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Abstract: Banded leaf and sheath blight (BLSB) in maize is a soil-borne fungal disease caused by
Rhizoctonia solani Kühn, resulting in significant yield losses. Investigating the genes responsible
for regulating resistance to BLSB is crucial for yield enhancement. In this study, a multiparent
maize population was developed, comprising two recombinant inbred line (RIL) populations totaling
442 F8RILs. The populations were generated by crossing two tropical inbred lines, CML444 and NK40-
1, known for their BLSB resistance, as female parents, with the high-yielding but BLSB-susceptible
inbred line Ye107 serving as the common male parent. Subsequently, we utilized 562,212 high-quality
single nucleotide polymorphisms (SNPs) generated through genotyping-by-sequencing (GBS) for
a comprehensive genome-wide association study (GWAS) aimed at identifying genes responsible
for BLSB resistance. The objectives of this study were to (1) identify SNPs associated with BLSB
resistance through genome-wide association analyses, (2) explore candidate genes regulating BLSB
resistance in maize, and (3) investigate pathways involved in BLSB resistance and discover key
candidate genes through Gene Ontology (GO) analysis. The GWAS analysis revealed nineteen SNPs
significantly associated with BLSB that were consistently identified across four environments in
the GWAS, with phenotypic variation explained (PVE) ranging from 2.48% to 11.71%. Screening a
40 kb region upstream and downstream of the significant SNPs revealed several potential candidate
genes. By integrating information from maize GDB and the NCBI, we identified five novel candidate
genes, namely, Zm00001d009723, Zm00001d009975, Zm00001d009566, Zm00001d009567, located on
chromosome 8, and Zm00001d026376, on chromosome 10, related to BLSB resistance. These candidate
genes exhibit association with various aspects, including maize cell membrane proteins and cell
immune proteins, as well as connections to cell metabolism, transport, transcriptional regulation, and
structural proteins. These proteins and biochemical processes play crucial roles in maize defense
against BLSB. When Rhizoctonia solani invades maize plants, it induces the expression of genes
encoding specific proteins and regulates corresponding metabolic pathways to thwart the invasion of
this fungus. The present study significantly contributes to our understanding of the genetic basis
of BLSB resistance in maize, offering valuable insights into novel candidate genes that could be
instrumental in future breeding efforts to develop maize varieties with enhanced BLSB resistance.

Keywords: maize; BLSB; Rhizoctonia solani; GWAS; candidate gene

1. Introduction

Maize (Zea mays L.) stands as a primary cereal crop cultivated extensively worldwide,
playing a dual role as a staple food source and a vital contributor to fodder and biofuel
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production. However, maize production faces persistent challenges from both biotic and
abiotic stresses, resulting in substantial disruptions to yield and product quality [1]. Notably,
banded leaf and sheath blight (BLSB), caused by the fungus Rhizoctonia solani, has emerged
as a severe threat to maize crops. BLSB is a widespread disease that poses a significant threat
to maize plants globally. This disease holds the potential to cause yield reductions ranging
from 11% to 40% and, under severe conditions, can even lead to complete crop failure [2–4].
According to Chen [5], Songyang County in Zhejiang Province experiences a significant
outbreak of BLSB every autumn. In 1983, the average incidence rate of BLSB was 41.2%,
leading to a 9.3% loss in maize yield. By 1985, the incidence rate surged to 70.8%, causing
a 16.5% yield loss. Tan et al. [6] documented a significant BLSB outbreak in the western
mountains of Hubei Province in 1987. A survey conducted in Zigui County revealed
that out of 185,000 SI of maize, 80,000 SI were affected, with 15,000 acres experiencing
severe infection. The average incidence rate was 98.5%, with some plots recording a 100%
incidence rate. The average disease index was 51.4%, peaking at 64.8%, resulting in an
average yield loss of 18.8%. The primary causative agent, Rhizoctonia solani f. sp. Sasakii
Exner, is prevalent in maize growing regions worldwide, with particular prominence in the
southern parts of China and maize-growing areas in Southeast Asian countries [4]. BLSB,
induced by Rhizoctonia solani, typically manifests in the leaf sheaths of the first to third
nodes of maize plants. The lesions progress gradually upward, extending eventually to the
corn ears and husks, where the characteristic sclerotia form at the lesion sites. Rhizoctonia
solani can disrupt the vascular tissues of maize plants, impeding the normal transport of
water and nutrients and resulting in a significant reduction in maize yield. This disease
tends to thrive in warm and humid climatic conditions, especially when the temperature is
maintained at 28 ± 2 ◦C and the relative humidity exceeds 88% [7,8].

R. solani, a soil-borne fungus with widespread geographical distribution and a broad
host range, poses a significant challenge during maize cultivation. Currently, the primary
method for controlling BLSB involves the use of chemical fungicides. However, this
approach is becoming increasingly environmentally unsustainable and less acceptable to
consumers due to heightened concerns about food safety and environmental protection.
Consequently, the cultivation or development of maize varieties resistant to BLSB has
become crucial. Despite this urgency, most existing maize varieties remain susceptible to R.
solani, while only a few maize germplasms exhibit high resistance to BLSB. This limitation
significantly hampers both the study of resistance mechanisms and the development of
disease-resistant maize varieties [9]

Genome-wide association study (GWAS) is a highly effective mapping approach based
on the principle of linkage disequilibrium (LD) for precisely mapping quantitative trait
loci (QTL) that control complex traits. Initially proposed in 1996 [10], this approach was
originally applied to analyze complex traits associated with human diseases. Through
this method, researchers can precisely locate genomic regions linked to specific traits
in crops, thereby advancing our understanding of the intricate mechanisms controlling
these traits [11,12]. GWAS has emerged as a robust and efficient tool in genetic research,
playing a pivotal role in deciphering the genetic basis of complex traits in crops [13,14] In
recent years, scholars have increasingly employed GWAS to investigate loci controlling
various traits in maize, including plant height (PH), ear length (EH) [10], yield [15], disease
resistance [16], and grain dehydration [17]. Through GWAS, Li Ning [18] successfully
identified a gene, ZmFBL4, associated with banded leaf and sheath blight. Numerous
studies have successfully identified QTLs related to crucial agronomic traits, thereby
showcasing the practicality and efficiency of GWAS [19–22]. In crops like maize, GWAS
has proven invaluable in exploring key genes and identifying potential disease-resistant
genes. The progression of these studies unequivocally underscores GWAS as a powerful
tool for effectively establishing associations between markers and phenotypes.

In recent years, significant progress has been made in investigating genetic resources
related to resistance against BLSB in maize. Researchers have identified maize varieties,
such as Jinyu 506 [23], Zhongke Yu505 [24], and Endan801 [25], that exhibit enhanced
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resistance to BLSB. Wu et al. [26] reported that the novel sweet corn variety ‘Huawang Sweet
No.7’ displays high resistance to leaf blight and moderate resistance to BLSB. However,
currently, maize varieties identified with relative resistance to R. solani are predominantly
moderately resistant, with no highly resistant or immune maize varieties having been
discovered. Therefore, it is crucial to explore additional maize germplasm resources
exhibiting higher resistance to BLSB and understand the genetic mechanisms underlying
such resistance, and this holds significant importance for breeding maize varieties resistant
to BLSB [27]. In this study, we utilized the tropical inbred lines CML444 and NK40-1
as resistant parents, crossing them with the excellent maize inbred line Ye107 from the
Reid heterotic group to develop a multi-parent population comprising 442 F8 recombinant
inbred lines (RILs). Subsequently, the multi-parent population underwent a GWAS analysis.
The study’s objectives were to (1) identify SNPs associated with BLSB resistance through
genome-wide association analysis, (2) explore candidate genes regulating BLSB resistance
in maize, and (3) investigate pathways involved in BLSB resistance and discover key
candidate genes through Gene Ontology (GO) analysis.

2. Results
2.1. Phenotypic Data Analysis

Screening of the two RIL populations, pop1 and pop2, against BLSB was conducted at
two locations; Yanshan County, Yunnan Province, in the years 2021 and 2022, and Jinghong
City, Yunnan Province, in the year 2022, with corresponding data collected. Descriptive
statistics of the phenotypic data for the two RIL populations screened against BLSB are
presented in Table 1. The coefficients of variation (CV) for pop2 across three environments
were 0.34, 0.39, and 0.31, respectively. For pop1, the CV values across three environments
were 0.45, 0.46, and 0.48. The absolute values of skewness and kurtosis for both pop1
and pop2 populations were less than 1, indicating a minor degree of bias. The frequency
distribution of phenotypes for pop2 and pop1 closely resembled a normal distribution.
Under the three environmental conditions, the broad-sense heritability of the disease
severity index for BLSB was high in pop2 and pop1 at 0.93 and 0.92, respectively. Both
the genotype × environment interaction variances were statistically significant. (p ≤ 0.01)
(Table 1) The high heritability of disease severity levels and genotype × environment
interaction variances were significant underscores of the reliability of identifying BLSB-
resistant genes through GWAS.

Table 1. Descriptive statistics of the two RIL subpopulations for reactions against BLSB.

Populations
(Sample Number.) Env. Range Mean SD CV (%) Skewness Kurtosis

Variations
H2 (%)

G E G*E

Pop2 (221)
JH 22 W 1–9 5.59 1.922 0.34 −0.518 0.713

0.93YS 21 S 1–9 5.25 2.073 0.39 0.163 −0.061 3.42 * 0.25 * 0.3 *
YS 22 S 1–9 5.98 1.865 0.31 −0.408 0.757

Pop1 (221)
JH 22 W 1–9 4.66 2.18 0.45 −0.035 −0.586
YS 21 S 1–9 3.62 2.252 0.46 0.661 −0.133 4.14 * 0.49 * 0.118 * 0.92
YS 22 S 1–9 4.58 2.226 0.48 −0.04 −0.638

W represents winter, S represents summer. Env. represents environment. Range represents the range of disease
grade of plants within the population. SD represents standard deviation. CV represents coefficient of variation.
H2 represents heritability. * represents p < 0.05.

As depicted in Figure 1 and Table 2, the disease scores of the majority of the RILs were
more concentrated at the lower end in pop1 group than the pop2 group, indicating lower
disease severity levels in pop1 than in pop2. This suggests that pop1 exhibited greater
resistance to BLSB than pop2. Regarding environmental variations, significant differences
in disease resistance between pop1 were observed at the YS21 environment compared to
JH22 and YS22 environments, with pop2 showing no significant differences across the three
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environments. Notably, between pop1 and pop2 exhibited significant differences in disease
resistance at the three environments JH22, YS21, and YS22.
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Figure 1. The violin plot of phenotypic distribution of RILs for pop1 and pop2 to BLSB response in
three different environments (JH22, YS21, YS22). The asterisk above indicates the result of Student’s
t test, * represents p < 0.05, ** represents p < 0.01.

Table 2. Analysis of variance for pop1and pop2 evaluated. * represents p < 0.05.

Pop df Sum of Squares F-Value p Error

Pop1 2 5.60 14.9 0.0227 * 0.52
Pop2 2 4.12 7.98 0.056 0.38

The correlation analysis for BLSB across different environments within the same
population is depicted in Figure 2. The correlation coefficients for disease severity levels in
pop1 between the JH22, YS21, and YS22 environments were 0.90, 0.92, and 0.89, respectively.
In pop2, the correlation coefficients for disease severity across the three environments (JH22,
YS21, and YS22) were 0.89, 0.95, and 0.87, respectively. The consistently high correlation
coefficients among the three environments indicate a significant and stable response of the
RILs of pop1 and pop2 to BLSB across different environments, ensuring the reliability of
the phenotyping for subsequent GWAS analyses.
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2.2. SNP Characterization, LD Decay Distance, and Population Structure

Through Genotyping-by-Sequencing (GBS), a total of 562,212 high-quality genome-
wide SNPs were identified, distributed across all ten chromosomes of maize. The heatmap
in Figure 3A illustrates the marker density of SNPs across the maize chromosomes. The
number of SNPs identified on chromosome 1 to 10 were as follows: 78,609, 64,672, 63,621,
72,674, 54,053, 46,111, 50,815, 47,367, 42,777, and 41,513. The highest number of SNPs
was located on chromosome 1, while chromosome 9 had the fewest. The density of SNPs
per mega base (Mb) for chromosomes 1 to 10 were 259.44, 265.05, 270.73, 294.23, 242.39,
265.01, 279.20, 261.70, 269.04, and 276.75, respectively. SNPs were evenly distributed
across the chromosomes. In the filtered SNP dataset, the average missing rate was 0.12,
and the average minor allele frequency (MAF) was 0.16, indicating the suitability of this
dataset for subsequent GWAS (Figure 3B,C). We employed 562,212 SNPs to assess the
linkage disequilibrium (LD) decay in the association mapping population. LD in the
association mapping panel was estimated using the r2 of pairwise combinations of SNPs
across the chromosomes, with the minimum threshold values set at 0.2. The estimated
range of physical distance at which LD decayed was approximately 40 kb (Figure 3D).
In comparison with other studies, the LD decay distance of the present study exceeded
that reported in the literature. In tropical maize, the average LD decay distance across all
ten chromosomes is documented as 8.14 kb [28]. For subtropical maize, at r2 = 0.2, the
mean LD decay distance between chromosomes is approximately 5 to 10 kb [29]. In the
research conducted by Wu et al. [30]., it was observed that the linkage disequilibrium (LD)
value in temperate maize was determined to be 391 kb. Rapid LD decay indicates greater
genetic diversity, fostering a more favorable genetic relationship among populations. Given
that our experiment involves a population comprising both tropical and temperate maize
inbreds, the LD decay rate is slow compared to tropical maize.
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Figure 3. Attenuation map of genotype diversity and LD. (A) Chromosome-specific SNP density
within 1-Mb intervals. The range of number of SNPs is indicated by a green to red scale. (B) Frequency
distribution of missing data points of SNPs. (C) Distribution of minor allele frequency (MAF) of the
RILs. (D) Genome-wide LD decay (r2) over physical distance (Kb) across all the chromosomes in
442 maize RILs.
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The population structure analysis results are depicted in Figure 4. Overall, the results
of population structure, principal component analysis (PCA), and genetic distance or
relatedness (Figure 4A–C) are consistent. In the PCA plot, scattered points may arise from
within-population heterogeneity or outliers. Based on lineage or genetic background, the
RILs can be divided into two major clusters. At K = 2 (Figure 4C), the population structure
of the RILs becomes clear, with 221 RILs in pop1 and 221 in pop2. The phylogenetic tree
analysis also revealed two genetic clusters, aligning with the relatedness-based population
structure. The pairwise relatedness distribution chart for the 442 RILs (Figure 4D) further
separates them into two distinct groups.
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2.3. Genome-Wide Association Analysis for BLSB Resistance

The F-test revealed a significant difference between the RIL subpopulations for BLSB
resistance in the two environments, Jinghong and Yanshan, and the data tend to follow
a normal distribution (Figure 1). Based on the phenotypic data for BLSB disease severity
of 442 RILs in the multi-parent population, and the 562,212 high-quality SNPs, GWAS
analysis was conducted to identify SNPs associated with BLSB resistance. The association
analysis utilized the Mixed Linear Model (MLM), which considers both the relatedness
(K) and population structure as covariates to control false positives arising due to the
effect of population stratification. The MLM analysis was conducted with significance
levels set at −log10(p) > 4.5. As population structure can influence association analysis,
a quantile–quantile (Q–Q) plot was employed to assess how well the adopted model
accounted for population structure. The Q–Q plot indicated that this model effectively
controls the population structure, with the negative log of association probability values
plotted against the observed negative log of association probability values under the null
hypothesis of no association. While the MLM helps reduce false-positives, it may lead to
the identification of some false-negative markers. This was evident in the present study,
as several significant SNPs were below the expected values in the Q–Q plot, indicating
the presence of false-negatives. BLUP estimation was performed using the Lme package
in RStudio (R-4.3.1) BLUP integrated disease severity levels across environments and
utilized 562,212 high-quality SNPs, principal component analysis, and the Kinship matrix
for GWAS analysis.

In the JH22W environment, a total of 13 SNPs significantly associated with BLSB
resistance (with a significant threshold of −log10(p) = 4.5) were identified. These SNPs
were distributed across chromosomes 2, 3, 4, 5, 6, 8, and 10 (Figure 5A). The significant SNPs
explained a phenotypic variance (PVE) ranging from 3.18% to 11.71%, with an average of
5.02%. Among all the significant SNPs, chromosome 5 had the highest number (five SNPs),
followed by chromosome 8 (four SNPs), while chromosomes 10 and 4 each had three SNPs,
chromosome 3 had two SNPs, and the remaining chromosomes had only one.

In the YS21S environment, a total of 18 SNPs significantly associated with resistance
to BLSB (with a significant threshold of −log10(p) = 4.5) were identified. These SNPs were
distributed across chromosomes 1, 3, 4, 5, 6, 7, 8, and 10 (Figure 5B). The significant SNPs
explained a phenotypic variance (PVE) ranging from 2.74% to 11.71%, with an average of
6.69%. Among all significant SNPs, chromosome 5 had the highest number (eight SNPs),
while chromosomes 1, 6, and 7 had the fewest, each with one SNP.

In the YS22S environment, a total of 12 SNPs significantly associated with resistance
to BLSB (with a significant threshold of −log10(p) = 4.5) were identified. These SNPs
were distributed across chromosomes 1, 4, 6, 8, and 10 (Figure 5C). The significant SNPs
explained a phenotypic variance (PVE) ranging from 4.26% to 11.71%, with an average of
8.33%. Among all significant SNPs, chromosome 8 had the highest number (five SNPs),
while chromosome 4 had the fewest, with one SNP.

In the BLUP analysis, a total of 17 SNPs significantly associated with resistance to
BLSB (with a significant threshold of −log10(p) = 4.5) were identified. These SNPs were
distributed across chromosomes 1, 2, 3, 4, 5, 6, 8, and 10 (Figure 5D). The significant SNPs
explained a phenotypic variance (PVE) ranging from 2.48% to 11.71%, with an average of
6.67%. Among all significant SNPs, chromosome 8 had the highest number (ten SNPs),
while chromosomes 1 and 2 had the fewest, each with one SNP.
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In summary, a total of 19 SNPs significantly associated with BLSB were identified
across the four environments, using a significant threshold of −log10(p) = 4.5) (Table 3).
These SNPs serve as valuable candidates for further gene identification.
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Table 3. List of 19 significantly associated SNPs identified across four environments.

No. Chr Physical Position Threshold (−log10(p) = 4.5) Allele Environments

1 1 442415 4.62 C/T

1 
 

 

1 
 

 
2 1 282946785 4.71 G/A

1 
 

 
3 2 239027952 4.51 C/T

1 
 

 

1 
 

 
4 3 50067223 4.92 A/G

1 
 

 
5 4 63379553 4.90 C/T

1 
 

 
6 4 63306693 4.90 T/A

1 
 

 
7 5 147529611 4.69 T/C

1 
 

 

1 
 

 
8 5 148963157 5.13 C/T

1 
 

 
9 5 147757336 4.66 T/C

1 
 

 
10 5 217509599 4.51 C/T

1 
 

 
11 6 42410465 4.52 A/G

1 
 

 
12 6 46848365 4.53 C/T

1 
 

 

1 
 

 
13 8 70647932 4.78 C/T

1 
 

 

1 
 

 
14 8 77905708 5.11 C/T

1 
 

 

1 
 

 

1 
 

 

1 
 

 
15 8 93109610 5.53 T/G

1 
 

 

1 
 

 

1 
 

 

1 
 

 
16 8 83921201 5.04 C/T

1 
 

 
17 10 144634116 4.81 G/C

1 
 

 

1 
 

 

1 
 

 

1 
 

 
18 10 87410402 4.91 C/T

1 
 

 
19 10 84908655 5.62 C/T

1 
 

 
No. represents number, chr represents chromosome. Environments represents the point repeatedly located in
the four environments,

1 
 

 

1 
 

 

1 
 

 

1 
 

 represents the SNPs identified across the four environments repeatedly located,

1 
 

 

1 
 

 represents the SNPs identified in both environments repeatedly located,

1 
 

 represents the SNPs identified in
one environment.

2.4. Candidate Genes Revealed by GWAS

Using the B73 RefGen_v4 reference genome, 23 candidate genes were identified within
a 40 Kb region upstream and downstream of the 19 SNPs significantly associated with BLSB
(Table 4). Table 3 provides functional annotations for these candidate genes sourced from
maizeGDB. These genes are associated with maize cell membrane proteins, cell immune
proteins, and cell metabolism, transport, transcriptional regulation, and structural proteins.
Based on functional annotations and genes that were consistently identified across different
environments (Table 3), five candidate genes with the potential to have a role in regulating
BLSB resistance were identified in this study. Three of these candidate genes, namely
Zm00001d009723 (chr8:77905708) (Figure 6B, Table 4), Zm00001d009975 (chr8:93109610)
(Figure 6C, Table 4), and Zm00001d026376 (chr10:144634116) (Figure 6D, Table 4), may
play a direct or indirect role in influencing BLSB resistance in maize, with phenotypic
variance (PVE) of 7.54%, 11.71%, and 4.14%, respectively. These three genes were con-
sistently identified across four distinct environments (Table 3). The first two candidate
genes are located on chromosome 8, while the subsequent one is located on chromosome
10. The functions of these three genes are primarily related to protein binding, defense
against various stress stimuli, resistance to fungi, and transmembrane protein transport.
Additionally, two candidate genes (Zm00001d009566 and Zm00001d009567) placed in close
proximity to the significant SNP positioned at chr8:70647932 were consistently identified in
two environments (Figure 6A, Table 4). This SNP explained a phenotypic variance of 5.31%
and both genes, located on chromosome 8, are associated with cell immune defense.

The 23 genes listed in Table 4 were subjected to Gene Ontology (GO) enrichment
analysis (Figure 7A). These genes were associated with a total of 30 GO terms, with protein
binding and catalytic activity being the most annotated GO terms in the Molecular Func-
tion (MF) category. In the Cellular Component (CC) category, the GO terms included cell
membrane, intracellular membrane, cell, and intracellular, with intracellular being the most
annotated term. In the Biological Process (BP) category, GO terms such as biosynthetic
process, cellular process, macromolecule, organic substance, and protein metabolic process
were encompassed, with cellular process emerging as the most frequently annotated term.
Notably, within this category, the term GO:0009834~plant-type secondary cell wall biogene-
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sis exhibited enrichment for two genes (Figure 7B), associated with the process of secondary
cell wall formation in plants. These two genes, Zm00001d009566 and Zm00001d0095670,
align with previously identified candidates found in only two environments.

Table 4. Candidate genes identified through screening of the significantly associated SNPs and
functional annotation.

Chr Position Gene ID PVE Protein Function

1 442415 Zm00001d027254 10.41% Uncharacterized unknown

1 282946785 Zm00001d034064 8.90% PAT complex subunit Asterix protein insertion into ER
membrane

2 239027952 Zm00001d007758 4.45% Overlapping homologous
superfamilies intracellular protein transport

3 50067223 Zm00001d040563 5.54% Uncharacterized

4 63379553 Zm00001d050063 2.48% Zinc finger, RING-type overlapping homologous
superfamilies

4 63306693 Zm00001d050062 6.57% Uncharacterized unknown

5 147529611 Zm00001d016156 7.59%
1,3-beta-glucan synthase

component FKS1-like,
domain-1 InterPro entry

putative callose synthase 8

5 148963157 Zm00001d016183 5.15% Coatomer, epsilon subunit
retrograde vesicle-mediated

transport, Golgi to
endoplasmic reticulum

5 147757336 Zm00001d016161 5.08% CRIB domain overlapping homologous
superfamilies

5 217509599 Zm00001d018257 3.45% unknown unknown

Zm00001d018258 SANT/Myb domain overlapping homologous
superfamilies

Zm00001d018259 Ubiquitin-like protein Atg12 autophagosome assembly

Zm00001d018260 Glutamine-Leucine-
Glutamine, QLQ

regulation of DNA-templated
transcription

6 42410465 Zm00001d035715 7.54% Transposase,
Tnp1/En/Spm-like unknown

6 46848365 Zm00001d035769 3.40%
Chorismate mutase, AroQ

class, eukaryotic type
InterPro entry

aromatic amino acid family
biosynthetic process

8 70647932 Zm00001d009566 5.31% FAS1 domain
bacterial immunogenic
protein MPT70 (1 FAS1

domain)

Zm00001d009567 FAS1 domain
bacterial immunogenic
protein MPT70 (1 FAS1

domain)
8 77905708 Zm00001d009723 7.54% SET domain protein binding

8 83921201 Zm00001d009823 5.01% Lateral organ boundaries,
LOB unknown

8 93109610 Zm00001d009975 11.71% PADRE domain

this domain is associated with
plant defense upon diverse

stress stimulus and has a role
in disease resistance to fungus

10 144634116 Zm00001d026376 4.14% WD40 repeat protein binding

10 87410402 Zm00001d024778 6.10% Proteolipid membrane
potential modulator transmembrane transport

10 84908655 Zm00001d024717 10.81% unknown unknown

Chr represents chromosome, PVE represents phenotypic variation explained.
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the SNP chr8:70647932 is substituted to CC, the CC haplotype of the SNP-chr8: 77905708 is substi-
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the SNP-chr10:144634116 is substituted to AA. Haplotype distribution of SNP-chr8:70647932 (I), 
SNP-chr8:77905708 (J), SNP-chr8:93109610 (K), SNP-chr10: 144634116 (L) in the multiparent popu-
lation. * represents significant p <0.05, **** represents highly significant p <0.0001. 

Figure 6. Identification of four SNPs associated with BLSB resistance, including chr8:70647932, chr8:
77905708, chr8:93109610, and chr10:144634116. Manhattan plot and LD heatmaps of chr8:70647932 (A),
chr8:77905708 (B), chr8:93109610 (C), chr10:144634116 (D). (E–H), respectively, Illustrate the difference
in the corresponding phenotype between the two groups of RILs. The TT haplotype of the SNP
chr8:70647932 is substituted to CC, the CC haplotype of the SNP-chr8: 77905708 is substituted
to TT, the TT haplotype of the SNP-chr8:93109610 is substituted to GG, the GG haplotype of the
SNP-chr10:144634116 is substituted to AA. Haplotype distribution of SNP-chr8:70647932 (I), SNP-
chr8:77905708 (J), SNP-chr8:93109610 (K), SNP-chr10: 144634116 (L) in the multiparent population.
* represents significant p < 0.05, **** represents highly significant p < 0.0001.
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The haplotypes of the aforementioned SNPs are illustrated in Figure 6. For instance,
the SNP at chr8:77905708 is in the intron of the candidate gene Zm00001d009723, with a C–T
substitution (Figure 6F,J). The SNP at chr8:93109610 is positioned at 18,578 bp downstream
of the candidate gene Zm00001d009975, with a T-G substitution (Figure 6G,K). The SNP at
chr10:144634116 is located in the intron of the candidate gene Zm00001d026376, with G–A



Plants 2024, 13, 456 12 of 21

substitution (Figure 6H,L). The SNP at chr8:70647932 is situated 13,849 bp downstream
of the candidate genes Zm00001d009566 and Zm00001d009567, with a T-G substitution
(Figure 6E,I). The base changes, including (C/T), (T/G), (G/A), and (T/C), at the SNP sites
lead to significant differences in base compositions among RILs. These indicated that the
TT, GG, AA, and CC haplotypes of the SNPs positioned at chr8:77905708, chr8:93109610,
chr10:144634116, and at chr8:70647932, respectively, are favorable for reducing BLSB.

3. Discussion
3.1. The Feasibility of GWAS in this Experiment

Genetic studies of complex traits in plants have historically been challenging due to the
influence of multiple minor-effect genes, often modulated by diverse genetic backgrounds
or environmental conditions. Against this backdrop, genome-wide association study
(GWAS) has emerged as a potent tool for dissecting the genetic factors underlying complex
quantitative traits. The identification of genes resistant to bacterial leaf and sheath blight
of maize (BLSB) proves to be a pertinent focus for GWAS, given its economic impact
as a complex maize disease [31]. In this study, we employed 562,212 SNPs to identify
19 potential loci controlling resistance to BLSB in the multiparent population. Over the
past years, GWAS has delivered promising results by uncovering novel disease-resistant
loci [32–34]. In contrast to traditional bi-parental mapping, this approach is not influenced
by the quantity of recombination events and is not constrained by the reduction in the
number of allelic variants present in the parents. This method can effectively capture
allelic variants underrepresented in the population [35] and accelerate the selection of
allelic combinations suitable for the target environment in the donor pool [36]. However,
factors such as phenotypic variation, population size, and population substructure can also
influence the precision of GWAS [37]. Our results indicate that resistance to BLSB in this
population is controlled by polygenes with small to moderate phenotypic effects. Therefore,
the authors assert that the GWAS method is highly applicable for identifying molecular
loci related to resistance against BLSB in maize and exploring candidate genes.

3.2. Comparison of the Results of the Present Study with the Previous Results

Previous studies have identified several candidate genes associated with resistance
to BLSB. Li et al. [18] conducted GWAS and discovered a significant association between
ZmFBL41, (on chromosome 4), encoding an F-box protein, and resistance to BLSB in maize.
Using a natural population of 318 different inbred lines, the authors identified 28 SNPs
located on chromosomes 1, 4, 7, and 8. The mechanism involves the interaction of ZmFBL41
with ZmCAD, leading to the degradation of ZmCAD and disruption of lignin synthesis. This
degradation weakens the plant cell wall, making it more susceptible to fungal colonization,
highlighting the crucial role of the cell wall and lignin in plant immunity. The candidate
genes identified in this study, Zm00001d009566 and Zm00001d009567, are associated with
secondary wall formation in plants and are linked to cell immune defense, indicating the
credibility of these two genes.

Cao et al. [1] employed RNA sequencing to analyze the gene expression profiles of
maize infected with different virulent strains of BLSB. They identified numerous differ-
entially expressed genes, including those related to defense. Gene ontology (GO) terms
related to defense were enriched in both low virulence (LVS) and high virulence (HVS)
regulatory genes, such as “response to stimulus”, “defense response”, “cell wall organi-
zation”, “response to stress”, “response to biotic stimulus”, and “response to hormones”.
The gene Zm00001d009975 identified in this study exhibits similar responses, participating
in defense against various stress stimuli and playing a role in resistance to fungal dis-
eases. Additionally, a set of core genes was discovered, among which the overexpressed
genes zmac41 and ZmBAK1 enhance maize resistance to BLSB. Chen et al. [38], through
meta-analysis, identified 15 “consistency” QTLs controlling resistance to BLSB in maize,
distributed on chromosomes 2, 4, 6, 8, 9, and 10. The authors also identified five hotspots
(Bin2.02, 2.06, 6.02, 9.0, 9.04) for BLSB resistance. Yang [39] constructed a genetic linkage
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map using 125 SSR markers in a backcross (BC1) population (CML270 × 478) × CML270)
developed by crossing the resistant maize inbred line CML270 with the susceptible inbred
line 478. Through composite interval mapping, they detected three major QTLs for BLSB
resistance, two on chromosome 1 and one on chromosome 7, explaining 18% and 20% of
the phenotypic variation, respectively. Lin et al. [40] identified 11 BLSB resistance-related
QTLs based on disease index, distributed on chromosomes 2, 4, 5, 8, and 9, with additive
effects that explained phenotypic variance ranging from 0.0165 to 0.0545 and 20.81% to
7.29%, respectively. Chen et al. [41] analyzed QTLs and genetic effects using composite
interval mapping, identifying four BLSB-resistant QTLs on chromosomes 6, 7, and 10. Two
QTLs on chromosome 6 explained 12.63% and 0.27% of the phenotypic variance, while one
QTL each on chromosomes 7 and 10 explained 15.21% and 5.42%, respectively. Adhikari
et al. [42] conducted a population analysis using 76 polymorphic microsatellite markers.
Single-marker analysis (SMA) identified markers linked to the BLSB-resistant QTL us-
ing linear regression and maximum likelihood analysis. Analysis of variance (ANOVA)
revealed one major QTL on chromosome 5 and four minor QTLs on chromosomes 1, 3,
4, and 8. Liu [43], using disease index as the resistance indicator, employed composite
interval mapping (LOD > 2) to locate 11 QTLs related to BLSB resistance, distributed on
chromosomes 2, 4, 5, 8, and 9. The additive effects ranged from 0.0165 to 0.0545, and the
phenotypic variance explained varied between 2.81% and 7.29%.

In this study, the identified genes are located on chromosomes 8 and 10, explaining a
phenotypic variance ranging from 5.31% to 11.71%. While these chromosomal locations
align with previous research, there are disparities in the interval. Possible explanations
include: (1) the use of diverse germplasms or varieties in different studies, leading to
significant variations in response to BLSB infection. This study used tropical germplasms,
potentially enhancing genetic diversity; (2) substantial environmental impact on BLSB,
as observed in the locations of Yanshan County and Jinghong City in Yunnan, classified
as high-temperature- and high-humidity-prone areas; (3) variations in sample size and
statistical methods across studies may affect GWAS accuracy. This study involved a total of
442 RILs, exceeding the sample sizes used in previous studies [44–48]. These considerations
underscore the importance of accounting for genetic diversity, environmental factors, and
methodological variations when interpreting GWAS results, highlighting the robustness of
this study’s approach with its diverse tropical germplasm and larger sample size.

3.3. Functional Annotation of Genes Identified through GWAS

In this study, we compared the positions of SNPs significantly associated with
BLSB resistance, consistently identified across four environments, with previous studies.
However, no overlapping regions were found. This indicates that the BLSB resistance
genes, namely Zm00001d009723, Zm00001d009975, Zm00001d026377, Zm00001d009566,
and Zm00001d009567, identified in this study could be novel candidate genes related to
BLSB resistance. These candidate genes were functionally annotated to decipher their
potential role in disease resistance.

Zm00001d009723 encodes the SET domain, characterized by a multi-helix structure
with irregularly arranged long α-helices and short α-helices. This domain is widely present
in various organisms, including plants, yeast, mammals, bacteria, and viruses [49] In
addition to its crucial role in chromatin structure and gene activity regulation, the SET
domain may also be associated with plant disease defense as it participates in regulating
gene expression and chromatin modification [50]

Zm00001d009975 encodes the PADRE domain, which is associated with plant disease
defense, particularly resistant to fungi. The PADRE contains a conserved sequence motif
at the N-terminus and an intrinsically disordered region with multiple phosphorylation
sites at the C-terminus. Typically found in small single-domain proteins with a conserved
sequence motif and an intrinsically disordered region with multiple phosphorylation sites,
this domain may play a role in defense against various stress stimuli, maintaining plant
health and disease resistance [51].
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Zm00001d026376 encodes the WD40 repeat, a short motif of 40 amino acids or fewer,
usually terminating with a Trp-Asp (W-D) dipeptide. This motif typically comprises 7–8
blade-like β-propeller folds but may contain 4 to 16 repeat units [52]. WD-repeat proteins
are widely distributed in various organisms and participate in diverse functions such as
signal transduction, transcription regulation, cell cycle control, and apoptosis. They may
act as platforms for protein complex assembly or mediators for protein–protein interactions,
potentially involved in plant disease defense, such as the assembly of complexes like
G proteins, TAFII transcription factors, and E3 ubiquitin ligases [53,54]. Some proteins
containing WD40 repeat sequences may participate in plant processes related to diseases,
as observed in Arabidopsis, where proteins with WD40 repeat sequences play a crucial
regulatory role, including resistance and defense responses against pathogens. These
proteins may play essential roles in signaling pathways, initiating the plant’s immune
response against diseases.

Zm00001d009566 and Zm00001d009567 both encode the FAS1 domain, an extracellular
module typically containing around 140 amino acid residues, found in plants, animals,
and bacteria. This domain features a novel fold composed of seven-chain β-wedges and at
least five α-helices, along with conserved elements related to asparagine [55–57]. Proteins
known to contain the FAS1 domain include the human TGF-β-induced Ig-H3 protein,
volvox’s major cell adhesion protein, Arabidopsis’ fasiclin-like arabinogalactan protein,
mammalian stabilin protein, human extracellular matrix protein periostin, and bacterial
immunogenic protein MPT70, among others. Although there is no detailed description
of the disease defense-related aspects of the FAS1 domain, it can be speculated that this
domain may play a role in cell adhesion and interactions, possibly related to the plant’s
defense mechanisms. Cell adhesion and interactions in plants play a crucial role in disease
defense as they can impact pathogen invasion and the plant’s immune response [58–62].

The presence of these genes and domains suggests their potential roles in plant disease
defense and resistance mechanisms, involving critical biological processes such as gene
regulation, protein interactions, immune responses, and cell adhesion. Further investigation
into the functions of these genes and domains will contribute to a better understanding of
how plants respond to various pathogens and stresses, ultimately enhancing their disease
resistance capabilities.

4. Materials and Methods
4.1. Plant Materials and Population Construction

This study, conducted by our group in 2012, employed the tropical maize inbred
lines CML444 and NK40-1, known for their resistance to banded leaf and sheath Blight
(BLSB), as female parents. These were crossed with the temperate maize inbred line Ye107,
which is susceptible to BLSB. The pedigrees, heterotic groups, and ecotypes of the three
parents are detailed in Table 5. The disease scale was derived from field surveys, and the
survey methodology followed the guidelines outlined in Table 6. Through a single-seed
descent method over eight generations, two recombinant inbred line (RIL) subpopulations
were generated: pop1 (CML444 × Ye107) and pop2 (NK40-1 × Ye107), each consisting of
221 RILs. All 442 RILs from both subpopulations were planted in Yanshan County, Yunnan
Province (23◦19′–23◦59′ N, 103◦35′–104◦45′ E) in 2021 and in Yanshan County and Jinghong
City (21◦27′–22◦36′ N, 100◦25′–101◦31′ E) in 2022. The experimental design followed a
Randomized Complete Block Design (RCBD) with three replications per group. Each row
consisted of 14 plants, with a row length of 4 m, row spacing of 0.70 m, and inter-plant
spacing of 25 cm. Standard agronomical practices were followed to manage the maize
experimental sites [63].
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Table 5. Parental lines used to develop the multiparent population.

Parent Pedigree Heterotic Group Ecotype Disease Scale

Ye107 Derived from US hybrid DeKalb XL80 Reid Temperate 9
CML444 P43C9-1-1-1-1-1-BBBB-1-1-2-5-1(DH) nonReid Tropical 3
NK40-1 Derived from US hybrid Reid Tropical 3

DH, doubled haploid.

Table 6. Disease scoring for BLSB.

Scale Reaction Category Disease Index Symptoms

0 Immune (IM) 0 Symptom-free throughout the entire plant

1 Highly Resistant (HR) 0.1~20.0 Disease manifestation on the fourth leaf sheath below the ear
and subsequent lower leaf sheaths

3 Resistant (R) 20.1~40.0 Disease manifestation on the third leaf sheath below the ear
and subsequent lower leaf sheaths

5 Moderately Resistant (MR) 40.1~60.0 Disease manifestation on the second leaf sheath below the ear
and subsequent lower leaf sheaths

7 Susceptible (S) 60.1~80.0 Disease manifestation on the first leaf sheath below the ear
and subsequent lower leaf sheaths

9 Highly Susceptible (HS) 80.1~100.0 Disease symptoms manifest in the leaf sheaths above the ear.

4.2. Disease Scoring and Calculation of Disease Index

BLSB screening of RILs of the multiparent populations was conducted in field condi-
tions at two sites, Yanshan County (YS) and Jinghong city (JH), Yunnan Province, China,
during the summer of 2021 and 2022 and the winter of 2022. The resistance to BLSB was
assessed starting in the 4th week after maize dispersal. The BLSB resistance score was deter-
mined for each RIL population based on the percentage of total leaf area infected by BLSB.
The screening was performed to assess BLSB resistance levels when the temperature ranged
between 20 and 25 ◦C, and high relative humidity (over 81%) prevailed in the summer in
the YS region and in the winter in the JH region of Yunnan province. These conditions
created a favorable environment for the growth and spread of Rhizoctonia solani [7,8].

The disease severity classification for BLSB followed symptom identification criteria
outlined in the ‘Manual of Corn Diseases and Insect Pests’ by Wang Xiaoming and Dai
Fachao [64]. Severity assessment involved determining the largest leaf sheath lesion, with
a disease score assigned to each plant on a scale of 0 to 9, as detailed in Table 6.

4.3. Phenotyping and Statistical Analysis

The phenotypic data were subjected to descriptive statistical analyses using SPSS
(SPSS Statistics 26) and ORGIN (Orgin 2022) software. Measures such as mean, minimum,
maximum, standard deviation (SD), coefficient of variation (CV), skewness, and kurto-
sis were calculated. Phenotypic data frequency distribution was conducted using SPSS
software. Kurtosis and skewness were employed to assess the normality of the frequency
distribution. Pearson’s correlation analysis was performed using the Corrplot function
in R. Broad-sense heritability was calculated following the approach outlined by Knapp
et al. [65,66].

H2 =
σ2

g

σ2
g + σ2

ge/e + σ2
ε /re

× 100%

where σ2
g refers to the genetic variance, σ2

ge refers to the variance of genotype-environment
interaction, σ2

ε refers to residuals, e refers to number of environments (the sum across years
and locations), and r refers to the number of replications [65].

Additionally, we employed the lme4 version 1.1–30 [67] R package for calculating
BLUP. The calculation formula used was
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Multi-locations:

Yijlk = µ + Linei + Locj + (Line × Loc)ij + Rep (Loc)jl + εijlk

One-location:
Yilk = µ + Linei + εilk

where Yijlk, µ, Linei, and Locl represent the BLSB phenotype values of each plant, intercept,
ith line effects, and lth location effects, respectively. Repj represents the jth replication effect,
and εijlk represents the random effects. (Line × Loc)ij is used to display the interaction of
the ith line at the jth location, and Rep (Loc)jl shows the nested effect of the jth replication
within the lth location. The Yilk is the BLSB phenotype value of each ear at one location,
and εilk represents the random effects.

The calculated BLUP values, along with the average phenotypic data from YS and JH,
were used for the subsequent GWAS.

4.4. DNA Extraction and Genotyping-by-Sequencing (GBS)

The genomic DNA was extracted from seedling leaves of each F8RIusing the cetyl
trimethyl ammonium bromide (CTAB) method [68]. Subsequently, the isolated genomic
DNA from each F8RIL was digested with the restriction endonucleases PstI and MspI (New
England BioLabs, Ipswich, MA, USA), followed by ligation with barcode adapters using
the T4 ligase (New England BioLabs). GBS DNA libraries were constructed and sequenced
following the GBS protocol [69].

All ligated samples were pooled and purified using the QIAquick PCR Purification
Kit (QIAGEN, Valencia, CA, USA). Polymerase chain reaction (PCR) amplification was
carried out using primers complementary to both adaptors. Finally, the PCR products were
purified and quantified using the Qubit dsDNA HS Assay Kit (Life Technologies, Grand
Island, NY, USA). After selecting PCR products of 200–300 bp size using an Egel system
(Life Technologies), the library concentration was estimated with a Qubit 2.0 fluorometer
and the Qubit dsDNA HS Assay Kit (Life Technologies). Sequencing was performed on an
Ion Proton sequencer (Life Technologies, software version 5.10.1) with P1v3 chips. The final
reads were generated using TASSEL v5.0 (https://github.com/Euphrasiologist/GBS_V2
_Tassel5, (accessed on 6 March 2022)) [70]. Before TASSEL analysis, 80 poly (A) bases were
appended to the 3′ ends of all sequencing reads. SNPs were generated using the Genome
Analysis Toolkit software (GATK-3.8) [71] by aligning with the maize B73 reference genome
(B73_V4, ftp://ftp.ensemblgenomes.org/pub/plants/release-37/fasta/zea_mays/DNA,
(accessed on 6 March 2022)) [72]. Following the SNP calling in the RILs, the quality of each
SNP was assessed based on criteria such as minor allele frequency (MAF), the percentage
of missing data points, and linkage disequilibrium. Plink v 1.9 [73] was utilized to filter
the SNPs, with the parameters set to −geno 0.2 and −maf 0.05, to exclude loci with
deletion rates above 10% and loci with minimum allele frequencies below 5%. In total,
562,212 high-quality SNPs were generated and annotated using the ANNOVAR software
tool (v2013-05-20) [74].

4.5. Linkage Disequilibrium (LD), Population Structure, and LD Block Analysis

During population structure analysis, we employed a model-based clustering al-
gorithm in ADMIXTURE Version 1.3 [75]. Preliminary analysis involved multiple runs
with consecutive K values ranging from 1 to 12, with a five-fold cross-validation pro-
cedure for each K value. The most likely K value was determined using the cross-
validation value of ADMIXTURE. Inbred lines with a membership probability greater
than 0.5 were assigned to corresponding clusters and visualized using TBtools software
v1.098727 [76]. Principal component analyses (PCA) and cluster analyses were performed
in R. Linkage Disequilibrium (LD) was evaluated using Pop LD decay 3.40 software
(https://github.com/BGI-shenzhen/PopLDdecay (accessed on 23 June 2023)) and Perl
scripts [77]. LD decay was investigated by plotting pairwise r2 values against physical

https://github.com/Euphrasiologist/GBS_V2_Tassel5
https://github.com/Euphrasiologist/GBS_V2_Tassel5
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distance in base pairs, with the critical r2 for LD decay determined by keeping the minimum
threshold values at 0.2, indicating the maximum significant physical distance at which
LD occurs.

4.6. Genome-Wide Association Study

GWAS was conducted using the efficient mixed-model association (EMME) analysis
method in the GEMMA (genome-wide efficient mixed-model association) package [78].
The analysis used the following mixed-model approach:

y = Xa + Sb + Km + e;

where y represents the phenotype, and a and b are fixed effects denoting marker effects
and non-marker effects, respectively. m represents unknown random effects. The incidence
matrices for a, b, and m are denoted by X, S, and K, respectively, while e is a vector of random
residual effects. To account for population structure, the top three principal components
(PCs) were used to construct the S matrix, and the kinship (K) matrix was built using
the matrix of simple matching coefficients. The genetic relationship between individuals
was modeled as a random effect using the K matrix. A significant p-value threshold of
p < 1 × 10−6 was set to control the type 1 error during association analysis.

We used PLINK [73] to calculate independent markers with the parameter -indep-
pairwise 50 5 0.2. A significance threshold of −log10(p) > 4.5, calculated using the formula
−log10(1/SNP numbers), was employed to identify significant SNPs associated with
maize BLSB resistance. SNP loci meeting or exceeding the threshold were extracted using
bedtools v1.7 [79] Based on the B73 v4 reference genome and annotation information,
candidate genes associated with BLSB in maize were identified within a 40 kb upstream
and downstream region of the significantly associated SNPs. The decision to use a 40 kb
region for screening candidate genes was based on a plateau observed in the LD decay plot,
where the r2 values plateaued at 40 kb.

4.7. Gene Predictive Analysis

Based on the estimation of LD decay rate, genes situated within 40 kb upstream
and downstream of the significant SNPs underwent functional annotation, Subsequently,
relevant gene functional annotation information was retrieved from the maizeGDB database
(http://www.maizegdb.org (accessed on 8 August 2023)). The determination of physical
positions for both genes and SNPs relied on the maize B73 RefGen_V4 reference genome.
GO analysis for the identified candidate genes from the GWAS was executed utilizing
the DAVID tool (https://www.DAVID.com/tools (accessed on 10 August 2023)) [80] and
the agrigo tool (https://www.agrigo.com/tools (accessed on 10 August 2023)) [81]. Data
visualization was conducted using R Studio. This annotation process aided in further
validation and identification of candidate genes associated with the target traits acquired
through GWAS analysis. The p-values for GO analyses were computed using the following
formula [82].

P = 1 − ∑K−1
i=0

(
M
i

)
×

(
N − M
n − i

)
(

N
n

)
N: Total number of samples;
M: The number of “specific categories” in the total sample;
n: A random number drawn from the total sample;
k: Take the number of samples that belong to a “specific category”.

4.8. Haplotype Analysis

Haploview v4.2 software was used to analyze the genes consistently detected in
multiple environments or those with functions related to BLSB.

http://www.maizegdb.org
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5. Conclusions

In this study, two F8 RIL subpopulations were developed by crossing the inbred
parent Ye107 with inbred lines CML444 and NK40-1. A GWAS, utilizing 562,212 high-
quality SNPs, identified nineteen SNPs significantly associated with BLSB resistance.
Subsequently, 23 candidate genes related to BLSB resistance were identified within a
40 kb upstream and downstream region of these SNPs. By employing genome databases
such as maizeGBD and NCBI, five novel candidate genes, including Zm00001d009723,
Zm00001d009975, Zm00001d026376, Zm00001d009566, and Zm00001d009567, were validated
to confirm their potential roles in BLSB resistance. These genes are implicated in diverse
activities encompassing cellular metabolism, transport, transcriptional regulation, and
structural proteins. They are involved in various functions, such as protein binding, de-
fense against multiple stress stimuli, resistance to fungal infections, protein transmembrane
transport, and enhancement of immune defense. In conclusion, the insights gained from
this study could significantly contribute to a deeper comprehension of the regulatory mech-
anisms underlying BLSB resistance in maize. The identified SNPs and candidate genes hold
promise for aiding breeders in selecting maize varieties with enhanced BLSB resistance.
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