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Abstract: Aboveground biomass (AGB) is a key indicator of the physiological status and productivity
of grasslands, and its accurate estimation is essential for understanding regional carbon cycles. In
this study, we developed a suitable AGB model for grasslands in Xinjiang based on the random
forest algorithm, using AGB observation data, remote sensing vegetation indices, and meteorological
data. We estimated the grassland AGB from 2000 to 2022, analyzed its spatiotemporal changes, and
explored its response to climatic factors. The results showed that (1) the model was reliable (R2 = 0.55,
RMSE = 64.33 g·m−2) and accurately estimated the AGB of grassland in Xinjiang; (2) the spatial
distribution of grassland AGB in Xinjiang showed high levels in the northwest and low values in the
southeast. AGB showed a growing trend in most areas, with a share of 61.19%. Among these areas,
lowland meadows showed the fastest growth, with an average annual increment of 0.65 g·m−2·a−1;
and (3) Xinjiang’s climate exhibited characteristics of warm humidification, and grassland AGB
showed a higher correlation with precipitation than temperature. Developing remote sensing models
based on random forest algorithms proves an effective approach for estimating AGB, providing
fundamental data for maintaining the balance between grass and livestock and for the sustainable
use and conservation of grassland resources in Xinjiang, China.

Keywords: random forest; grassland type; aboveground biomass; climatic factors

1. Introduction

Grasslands are one of the most widespread terrestrial ecosystems globally and play a
crucial role in global carbon cycling, climate regulation, and water conservation [1,2]. The
aboveground biomass (AGB) of grassland is a crucial indicator for evaluating vegetation
use and monitoring grassland ecosystems. Efficient and accurate estimation of AGB in
natural grasslands is crucial for understanding their carbon source and sink capacities [3,4].
The rapid development of pastoral economies and global warming have led to severe
degradation of grasslands and a decline in ecosystem stability, ultimately affecting the car-
bon sequestration capacity [5]. There are abundant grassland resources in Xinjiang, China,
which have high ecological and economic value [6,7]. Utilizing remote sensing technologies
with high spatial and temporal resolutions and efficient machine learning algorithms is a
valuable approach for estimating grassland biomass, enabling the monitoring of grassland
growth and managing the balance between grass and livestock [8,9]. Therefore, studying
the patterns of grassland change and its meteorological factors in the context of global
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warming and environmental degradation is crucial for protecting and improving natural
grasslands in Xinjiang [10,11].

The estimation of grassland biomass can be improved using various methods. Tra-
ditional harvesting methods with low estimation accuracy are time-consuming, mak-
ing it challenging to predict biomass on a large scale. Therefore, remote sensing data
with high spatial and temporal resolutions can improve the inversion accuracy of mod-
els [12,13]. High-resolution SPOT and Landsat satellite data are suitable for small-scale
estimations [14,15]. There are many options for the spatiotemporal resolution of MODIS
remote sensing data that can be used to estimate grassland AGB in different regions [16–18].
Additionally, AGB estimation is mostly based on the linear regression of univariate vegeta-
tion indices [19,20], and there is some level of uncertainty in the estimation using a single
factor. The estimation of AGB is also influenced by various factors such as climate change,
human activities, and geography. However, most studies have not fully considered the
effects of different variables [21]. Studies have shown that the warming and humidifica-
tion trends caused by climate change make the ecological environment more suitable for
promoting the growth of local grassland biomass [22]. Temperature changes affect various
aspects, such as the start date and duration of grass-growing seasons, whereas precipitation
impacts vegetation cover and grassland biomass [23].

In recent years, the use of remote sensing data to upgrade measurements to the
regional scale and apply machine learning methods for AGB estimation has become pop-
ular [24]. Machine learning algorithms can handle nonlinear relationships and complex
data structures and can automatically select feature variables and optimize parameters
to improve the accuracy and generalization of grassland biomass prediction [25]. The
commonly used machine learning algorithms for estimating aboveground biomass include
random forest, support vector machine, neural networks, and regression analysis, among
others. These algorithms are robust and enhance the generalizability of the grassland
AGB model compared to traditional linear regression. For instance, the AGB model based
on the random forest algorithm developed by Yu et al. using MODIS VIs, topographic,
and climatic factors outperformed the single NDVI regression model for grassland AGB
estimation on the Qinghai–Tibet Plateau [26]. Compared to bagging, boost, and support
vector machine models, the AGB model using the random forest algorithm obtained higher
values for the mean Pearson coefficient and the symmetric index of agreement on the Loess
Plateau [27]. Additionally, some studies compared the effectiveness of various machine
learning algorithms for modeling grassland biomass and found that the model accuracy
of the AGB model using the random forest algorithm was more reliable [28,29]. It pro-
vides stronger generalization capability than traditional linear regression and achieves
higher accuracy and reliability in different regions and conditions, making it become a
very promising estimation method. In addition, previous studies have combined multiple
variables to develop high-precision AGB models using random forest algorithms for the
Loess Plateau and the Sanjiangyuan area [27,30]. However, there have been only limited
studies on the prediction of grassland AGB and its spatiotemporal variations in different
types of grasslands in Xinjiang at a regional scale. Due to Xinjiang’s vast grasslands, diverse
topographical features, and unique climate, the distribution of grasslands is highly uneven
across the region. Therefore, it is necessary to conduct an analysis based on different types
of grasslands.

In this study, we created an estimation model for grassland AGB in Xinjiang by
combining ground-truthed grassland AGB data, considering climate, vegetation index,
and other factors, and explored the spatial and temporal variations in grassland AGB
and its relationship with climatic factors. This study aimed to (1) establish a suitable
AGB model for the Xinjiang grasslands based on the random forest algorithm; (2) analyze
the spatial and temporal changes in grassland AGB in Xinjiang from 2000 to 2022; and
(3) explore the impact of climate change on the spatiotemporal dynamics of grassland AGB
in Xinjiang. The results can provide technical support for accurately estimating grassland
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AGB, understanding the status of grassland resources, and informing the sustainable
development of grasslands in Xinjiang.

2. Results
2.1. Model Establishment and Accuracy Evaluation

Figure 1 shows the correlation between the modeling variables and grassland AGB in
Xinjiang. The correlation of environmental variables with grassland AGB, from highest to
lowest, were EVI (0.48) > NDVI (0.45) > LAI (0.42) > ET (0.36) > GPP (0.35) > PRE (0.08) >
TEMP (−0.07). Among these parameters, EVI exhibits the highest correlation with AGB
(R = 0.48, p < 0.01).
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Figure 1. Correlation between AGB and various environmental variables (** represent significance at
the levels of 1%).

This study aimed to evaluate the accuracy of the grassland AGB estimation model.
A total of 20% of the sample data was used to validate the accuracy, and a scatter plot
was created to compare the estimated AGB from the model with the measured AGB in
the field. In the test set, the estimated AGB values were concentrated between 0 and
200 g·m−2, with a coefficient of determination (R2) and the root mean square error (RMSE)
of 0.55 and 64.33 g·m−2, respectively (Figure 2a). The AGB model tended to underestimate
some high AGB values and overestimate some low values. However, there was a good
linear relationship between the estimated and measured AGB values. When the measured
grassland AGB was below 100 g·m−2, most of the estimated AGB values were higher
than the measured values, while for measurements above 100 g·m−2, the estimated values
tended to be lower. Figure 2b shows that the estimated grassland AGB and measured
grassland AGB have nearly equal means of 85.33 g·m−2 and 85.39 g·m−2, respectively, with
over 75% of AGB values being less than 100 g·m−2. In summary, the AGB model accurately
predicted AGB values and provided a reliable estimate of grassland AGB in Xinjiang.
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Figure 2. The relationship between the measured grassland AGB and the estimated grassland AGB
in Xinjiang. (a) Linear correlation. (b) Violin plot.

2.2. Spatial and Temporal Dynamic Distribution of Grassland AGB in Xinjiang
2.2.1. Descriptive Statistics of Measured Grassland AGB

From 2000 to 2022, the annual mean values of AGB of different grassland types in
Xinjiang ranged from 68.09 to 137.21 g·m−2 (Table 1). Among the three major grassland
types, the meadow AGB was the highest, followed by steppe AGB, and then desert AGB.
Furthermore, according to the grassland area, the meadow makes up 23% of the total
grassland area, with the lowland meadow class accounting for the highest percentage
(50.42%), whereas the mean montane meadow AGB was the highest (137.21 g·m−2). The
steppe accounted for 34% of the total grassland area in Xinjiang, with the temperate desert
steppe (37.60%) and alpine steppe (31.91%) having relatively large areas, whereas the
temperate meadow steppe AGB had the largest mean value (119.56 g·m−2). The desert in
Xinjiang had the most widespread distribution, accounting for 43% of the grassland area.
The area was dominated by the temperate desert (78.00%), with the largest mean AGB value
being in the temperate steppe desert (95.51 g·m−2), and the smallest AGB was the alpine
desert (68.09 g·m−2). Additionally, the alpine desert with the smallest grassland area (1.17%)
had the lowest mean AGB of 68.09 g·m−2, with a standard deviation of 2.81 g·m−2 and
Coefficient variable (CV) of 0.04, indicating that its AGB was less volatile and less dispersed.
The temperate desert with the largest grassland area (33.54%) had an AGB of 88.19 g·m−2,
with the highest CV (0.05), indicating greater dispersion of temperate desert AGB.

Table 1. Descriptive statistics of grassland AGB in Xinjiang from 2000 to 2022.

Grassland Types Mean Value
(g·m−2)

Maximum Value
(g·m−2)

Minimum Value
(g·m−2)

Standard
Deviation (g·m−2)

Coefficient
Variable

Lowland meadow (M1) 95.69 107.59 87.50 5.20 0.05
Montane meadow (M2) 137.21 152.77 122.18 6.94 0.05
Alpine meadow (M3) 128.91 140.02 120.89 4.98 0.04

Meadow (M) 120.60 152.77 87.50 18.95 0.16
Temperate meadow steppe (S1) 119.56 135.62 110.52 5.86 0.05

Temperate steppe (S2) 107.64 116.65 102.00 3.20 0.03
Temperate desert steppe (S3) 95.91 102.49 90.41 3.08 0.03

Alpine steppe (S4) 91.33 96.59 85.10 3.37 0.04
Steppe (S) 103.61 135.62 85.10 11.72 0.11

Temperate steppe desert (D1) 90.51 96.03 83.76 3.08 0.03
Temperate desert (D2) 88.19 97.90 82.17 4.32 0.05

Alpine desert (D3) 68.09 73.50 63.51 2.81 0.04
Desert (D) 82.27 97.90 63.51 10.70 0.13

2.2.2. Temporal Changes in Grassland AGB in Xinjiang from 2000 to 2022

The temporal distribution of the mean grassland AGB in Xinjiang from 2000 to 2022 is
shown in Figure 3. The AGB of six grassland types, including lowland meadow, temperate
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steppe desert, temperate desert, alpine desert, temperate desert steppe, and alpine steppe,
increased significantly in Xinjiang, with lowland meadow AGB increasing significantly
and at the fastest rate (θ = 0.65, p < 0.01), followed by alpine steppe AGB and temperate
desert AGB (θ = 0.37, p < 0.01), and desert grassland AGB (p < 0.05). Additionally, montane
meadow AGB showed a slight decrease, while other grassland types showed an increasing
trend, suggesting that the grassland AGB generally increased from 2000 to 2022.
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According to the results of the MK mutation test (Table 2), there was a difference in
the timing of AGB mutation. We found that AGB of the alpine grasslands AGB (alpine
meadow, alpine steppe, and alpine desert) mutated in 2014, while the AGB of lowland
meadow, temperate desert steppe, and temperate steppe desert mutated in 2009. Addition-
ally, temperate steppe and temperate desert had two mutation points, whereas montane
meadow and temperate meadow steppe had four mutation points, with the highest CV
(0.05) and high volatility.

Table 2. Mutation time of grassland AGB.

Grassland Types Year of Mutation

Lowland meadow (M1) 2009
Montane meadow (M2) 2004/2010/2014/2022
Alpine meadow (M3) 2014

Temperate meadow steppe (S1) 2005/2007/2010/2013
Temperate steppe (S2) 2003/2014

Temperate desert steppe (S3) 2009
Alpine steppe (S4) 2014

Temperate steppe desert (D1) 2009
Temperate desert (D2) 2006/2009

Alpine desert (D3) 2014
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2.2.3. Spatial Distribution of Grassland AGB in Xinjiang from 2000 to 2022

The spatial distribution of grassland AGB in Xinjiang from 2000 to 2022 is shown in
Figure 4a. The high AGB values in the northwestern Yili region, due to its warm climate and
abundant rainfall, were suitable for alpine meadows, montane meadows, and temperate
meadows. High AGB values were also distributed in mountainous regions such as the Altai
and western Tianshan Mountains. The Junggar Basin was dominated by desert grasslands,
and its climate was arid and water-scarce with low AGB. The Tarim Basin, which has a
large lowland meadow area, had a high AGB. Furthermore, a high AGB was observed
in northern Xinjiang. However, AGB was lower in southeastern Xinjiang. In summary,
AGB in Xinjiang showed a spatial distribution of high in the northwest and low in the
southeast. Figure 4b shows that high CV values were mainly distributed in the Yili River
Valley region in the northwest, the Tarim Basin peripheral area, and the northern part of
Xinjiang, indicating that grasslands in regions with higher AGB had greater volatility.
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The change in grassland AGB in Xinjiang from 2000 to 2022 is shown in Figure 5.
The overall trend of AGB had an increasing trend. The growing trend of grassland AGB
accounted for 61.19%, of which the significant growth accounted for 16.15%, mainly in the
Tarim Basin’s peripheral area and southeastern Xinjiang. The area of the decreasing trend in
grassland AGB was 38.81%, which is located in the northwest of Xinjiang. Figure 5c shows
that the trend of non-significant increase accounts for the highest proportion, ranging from
40.29% to 58.51%. Among the different grassland types, the lowland meadow had the
highest proportion of increasing trends (79.50%), while the montane meadow accounted
for the smallest proportion (46.21%). The proportion of increasing trends in most grassland
types exceeded 50%.

Plants 2024, 13, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 5. (a,b) Spatial distribution of grassland AGB trends and significance tests in Xinjiang from 
2000 to 2022. (c) Statistical data on AGB trends for different grassland types. 

2.3. Influence of Climatic Factors on Grassland AGB Dynamics 
2.3.1. Spatial and Temporal Distribution of Climatic Conditions in Grassland AGB 

The mean annual temperature of grasslands in Xinjiang from 2000 to 2022 was 2.98 
°C, with higher temperatures mainly distributed in the Junggar Basin and margin of the 
Tarim Basin (Figure 6a). In addition, most of the area (54.65%) showed a warming trend 
from 2000 to 2022, with an average annual warming trend mainly between 0 and 0.02 
°C·a−1 (29.8%), and the average warming trend reaching 0.01 °C·a−1 (Figure 6c). In other 
words, the temperature of the grasslands in Xinjiang showed an increasing trend from 
2000 to 2022. In addition, the average precipitation in Xinjiang was 288.14 mm during this 
period, with higher values in the Yili region and southeast Xinjiang (Figure 6b). The 
annual average precipitation trend was mainly 0–2 mm·a−1 (35.78% of the area), with an 
average precipitation magnitude of 1.59 mm·a−1 (Figure 6d). In total, 74.66% of the area 
showed an increasing trend, indicating that the precipitation of grassland increased from 
2000 to 2022. The climate was characterized by warming and humidification. Importantly, 
warming and humidification trends positively impacted the growth of grasslands in 
Xinjiang. 

Figure 5. (a,b) Spatial distribution of grassland AGB trends and significance tests in Xinjiang from
2000 to 2022. (c) Statistical data on AGB trends for different grassland types.



Plants 2024, 13, 548 7 of 17

2.3. Influence of Climatic Factors on Grassland AGB Dynamics
2.3.1. Spatial and Temporal Distribution of Climatic Conditions in Grassland AGB

The mean annual temperature of grasslands in Xinjiang from 2000 to 2022 was 2.98 ◦C,
with higher temperatures mainly distributed in the Junggar Basin and margin of the Tarim
Basin (Figure 6a). In addition, most of the area (54.65%) showed a warming trend from
2000 to 2022, with an average annual warming trend mainly between 0 and 0.02 ◦C·a−1

(29.8%), and the average warming trend reaching 0.01 ◦C·a−1 (Figure 6c). In other words,
the temperature of the grasslands in Xinjiang showed an increasing trend from 2000 to
2022. In addition, the average precipitation in Xinjiang was 288.14 mm during this period,
with higher values in the Yili region and southeast Xinjiang (Figure 6b). The annual
average precipitation trend was mainly 0–2 mm·a−1 (35.78% of the area), with an average
precipitation magnitude of 1.59 mm·a−1 (Figure 6d). In total, 74.66% of the area showed an
increasing trend, indicating that the precipitation of grassland increased from 2000 to 2022.
The climate was characterized by warming and humidification. Importantly, warming and
humidification trends positively impacted the growth of grasslands in Xinjiang.
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Figure 6. Magnitude and trend in mean annual temperature and mean annual precipitation in
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precipitation (mm); (c) the trend of temperature (◦C·a−1); (d) the trend of precipitation (◦C·a−1).

2.3.2. Correlation between Climatic Factors and Grassland AGB

The correlation between grassland AGB and temperature from 2000 to 2022 is shown
in Figure 7. There was a positive correlation between Xinjiang grassland AGB and tem-
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perature, accounting for 52.33% of the total correlation. A significant positive correlation
accounted for 3.09% and was mainly distributed in the Altay region in northern Xinjiang
and the Hami region in eastern Xinjiang. Furthermore, different grassland types exhibited
varying proportions of correlation (Figure 8a), with temperate steppe deserts having the
highest positive correlation (62.25%) and highest significant positive correlation (5.76%)
and alpine deserts having the lowest proportion (36.96%). The study also showed that
the alpine desert had the highest proportion of negative correlations (63.04%), whereas
the temperate steppe desert had the lowest (37.75%). In conclusion, there were spatial
differences in the correlations between different grassland types and temperature, and the
AGB demonstrated a positive correlation with temperature.

Plants 2024, 13, x FOR PEER REVIEW 9 of 19 
 

 

correlated, particularly in the northern part of Xinjiang. Significance testing for different 
grassland types revealed that the alpine meadows had the highest proportion of positive 
correlation (69.61%), whereas lowland meadows had the highest proportion of negative 
correlations (61.72%). Additionally, temperate desert grasslands (17.36%) and lowland 
meadows (3.85%) had the highest and lowest proportions of significant positive 
correlations with precipitation, respectively (Figure 8b). Overall, the different types of 
grasslands in Xinjiang were positively correlated with precipitation. From 2000 to 2022, 
the correlation between grassland AGB and precipitation was greater than that with 
temperature. 

 
Figure 7. Spatial distribution of correlation and significance test between AGB and meteorological 
factors in Xinjiang from 2000 to 2022: (a,c) temperature and (b,d) precipitation. 
Figure 7. Spatial distribution of correlation and significance test between AGB and meteorological
factors in Xinjiang from 2000 to 2022: (a,c) temperature and (b,d) precipitation.

There was a positive correlation between grassland AGB and precipitation (Figure 7b,d),
accounting for 54.35% of the total area, with a significant positive correlation accounting
for 8.38%, mainly found in the Yili River Valley region in western Xinjiang and the northern
and eastern parts of Xinjiang. On the other hand, negative correlation accounted for 45.65%
of the area, with only 4.96% being significantly negatively correlated, particularly in the
northern part of Xinjiang. Significance testing for different grassland types revealed that
the alpine meadows had the highest proportion of positive correlation (69.61%), whereas
lowland meadows had the highest proportion of negative correlations (61.72%). Addition-
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ally, temperate desert grasslands (17.36%) and lowland meadows (3.85%) had the highest
and lowest proportions of significant positive correlations with precipitation, respectively
(Figure 8b). Overall, the different types of grasslands in Xinjiang were positively corre-
lated with precipitation. From 2000 to 2022, the correlation between grassland AGB and
precipitation was greater than that with temperature.
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3. Discussion
3.1. Comparison of AGB Estimates for Different Grasslands

Xinjiang has a variety of grasslands distributed across different regions. Previous
studies have shown that the productivity and coverage of grasslands in Xinjiang generally
follow the order meadow > grassland > desert [31–35]. Owing to limited ground sample
data and significant vertical differences in Xinjiang’s grasslands, there is considerable
uncertainty in estimating the grassland AGB in the large region of Xinjiang using remote
sensing modeling. Therefore, based on a large number of field observation sample data,
this study used an AGB model based on a random forest algorithm to invert the mean
value of grassland AGB in Xinjiang to 97.73 g·m−2. The mean AGB of desert grassland
was 82.27 g·m−2 in this study, which was lower than the mean AGB calculated by Fei
et al. [36] in Northern Xinjiang (115.42 g·m−2). These differences may be due to the location
of the sampling sites, the choice of estimation models, or sources of modeling variation.
Furthermore, the grassland AGB was the highest in the meadow, second highest in the
steppe, and lowest in the desert [37], which is consistent with the results of this study. This
study found that the highest value of AGB from 2000 to 2022 was in the montane meadow
(152.77 g·m−2) in 2016, while the lowest value was in the alpine desert (63.50 g·m−2) in
2003.

This study examined the spatial distribution of grassland AGB in Xinjiang. It found
that the mean values of grassland AGB in the Yili Valley, Altay Mountains, and western
Tianshan Mountains were high and showed an increasing trend, whereas that of the
temperate desert grassland AGB in the Junggar Basin was low and showed a decreasing
trend over a large area. Chen et al. [38] noted an increasing trend in grassland productivity
in the Altay Mountains and Tianshan Mountains but a decreasing trend in the Junggar
Basin, which was similar to the results of this study. Furthermore, the grassland AGB in
Xinjiang showed spatial distribution characteristics of being high in the northwest and low
in the southeast. The overall trend was upward, which was similar to the results of Zhang
et al. [39] and Wu et al. [40].
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3.2. The Main Reasons for the Improvement in AGB in Xinjiang Grassland

The overall grassland AGB has shown a fluctuating upward trend in Xinjiang from
2000 to 2022, which can be explained by the following factors: (1) after 2000, the climate in
Xinjiang showed a warm and humid trend [41–43], and the increase in temperature and pre-
cipitation promoted the growth of grassland; (2) China implemented the “returning pasture
to grassland” project and fully implemented the grassland ecological protection subsidy
and reward mechanism, reversing the continuous deterioration of grassland without affect-
ing the economic well-being of herders [44]; and (3) Xinjiang has implemented measures
such as a grazing ban, grazing rest, zoning rotational grazing, and the establishment of
protected areas to reduce the impact of human disturbance on grasslands [45–47].

In addition, measurement of the impacts of climate change and human actions on
ecological parameters, such as grassland biomass and grassland productivity, showed
that climate change had a relatively limited impact on changes in vegetation indicators in
the arid and semi-arid regions of Xinjiang. Human activities have greatly impacted the
ecosystem processes in Xinjiang’s arid and semi-arid zones [48]. In conclusion, the overall
trend of grassland AGB in Xinjiang showed a fluctuating upward trend from 2000 to 2022.
A series of grassland resource protection measures carried out in Xinjiang in recent years
have been effective, leading to a significant improvement in the ecological environment of
the grassland.

3.3. Limitations and Future Prospects

Compared to univariate and multivariate regression models, the random forest algo-
rithm demonstrates higher robustness and predictive ability. It is better equipped to handle
nonlinear problems and accurately depict the relationship between grassland biomass and
modeling variables [49,50]. However, these machine learning models have some limitations
and uncertainties. The random forest algorithm prediction is the average of all decision
trees, which tends to converge to the mean of the training data, leading to an overestimation
or underestimation of AGB [51]. The physical mechanisms of the random forest algorithm
for estimating AGB are unclear, but ecosystem models and physical models can better ex-
plain the spatiotemporal variations in AGB [52]. Furthermore, the fragmentation of altitude
and grassland type also affects the layout of sampling points and impacts the accuracy of
the estimation model [53]. Xinjiang’s grassland AGB exhibits significant spatial variation
owing to its intricate topographical and climatic conditions. This study considered seven
variables and future research should incorporate additional indices such as vegetation
index variables [50,53] and climate variables [54] to improve the accuracy of the model.

To better understand the distribution and growth conditions of different grassland
types in Xinjiang, it is crucial to continue collecting AGB data and increase the sample size.
A combination of machine learning, ecosystem, and physical models should be explored,
and more drivers should be screened for different grassland types to develop high-precision
AGB inversion models. This will help generate more accurate spatiotemporal distribution
maps of AGB in Xinjiang, which is crucial for long-term monitoring and inventory of
grassland resources.

4. Materials and Methods
4.1. Study Area

Xinjiang is located in the central Eurasian continent and on the northwest border of
China (Figure 9). It is a temperate continental climate with an arid climate and rare annual
precipitation, which occurs mainly from June to August. Precipitation varies greatly in
different regions, with the north having higher precipitation than the south, the west having
higher precipitation than the east, and the mountains having higher precipitation than the
plains. Furthermore, Xinjiang experiences hot summers with small temperature differences
between the north and south and cold winters with large temperature differences between
the north and south. Xinjiang has complex topographical features, including the Altai
Mountains, Junggar Basin, Tianshan Mountains, Tarim Basin, and the Kunlun Mountains,
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from north to south. The vast area, complex climatic conditions, and topography of Xinjiang
have created rich grassland. There are ten types of grasslands in the mountainous and plain
areas of Xinjiang, including lowland meadow (11.60%), montane meadow (5.39%), alpine
meadow (6.01%), temperate steppe (8.21%), temperate desert steppe (12.78%), temperate
meadow steppe (2.16%), alpine steppe (10.85%) temperate steppe desert (8.29%), temperate
desert (33.54%), and alpine desert (1.17%).
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4.2. Data Sources
4.2.1. Sample Data

Grassland biomass data were collected mainly from field surveys during the growing
season over the past ten years. The sample points were deployed in a representative and
random manner, following the classification principles of grassland types, topographic and
geomorphological differences, and the selection of sample plots with flat terrain and typical
vegetation types based on the spatial distribution characteristics of different grassland
types. Each sample plot was 100 × 100 m, and a small sample square (1 m × 1 m) was
placed in each of its four corners and center positions, resulting in five sample squares.
The latitude, longitude, elevation, grassland type, and fresh weight at each sampling point
were recorded. AGB of grassland was measured and weighed using the flush mowing
method, which included collecting samples and drying them in the laboratory at 65 ◦C for
48 h to constant weight before measuring their dry weights (accuracy of 0.01 g).

4.2.2. Remote Sensing and Climate Dataset

Grassland types were used to classify and estimate the AGB of natural grasslands
in Xinjiang. The grassland-type data were based on the 1995 1:1 million grassland-type
map of the National Earth System Science Data Center, which was obtained using MSS and
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TM satellite remote sensing data from the mid-1980s and early 1990s, as well as various
geographic data sources.

Seven variables, including temperature (TMP), precipitation (PRE), normalized differ-
ence vegetation index (NDVI), enhanced vegetation index (EVI), gross primary productivity
(GPP), leaf area index (LAI), and evapotranspiration (ET), were used to construct a random
forest algorithm for grassland types in combination with measured data. The meteoro-
logical and digital elevation model (DEM) data were collected from the Data Center for
Resources and Environmental Sciences at the Chinese Academy of Sciences. MODIS-NDVI,
MODIS-EVI, MODIS-GPP, MODIS-LAI, and MODIS-ET were obtained from the National
Aeronautics and Space Administration. The data acquisition time was the same as the
collection time for the sample plot data, which was unified in July of the same year. The
data sources are listed in Table 3.

Table 3. Introduction to data sources.

Data Year Resolution The Data Source

Grassland data 1995 / http://www.geodata.cn/
(accessed on 10 March 2022)

Temperature 2000–2022 1 km http://www.resdc.cn
(accessed on 5 April 2022)

Precipitation 2000–2022 1 km http://www.resdc.cn
(accessed on 10 April 2022)

DEM 1995 90 m http://www.resdc.cn
(accessed on 20 May 2022)

MODIS-NDVI 2000–2022 500 m https://ladsweb.modaps.eosdis.nasa.gov/
(accessed on 12 May 2023)

MODIS-EVI 2000–2022 500 m https://ladwedb.modaps.eosdis.nasa.gov/
(accessed on 19 May 2023)

MODIS-GPP 2000–2022 500 m https://ladwedb.modaps.eosdis.nasa.gov/
(accessed on 12 June 2023)

MODIS-LAI 2000–2022 500 m https://ladwedb.modaps.eosdis.nasa.gov/
(accessed on 8 July 2023)

MODIS-ET 2000–2022 500 m https://ladwedb.modaps.eosdis.nasa.gov/
(accessed on 20 July 2023)

Temperature and precipitation data from 105 meteorological stations in Xinjiang with
complete references and completeness were selected based on the requirements of the
study area. Additionally, temperature and precipitation data were interpolated using
ANUSPLIN4.4 to obtain meteorological remote sensing data with a spatial resolution of
1 km, which were the driving factors.

4.3. Methods
4.3.1. The AGB Model Based on Random Forest Algorithm

Random forest algorithm is a supervised machine learning algorithm based on a
decision tree proposed by Breiman in 2001 [55]. It improves the prediction accuracy
of the model by summarizing a large number of decision trees and is a new algorithm
characterized by rapid calculation and high accuracy that may replace traditional machine
learning methods such as neural networks. Especially for dealing with big data and a large
number of variables, the effect of a large number of variables can be predicted very well,
and it is known as one of the best algorithms at present [56].

The prediction model based on the random forest algorithm is a branch of the machine
learning model, which is a kind of integrated model. It is an algorithm that integrates
multiple trees via the idea of integrated learning, and its basic unit is the decision tree. There
are two important concepts involved here: decision tree and ensemble learning. A decision
tree is a tree-like structure where each internal node represents a test on an attribute, each
branch represents a test output, and each leaf node represents a class. In a word, a decision
tree is a series of judgments to classify data based on their characteristics. Ensemble learning

http://www.geodata.cn/
http://www.resdc.cn
http://www.resdc.cn
http://www.resdc.cn
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladwedb.modaps.eosdis.nasa.gov/
https://ladwedb.modaps.eosdis.nasa.gov/
https://ladwedb.modaps.eosdis.nasa.gov/
https://ladwedb.modaps.eosdis.nasa.gov/
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solves a single prediction problem by building a combination of several models. It works
by generating multiple models that learn and make predictions independently and form a
final prediction that is better than any single model [57].

In general, it builds a forest of many decision trees by randomly generating hundreds
to thousands of decision trees and then selects the tree with the highest degree of repetition
as the final result (Figure 10a). The following are six steps for constructing a regression
prediction model using a random forest algorithm:
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Figure 10. (a) Flowchart of the random forest algorithm. (b) Flowchart of the grassland AGB
estimation.

(1) Collect data sets: Collect data sets that will be used for training in the random
forest model.

(2) Random sampling: Multiple sub-data sets are randomly extracted from the training
data set. These sub-data sets are usually the same size as the original data set, but their
samples are randomly selected.

(3) Construct a decision tree: For each sub-data set, a decision tree is built indepen-
dently, and all the data run along the tree. All of the data are run down the tree, and
proximities are computed for each pair of cases.

(4) Integrate decision tree: Using the constructed decision tree to form a random forest.
For regression problems, the average method is usually used, that is, the average of the
regression results of multiple trees.

(5) Predict and evaluate its performance: Use a constructed random forest model to
make regression predictions. Validation data sets can be used to evaluate the performance
of the model.

(6) Adjust the parameters and apply the model: According to the results of the model
performance evaluation, the parameters are adjusted to optimize the performance of the
model and applied to the new data for regression prediction.

NDVI, EVI, GPP, ET, LAI, TMP, and PRE were selected as independent variables to
build the model in this paper (Figure 10b). The measured grassland AGB was used as
the dependent variable. They belong to the step of collecting the dataset. In addition,
the random forest algorithm was built using the Scikit-learn tool in Python3.9, and the
importance of each independent variable was evaluated. They belong to the step of
constructing and integrating decision trees. Machine learning methods typically require
cross-validation to detect overfitting [58]. The optimal number of inputs was determined
using a k-fold cross-validation. This study employed 10-fold cross-validation to ensure that
each subgroup participated in both training and testing, thereby reducing the generalization
error. Furthermore, this step involves evaluating the model performance and tuning the
parameters to ensure the optimized model can be applied to regression prediction.
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4.3.2. Model Validation

We randomly selected 80% of the measured samples for modeling analysis and 20% for
model verification. This study used the coefficient of determination (R2), root mean square
error (RMSE), and mean absolute error (MAE) to assess model accuracy. R2 indicates the
proximity of the observed values to the fitted regression line or the proportion of variance
explained by the predictors. RMSE calculates the error between predicted and measured
values. MAE calculates the average absolute differences between predicted and measured
values. The closer R2 is to 1, and the smaller the RMSE and MAE, the stronger the model’s
estimation ability and the higher its accuracy and stability. The calculation formula for
MAE is as follows:

MAE =
1
N ∑N

i=1

∣∣Yi − Yi
′∣∣ (1)

where Yi is the measured grassland AGB. Yi
′ is the simulated grassland AGB. Y is the

average value of measured grassland AGB. N is the total number of sample points.

4.3.3. Trend Analysis

The temporal trend of the estimated AGB dataset was analyzed using univariate linear
regression to calculate the AGB change rate for each pixel, which reflects the overall spatial
change pattern. The formula is

Slope =
n × ∑n

i=1 i × xi − (∑n
i=1 xi)(∑n

i=1 i)

n × ∑n
i=1 i2 − (∑n

i=1 i)2 (2)

where xi is the AGB value in year i. n is the number of years, and i ranges from 1 to 23.
Slope is the slope of the regression equation. When the slope is greater than 0, the AGB of
the grassland shows an increasing trend and vice versa.

4.3.4. Correlation Analysis

To study the grassland AGB in Xinjiang and its correlation with temperature and
precipitation factors, we used the following equation:

Rxy =
∑n

i=1 (xi − x)(yi − y)√
∑n

i=1 (xi − x)2∑n
i=1(yi − y)2

(3)

where Rxy is the correlation coefficient of variables x and y; xi is the AGB value in year i,
yi is the value of temperature and precipitation in year i. x and y are the mean values of
temperature and precipitation, respectively.

4.3.5. Mann–Kendall Mutation Test

The Mann–Kendall test is a non-parametric statistical test. For mutation testing of
time series (x), we need to define a statistic. The calculation equation was as follows:

Sk =
k

∑
i=1

i=1

∑
j

Mij, (k = 2, 3, . . . , n) (4)

where n is the sample size. When xi > xj, Mij = 1; when xi < xj, Mij = 0, (j = 1, 2, · · · , i).
Assuming that the time series are randomly independent, we define the statistics:

UFk =
Sk − Sk√
Var(Sk)

, (k = 1, 2, . . . , n) (5)

where Sk = k(k + 1)/4; Var(Sk) = k(k − 1)(2k + 5)/72.
UFk is the standard normal distribution, which is a sequence of statistics calculated

in the order of the time series. We are then given the significance level a. If |UFk| > Uα,
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there is a significant change in trend. We sort the time series in reverse order and repeat the
above equation and make UBk = −UFk, (k = n, n − 1, n − 2, . . . , 2, 1), and UB1 = 0. When
UFk > 0, the series is on an upward trend; when UFk < 0, the series is on a downward
trend, and exceeding the threshold indicates a clear trend in the series. The intersection of
the two curves, UFk and UBk, is the point at which the mutation begins.

5. Conclusions

In this study, we developed a suitable AGB model for Xinjiang grasslands based on the
random forest algorithm, using AGB observation data, remote sensing vegetation indices,
and meteorological data. We analyzed the grassland AGB spatiotemporal changes and
further explored the response of AGB to variations in climatic factors. The main conclusions
are as follows:

The grassland AGB model based on the random forest algorithm fit well, with a
coefficient of determination and RMSE of 0.55 and 64.33 g·m−2, respectively. The estimated
values of the model were close to the actual values, making them suitable for monitoring
changes in grassland AGB.

From 2000 to 2022, the spatial distribution of grassland AGB in Xinjiang showed high
levels in the northwest and low values in the southeast, with an overall upward trend.
All grassland types, except montane meadows, showed increasing trends, with lowland
meadows showing the fastest growth rate (0.65 g·m−2·a−1). Additionally, 16.15% of the
total area showed a significant increase in AGB, mainly located in the periphery of the
Tarim Basin and southeastern part of Xinjiang.

Xinjiang’s climate is experiencing warming and increased humidity, leading to a
positive impact on AGB growth due to increased precipitation and warming. Furthermore,
temperature and precipitation were positively correlated with AGB, but precipitation
correlates better with AGB than temperature.
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