keeping
a low level from 3 d onward (Figure 2B). Erucin/erucin nitrile also exhibited a similar
declining trend, except for from 1 d to 2 d. However, sulforaphane/sulforaphane nitrile
were different from erucin/erucin nitrile during seedling development, especially during
seed germination.

3.3. Gene Expression in the GSL-TGG Pathway

From 1 d to 5 d, the contents of GRA and GER and their breakdown products changed
greatly. Thus, we conducted RNA-seq to reveal the changes in the GSL metabolism
pathway in this period. The RNA-seq analysis showed 3519 up-regulated and 613 down-
regulated genes in the 3d_vs_1d comparison, 333 up-regulated and 183 down-regulated
genes in the 5d_vs_3d comparison, and 4070 up-regulated and 1778 down-regulated
genes in the 5d_vs_1d comparison (Figure S1). The KEGG pathway enrichment analysis
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revealed that many genes were enriched in “metabolic pathways” and “biosynthesis of
secondary metabolism” (Figure S2). In general, the DEGs in the 5d_vs_3d comparison
were notably fewer compared to 3d_vs_1d and 5d_vs_1d, indicating a relatively stable
development from 3 d to 5 d. The DEGs related to GSL metabolism were selected and
analyzed (Table S2). A total of 43 genes (25 Arabidopsis homologous genes) related to
GSL biosynthesis were identified. These genes, specifically involved in aliphatic GSL
biosynthesis, such as MYB28, CYP83A1, and MAMs [1], had low expression levels at
the beginning of seed germination but were slightly induced at 3 d and 5 d (Figure 3).
Nevertheless, most genes, including SUR1, SOT16, SOT18, GPP1, UGT74B1, and GSTs [1],
involved in the core structure biosynthesis of both aliphatic GSL and indole GSL showed
high expression from 1 d to 5 d (Figure 3). Similarly, transcription factors such as MYB51,
MYB122, MYB34, WRKY33, and MYC2, as well as critical biosynthetic genes such as
CYP79B2 and CYP83B1 involved in the indole GSL biosynthesis pathway [29], were up-
regulated in broccoli sprouting (Table S2).
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In comparison to biosynthesis and regulation, the genes involved in the hydrolysis of
GRA and GER were up-regulated at the beginning of seed germination (Figure 3). Eight
TGG1 homologous genes and five TGG2 homologous genes were identified. The current
investigation revealed the high expression of TGGs at 3 d and 5 d, particularly TGG1
homologous genes. Also, two homologous genes (BolC4t28607H and BolC4t22177H) of
BGLU28 were observed with a high expression from 1 d to 5 d. In addition, the RNA-
seq analysis showed that two ESP2 homologous genes (BolC7t43254H and BolC7t43256H)
exhibited higher expression levels and gradually increased from 1 d to 5 d (Figure 3),
which was confirmed using qRT-PCR (Figure 4A). Our results also showed that all four
EMS1 homologous genes were highly expressed at 3 d and 5 d. In this study, apart from
one BolNSP1 (BolC5t33748H) and two BolNSP5 (BolC7t44414H and BolC2t11690H) genes
expressed at 1 d, all the BolNPS genes identified in the samples using RNA-seq were highly
expressed at 3 d and 5 d, which was verified using qRT-PCR (Figure 4B).
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4. Discussion

According to many previous studies, the anti-nutrient GSL profile progoitrin was
widely detected in the seeds and sprouts of many broccoli cultivars [21,27,30]. In order to
investigate the variations in GRA and GER as two major health-promoting GSL profiles
in broccoli sprouts, the broccoli variety 1001 containing high levels of GRA and GER with
progoitrin absent in its seeds [20] was used in this work. The results on the variation in
GRA and GER in the broccoli sprouts were basically consistent with earlier studies [31–33].
The substantial decrease in the content of GRA and GER from 3 d to 6 d was observed in
this study and a previous report [34]. Pérez-Balibrea et al. (2008) reported a similar trend in
both light and dark conditions, with a general reduction in the concentration of aliphatic
GSLs during a 7 d period [35]. Williams et al. (2008) found the GRA loss from 2 d to 7 d
in broccoli sprouts (dry weight) was 38% for cv. Calabrese, 15% for cv. DeCicco, and 25%
for cv. Romanesco [23]. In Arabidopsis, from 2 d to 8 d of seed-to-seedling development,
the total GSL content per individual decreased by 30%, indicating GSL turnover [36]. Our
previous study on Chinese kale sprouts also demonstrated significant variations in the total
GSL content per plant as the sprouts developed [24]. All in all, the fresh broccoli sprouts
(3 d–7 d) contained lower concentrations of GRA and GER compared to the germinating
seeds (1 d), even though the older seedlings (5 d–7 d) had the potential to produce more
GRA and GER than the early-aged seedlings (1 d–3 d). It has been reported recently that
sulfur sources in aliphatic GSLs are reallocated by BGLU28 and BGLU30 under sulfur
deficiency in the process of seed germination, particularly during early development in
Arabidopsis [37]. Therefore, the main loss of GRA and GER may be a consequence of sulfur
reallocation during the early stages of seed germination.

We found that the concentrations of the breakdown products were much lower com-
pared to the concentrations of GRA and GER at the same time point, and nitriles were the
main breakdown products in broccoli seedlings. For consumers, it would be a better choice
to intake sprouts treated with boiling water instead of fresh sprouts directly, when GRA
and GER can be converted into ITCs by the gut microbes or there is extra intake of TGGs.
Hansen and Schreiner (2017) also reported the contents of sulforaphane were no more
than 1.2 µmol/g in 7–9-day-old seedlings from three varieties [22]. Moreover, they found
the levels of sulforaphane nitrile and erucin nitrile were higher than the corresponding
ITCs, especially in Marathon and Iron Man. Similarly, Williams et al. (2008) found the
primary breakdown product of GRA was sulforaphane nitrile in broccoli seedlings of the
Calabrese cultivar from 2 d to 7 d [23]. And the highest level of sulforaphane was lower than
1.5 µmol/g in fresh broccoli sprouts. They also observed a general decrease in the sul-
foraphane and sulforaphane nitrile concentrations during the first 7 days of seedling
development based on fresh weight. However, Gu et al. (2012) noted that the content
of sulforaphane declined sharply during the first day of seed germination based on dry
weight and then increased to the same level as that in the seeds before decreasing again [38].
Wittstock et al. (2016) suggested that breakdown product analysis was best conducted
with fresh plant material, as specifier-protein-mediated product formation was sensitive to
freezing [4].

In addition, we found that sulforaphane/sulforaphane nitrile was different from
erucin/erucin nitrile during seedling development, especially during seed germination.
One possible reason is that the ESPs and NSPs have different binding affinity energies and
affinity constants to GRA and GER [39]. In our study, the fresh sprouts were ground in
water without adjusting the pH, nor adding other chemicals. According to previous studies,
both a low pH (<5.0) and Fe2+ were able to assist TGG in producing nitriles with or without
specifier proteins in vitro [40,41]. From a food nutrition perspective, it is recommended to
harvest younger sprouts to provide more ITCs, which is also supported by our study on
Chinese kale sprouts [24]. In the future, greater attention should be given to improving the
ITC content and proportion using genetic and chemical methods.

The RNA-seq data revealed that the biosynthesis of aliphatic GSL was not activated
significantly until 3 d. As is well known, chloroplasts are required for the side-chain
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elongation of aliphatic GSL in Arabidopsis [42]. Our further analysis also showed that many
genes, such as BolC4t27842H, BolC3t19882H, and BolC5t31588H, related to the development
of the chloroplasts were highly expressed at 3 d and 5 d but not at 1 d (Table S3). Therefore,
it was not surprising that these aliphatic GSLs biosynthetic genes were activated after
chloroplast formation, accompanied by a slight rise in GRA and GER in older broccoli
sprouts. Different from aliphatic GSL, the biosynthesis of indole GSL was up-regulated
after seed germination. These results verified a previous speculation that indole GSL
accumulation in sprouts developing from 3 d to 11 d was possibly due to the activation of
indole GSL biosynthesis [21].

Our earlier study demonstrated an increase in TGG activity from 3 d to 5 d in broccoli
sprouts [33]. Correspondingly, we also found the TGG levels were high enough for GSL
hydrolysis in broccoli seeds [20]. In this study, there was no GSL detected in the ground
sprout slurry, indicating GSL had been degraded completely. Besides classical TGG, some
atypical TGGs such as BGLU28 and BGLU30 [37] might also have the capacity to hydrolyze
GRA and GER directly. In addition to TGGs themselves, some specifier proteins also
play important roles in the TGG-GSL pathway by redirecting the breakdown products of
GSL. For example, the functional ESP from the Arabidopsis ecotype Ler could convert
alkyl GSLs into corresponding simple nitriles [40]. Furthermore, many studies have also
highlighted the essential role of ESPs in promoting the production of nitriles from GRA
in broccoli florets and sprouts [13,23,43]. Recently, we isolated four copies of BolESPs
and found BolESP2 was the most abundant isoform [24]. Silencing BolESP2 not only
effectively increased the total ITCs but also decreased the total epithionitriles in Chinese
kale. So, we suspected that the two BolESPs might play important roles in promoting
nitrile production in broccoli sprouts. However, it is well known that ESP activity can
be suppressed by EPITHIOSPECIFIER MODIFIER1 (ESM1) [44]. This suggests that the
effect of the BolESPs may have been partially suppressed by the highly expressed BolESM1s
after seed germination, resulting in the production of ITC. Except for ESPs, prior research
has confirmed the involvement of NSPs as cofactors in nitrile formation in Arabidopsis,
notably NSP1, NSP2, and NSP5 [25,41,45]. The results of the up-regulation of several
BolNSPs strongly suggested that these BolNSP genes likely promoted nitrile production
during the hydrolysis of GSLs in broccoli sprouts. Similar to NSPs in protein structure,
myrosinase-binding proteins (MBPs) also have jacalin domains. And they could form stable
complexes with TGGs in Brassica napus [46,47]. A BolMBP2 (BolC6t35814H) was highly
expressed during broccoli sprout development, especially at 3 d and 5 d (Table S3). Its
biological function remains unknown but is possibly associated with GSL hydrolysis. The
RNA-seq data not only explained that the major breakdown products in broccoli sprouts
were nitriles rather than ITCs but also illustrated the complexity of the TGG-GSL system in
the development of broccoli sprouts.

5. Conclusions

Our results showed that the contents of GRA and GER, along with the proportion of
ITCs, showed a constant decreasing trend during broccoli sprout development, and the
main breakdown products from GRA and GER were nitriles instead of ITCs. Furthermore,
transcriptome analysis revealed that specifier proteins, notably BolESP and BolNSP in the
GSL-TGG pathway, likely contributed to the conversion of GSLs into nitriles in broccoli
sprouts. In the future, proper pre-harvest and post-harvest handling and processing
methods need to be explored to avoid or alleviate the loss of health-promoting GSLs in
broccoli sprout production. More importantly, people should pay greater attention to
promoting ITC formation during GSL hydrolysis.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/plants13060750/s1, Figure S1: DEGs analysis for 3 d vs 1 d (up), 5 d vs
1 d (middle) and 5 d vs 3 d (down); Figure S2: KEGG analysis for 3 d vs 1 d (up), 5 d vs 1 d
(middle), 5 d vs 3 d (down); Table S1: The primers designed and used for qRT-PCR in this study;
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