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Abstract: An appropriate water supply strategy is imperative for obtaining tomatoes of a high yield
and quality; the lack of one has caused resource wastage and quality deterioration. To determine the
suitable irrigation amount and simulate daily transpiration under these optimal irrigation conditions,
a two-year greenhouse cultivation experiment was conducted over 2022–2023. Commencing at
anthesis, three distinct irrigation gradients were triggered and designated as irrigation controls with
the lower limits set at 80% (T1), 70% (T2), and 60% (T3) of the substrate water-holding capacity.
We determined the optimal irrigation amount by ranking the treatments using the TOPSIS method,
balancing the tomato yield and quality. A segmented daily transpiration model under optimal
irrigation conditions driven by crop and environmental factors was established using the Marquardt
method and data from 2022, and the model was validated using data from 2023. The results indicated
that T2 was the optimal irrigation amount, with the water use efficiency increased by 18.0%, but
with a 10.9% decrease in yield, while the quality indices improved significantly. The R2 values of the
segmented model in the flowering and fruit-setting stage and the picking stage were 0.92 and 0.86,
respectively, which could provide support for optimized water management for tomato planting in
greenhouse substrate cultivation.

Keywords: deficit irrigation; greenhouse; tomato; transpiration; yield; water use efficiency

1. Introduction

Tomatoes are extensively cultivated in greenhouses [1,2]. Soil-less cultivation tech-
niques have gained widespread attention, given their advantages in overcoming rotation
obstacles, increasing yields, and saving energy and labor [3,4]. Coconut coir, which is
characterized by a low cost and minimal environmental risk, is an excellent substrate for
soilless cultivation [5]. Irrigation substantially determines the yield and quality of substrate-
cultivated tomatoes [6,7]. Using current production practices, the irrigation amount is often
overlooked in favor of unilaterally increasing the yield. Apart from resulting in water
and nutrient loss, excessive irrigation triggers pest and disease, leading to a decline in the
tomato quality [8]. Moderate water stress, by contrast, can enhance the tomato quality
and water use efficiency, while maintaining the yield [9,10]. Given these considerations, it
is important to investigate the optimal irrigation strategy for substrate-grown tomatoes
and establish a corresponding transpiration estimation model under substrate-cultivated
conditions.

The FAO recommends using the product of reference crop transpiration (ET0) and
crop coefficient (Kc) to determine crop transpiration under standard conditions. This value
(ETc) is then is multiplied by a specific stress index (Ks) to obtain the crop transpiration
under stress (ETa) [11]. As the transpiration of greenhouse crops is mainly influenced
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by micrometeorological factors under sufficient water supply conditions [12], ETc can
also be evaluated indirectly using greenhouse micrometeorological data [13]. Prior stud-
ies have focused on simulating transpiration under a sufficient water supply condition,
such as the FAO Penman [14], FAO Radiation [15], FAO-56 Penman–Monteith [11], Harg-
reaves [16], and Priestley–Taylor models [17]. However, given that these indirect models
are based on specific climatic conditions and the modeling parameters are difficult to
obtain, their generalization and application in production practice are limited. Therefore,
other researchers [18,19] tried to simplify the model based on the correlation between crop
transpiration and the greenhouse microenvironment, including factors such as radiation,
temperature, and humidity. For instance, some models are based on cumulative solar
radiation [20,21], while others are based on cumulative pan evaporation [22,23]. These
simplified models have been extensively applied in production practices due to their sim-
plicity and practicality. However, these indirect models are based on a single variable.
Regarding a particular crop, the transpiration rate depends not only on the crop’s growth
and development stage, but also on other factors, such as the temperature, wind speed, and
water vapor pressure deficit [24]. Therefore, other researchers performed the multivariate
fitting of greenhouse meteorological factors, crop factors, and measured transpiration value
and used the optimized equation obtained by multivariate fitting to estimate the rate of
transpiration [25]. The transpiration rate of a crop changes throughout its growth, and
the greenhouse micrometeorological factors also change. Liu et al. [26] and Li et al. [27]
established multivariate nonlinear transpiration estimation models for greenhouse-grown
melons and tomatoes, respectively. However, the versatility of the model may be poor
as it lacks consideration for the changes in water consumption intensity and greenhouse
microenvironment during crop growth and development. In addition, due to the interac-
tion between crop transpiration and the greenhouse microenvironment, the effect of the
former on the latter gradually increases with the growth and development of the crops [28].
Therefore, the sensitivity of the crop to the greenhouse microenvironment is different at
different growth stages [29]. The correlation between daily transpiration and the green-
house microenvironment at the different growth stages of crops must be explored, and a
segmented daily transpiration model of the water demand of crops must be established.

Therefore, the objectives of this study were the following: (1) investigate the influence
of irrigation on tomatoes and detect the optimal amount of water; (2) simulate daily
transpiration under optimal irrigation conditions. We took tomatoes grown in a greenhouse
substrate as the research subject and set three different irrigation gradients. The changes
in the water consumption characteristics, morphological parameters, and greenhouse
microenvironment of tomatoes were observed in a two-year experiment. A comprehensive
evaluation of the irrigation levels was conducted based on their impact on the yield,
quality, and water use efficiency to determine the optimal irrigation level. A multivariate
estimation model of the daily transpiration of tomatoes at different growth stages under
deficit irrigation was established, which could provide a theoretical basis for high-yield,
high-quality tomato production in a Venlo-type greenhouse substrate culture.

2. Materials and Methods
2.1. Experiment Site and Plant Information

The experimental site was located in Xinxiang City, Henan Province (35◦19′ N,113◦53′

E; altitude: 73.2 m). The average annual temperature is 14.1 ◦C, the frost-free period lasts
for 210 d, and the annual sunshine duration is 2398.8 h. The experiment was carried out
in a Venlo greenhouse at the Xinxiang Comprehensive Experimental Base of the Chinese
Academy of Agricultural Sciences. The greenhouse was situated north, facing south. The
main frame was made from light, hot-dipped galvanized steel, and the outer sheath was
made from 8 mm-thick double-layer glass, covering an area of 560 m2 (28 m × 20 m). The
specific greenhouse structure information is shown in Figure 1a.
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Figure 1. Schematic side view of the experimental greenhouse and plant information. (a) is the sche-
matic side view of the experimental greenhouse, the arrow in the figure refers to direction of airflow 
under different ventilation conditions. (b) is the experiment photo and plant information, including 
plant spacing and row spacing. 

The growth of the tomatoes was divided into three stages: the seedling, flowering 
and fruit-setting, and picking stages. The experimental tomato variety was Provence, 
which was planted on 21 August 2022 and 28 March 2023. The seedling stage lasted from 
21 August to 27 September 2022 and from 28 March to 27 April 2023; the flowering and 
fruit-setting stage lasted from 27 September to 9 November 2022 and from 27 April to 31 
May 2023; the picking stage lasted from 9 November 2022 to 9 January 2023 and from 31 
May 2023 to 8 July 2023. Coconut coir was used as the cultivation substrate in the experi-
ment, with a sufficient water supply at the seedling stage. During the flowering and fruit-
setting stages, the water content of the substrate was taken as a control factor, and three 
lower limits were set, which were 60% (T1), 70% (T2), and 80% (T3) of the water-holding 
capacity of the substrate. Each treatment was repeated three times, and 24 plants were 
studied for each trial. The volume of coconut coir after foaming was 100 cm × 20 cm × 10 
cm, which was wrapped in plastic film on six sides, with drainage holes only on the bot-
tom edge. Two substrate strips were selected for each treatment, and a return tank was 
installed under the substrate strips. The scale (with an accuracy of 1 g) was weighed at 
8:00 in the morning and 18:00 in the evening every day. The weight data in the morning 
and the weather conditions during the day were used as the basis for irrigation. The cal-
culation formula is as follows [9]: 
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where Td represents daily transpiration per tomato plant, in kg; Wi represents the sum of the weight 
of the substrate tank and the substrate and plant weights at 8:00 on day i, in kg; Ii represents the 
amount of irrigation on day i, in kg per plant; Ri represents the irrigation return volume on day i, in 
kg; and Wi+1 represents the sum of the substrate tank, substrate, and plant weights at 8:00 on day i + 
1. Due to the coconut chaff being wrapped in a six-sided plastic film, the evaporation of the substrate 
surface was negligible. The transpiration of tomato plants grown in the substrate was measured by 
weighing lysimeters (accuracy = 1 g). Three tomato plants were planted in the lysimeter with the 
same spacing as the other plants. To minimize the boundary effects, the lysimeter was placed in the 
middle of the greenhouse, and records were taken every half an hour. The transpiration 

Figure 1. Schematic side view of the experimental greenhouse and plant information. (a) is the
schematic side view of the experimental greenhouse, the arrow in the figure refers to direction of
airflow under different ventilation conditions. (b) is the experiment photo and plant information,
including plant spacing and row spacing.

The growth of the tomatoes was divided into three stages: the seedling, flowering and
fruit-setting, and picking stages. The experimental tomato variety was Provence, which was
planted on 21 August 2022 and 28 March 2023. The seedling stage lasted from 21 August
to 27 September 2022 and from 28 March to 27 April 2023; the flowering and fruit-setting
stage lasted from 27 September to 9 November 2022 and from 27 April to 31 May 2023; the
picking stage lasted from 9 November 2022 to 9 January 2023 and from 31 May 2023 to
8 July 2023. Coconut coir was used as the cultivation substrate in the experiment, with a
sufficient water supply at the seedling stage. During the flowering and fruit-setting stages,
the water content of the substrate was taken as a control factor, and three lower limits were
set, which were 60% (T1), 70% (T2), and 80% (T3) of the water-holding capacity of the
substrate. Each treatment was repeated three times, and 24 plants were studied for each
trial. The volume of coconut coir after foaming was 100 cm × 20 cm × 10 cm, which was
wrapped in plastic film on six sides, with drainage holes only on the bottom edge. Two
substrate strips were selected for each treatment, and a return tank was installed under the
substrate strips. The scale (with an accuracy of 1 g) was weighed at 8:00 in the morning
and 18:00 in the evening every day. The weight data in the morning and the weather
conditions during the day were used as the basis for irrigation. The calculation formula is
as follows [9]:

Td = Wi + Ii − Ri − Wi+1 (1)

where Td represents daily transpiration per tomato plant, in kg; Wi represents the sum
of the weight of the substrate tank and the substrate and plant weights at 8:00 on day i,
in kg; Ii represents the amount of irrigation on day i, in kg per plant; Ri represents the
irrigation return volume on day i, in kg; and Wi+1 represents the sum of the substrate tank,
substrate, and plant weights at 8:00 on day i + 1. Due to the coconut chaff being wrapped
in a six-sided plastic film, the evaporation of the substrate surface was negligible. The
transpiration of tomato plants grown in the substrate was measured by weighing lysimeters
(accuracy = 1 g). Three tomato plants were planted in the lysimeter with the same spacing
as the other plants. To minimize the boundary effects, the lysimeter was placed in the
middle of the greenhouse, and records were taken every half an hour. The transpiration
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measurement, Tm, is expressed in energy units (mm·d−1), which was transformed using
the following formula [28]:

Tm = λ
PD × ∆m × 35.3

∆t
(2)

where λ represents the latent heat of water vaporization, in w·m2; PD represents the
planting density of tomato, in plants per m2; and ∆m represents the change in the quality
of the substrate tank during the period ∆t (s), in g.

2.2. Measurement Items and Methods

An automatic meteorological recording system was installed at a height of 2 m in
the center of the greenhouse, as shown in Figure 1a. The monitoring items included solar
radiation (Rs), relative humidity (RH), air temperature (Ta), and wind speed (W). Rs was
measured with a radiometer (LI200X, Campbell Scientific, Inc., Logan, UT, USA) with
an accuracy of 0.2 kW (m2 (mV))−1. Ta and RH were measured with a temperature and
humidity sensor (CS215, Campbell Scientific, Inc., Logan, UT, USA). The wind speed above
the canopy was measured with an ultrasonic anemometer (Wind Sonic, Gill, London,
UK) with an accuracy of 0.02 m/s. All data were recorded with intervals of 10 s, and
the average was calculated once every 30 min and stored in the CR1000 data collector
(Campbell Scientific Inc., Logan, UT, USA). All sensor probes were calibrated before the
experiment began.

Two weeks after transplanting, six uniform plants in each treatment group were
marked. The plant height, stem diameter, leaf length, and maximum leaf width of the
plants were measured every 10 days, and the leaf length and width and plant height were
measured with a tape measure. The leaf area index (LAI) is the ratio of leaf area per plant
to unit area, and the leaf area per plant of tomato is the product of a single leaf’s area (leaf
length × maximum leaf width) and the reduction coefficient of 0.64 [30]. The LAI per day
within the time interval of two measurements was obtained with a piecewise cubic Hermite
interpolation using MATLAB R2022a software. The stem diameter was measured at 2 cm
from the stem base in two directions with a digital caliper (accuracy = 0.01 mm), which
was recorded as the stem diameter. At the maturity stage the yields of 12 representative
plants in the middle of each treatment plot were studied. Each treatment was repeated
three times, and the number of red and pest-free fruits picked from 12 plants was recorded.
The weight of each single fruit was weighed using an electronic balance with an accuracy
of 0.1 g, and the total yield was calculated. The water use efficiency (WUE, kg·m−3) was
calculated using the following formula [8]:

WUE =
Ya

T
(3)

where Ya represents the yield of tomatoes (kg·plant−1) and T represents the water con-
sumption of the crop (m3 per plant−1).

The crop was planted in wide and narrow rows, with a wide row spacing of 1 m, a
narrow row spacing of 0.4 m, and a plant spacing of 0.3 m, as shown in Figure 1a. The
nutrient solution formula was the Hoagland solution. The watering method was drip
irrigation. A drip irrigation pipeline was laid in each row. The dripper flow rate was
1.98 L·h−1, and the dripper spacing was the same as the plant spacing. An irrigation
controller and a water meter accurate to 0.001 m3 were installed at the head of each plot to
irrigate the tomatoes regularly and strictly control the irrigation.

There were two ventilation modes in the greenhouse: natural and forced ventilation,
as shown in Figure 1a. Natural ventilation was provided by the combination of a side
window and roof vent. Before topping, to prevent the steep growth of seedlings, forced
ventilation was controlled with a wet curtain and negative pressure fans. After topping
during the picking period, forced ventilation was adopted to also provide external shade.
When the temperature exceeded 30 ◦C, the forced ventilation system turned on. Conversely,
the roof vent and side window were closed when the temperature was lower than 15 ◦C,



Plants 2024, 13, 374 5 of 17

and natural ventilation was applied at other times. Six mature fruits with uniform size and
color and no damage were selected from each plot for measuring the quality indices. Total
soluble solids were measured using a portable sugar meter digital refractometer (ATAGO,
PR-32α, Tokyo, Japan). Vitamin C was measured using the 2,6-dichlorophenol indophenol
sodium titration method. Soluble sugar content was determined via enthrone colorimetry.
Soluble acid was measured via titration [31].

Microsoft Excel 2019 was used for statistics; SPSS 25 and MATLAB R2022a software
were used to process and analyze the data. The mean absolute error (MAE), root-mean-
square error (RMSE), mean relative error (MRE), and Nash–Sutcliffe efficiency coefficient
(NSE) were used to evaluate the accuracy of the model simulation. The calculation formulae
are as follows [13]:

MAE =
1
n

n

∑
i=1

|Ti − Mi| (4)

RSME =

√
1
n

n

∑
i=1

(Ti − Mi)
2 (5)

MRE =
1
n

n

∑
i=1

(∣∣∣∣Ti − Mi
Mi

∣∣∣∣) (6)

NSE = 1 −

n
∑

i=1
(Ti − Mi)

n
∑

i=1

(
Mi − Mi

) (7)

where n represents the number of samples; Ti represents the ith simulated value of the
model calculation; Mi represents the ith measured value of the lysimeter measurement; and
M represents the average value of Mi. When the NSE is close to 1, the model fitting effect
is better.

3. Results
3.1. Variation in Microclimate Parameters and Daily Transpiration under Different
Irrigation Conditions

Figure 2 shows the dynamic changes in daily accumulated solar radiation (DAR), wind
speed (W), water vapor pressure deficit (VPD), air temperature (Ta), and daily transpiration
of the tomatoes under different irrigation conditions from flowering and fruit-setting to
picking in 2022 and 2023. As shown in the diagram, there are obvious differences in
the DAR, VPD, and Ta at the different growth stages. In 2022, the daily average DAR
values during the flowering and fruit-setting period and the picking period were 83.67 and
50.60 mm·d−1, respectively, while the daily average VPD values were 0.48 and 0.27 kPa,
and the daily average Ta values were 21.27 and 16.06 ◦C, respectively. In 2023, the daily
average DAR values were 119.70 mm·d−1 and 99.21 mm·d−1, while the daily average VPD
values were 0.71 kPa and 0.84 kPa, and the daily average Ta values were 21.99 ◦C and
26.23 ◦C, respectively. The DAR showed a significant correlation with the VPD and Ta, and
the VPD and Ta fluctuated with the fluctuation in the DAR. At the daily scale, Ta fluctuated
more in 2022 than it did in 2023, as shown in Figure 2c1,c2 There was no significant
difference in wind speed between 2022 and 2023, and the average W values in the flowering
and fruit-setting periods were 0.10 and 0.12 m·s−1, respectively. The average wind speeds
in the picking stages were 0.09 and 0.17 m·s−1 in 2022 and 2023, respectively. The two-year
average for the maximum daily wind speed did not exceed 0.3 m·s−1. Notably, there was
no significant difference in wind speed between the flowering and fruit-setting and picking
periods in 2022, which was almost close to 0. However, in 2023, there were differences in
the daily scale and wind speed changes at the different growth stages. The wind speed
fluctuation during the picking period was stronger than that during the flowering and
fruit-setting periods, as shown in Figure 2c2.
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Figure 2. Variations in greenhouse microenvironmental factors and daily transpiration of tomatoes
under different irrigation conditions in 2022 and 2023. DAR represents daily accumulated solar
radiation, VPD represents daily averaged vapor deficit, Ta represents daily averaged air temperature,
and W represents daily averaged wind speed. (a2,b2) are the variation of DAR in 2022 and 2023.
(a1,b1,c1,c2) are the variation of microenvironmental factors in 2022 and 2023, the bule and grey
area in (c1,c2) represents standard deviation of air temperature and wind speed recorded by the
meteorological station every 30 min during a day, respectively.
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The variations in the daily transpiration of tomatoes cultivated under different irri-
gation conditions in 2022 and 2023 are shown in Figure 2a2,b2. The water demand of the
tomatoes under different irrigation conditions tended to increase daily at the initial stage.
The daily transpiration rate increased gradually with the increase in the LAI at the flowering
stage. There were differences in the daily transpiration rate at the different irrigation levels.
These differences were most significant when the intensity of water demand reached its
peak. In 2022, the tomatoes’ water demand peak occurred during the fruit enlargement
period in mid- and late October. During this peak (15–25 October), the daily average
transpiration rates of T1, T2, and T3 were 2.9 mm·d−1, 2.1 mm·d−1, and 1.7 mm·d−1, re-
spectively. In 2023, the maximum water demand occurred at the picking stage. During this
period (5–15 June), the daily average transpiration rates of T1, T2, and T3 were 3.7 mm·d−1,
2.7 mm·d−1, and 2.1 mm·d−1, respectively. The daily transpiration rate remained relatively
stable with the LAI after entering the picking period. The daily water requirements varied
across the different growth stages, while the daily transpiration rate gradually decreased
with the decrease in irrigation amount. The average daily transpiration rates of T1, T2,
and T3 during the flowering and fruit-setting period were 1.96 mm·d−1, 1.53 mm·d−1, and
1.30 mm·d−1 in 2022. In contrast, during the picking period, the daily transpiration rates
were 0.88 mm·d−1, 0.75 mm·d−1, and 0.62 mm·d−1 for T1, T2, and T3, respectively. In 2023,
the average daily transpiration of T1, T2, and T3 in the flowering and fruit-setting period
was 1.74 mm·d−1, 1.48 mm·d−1, and 1.24 mm·d−1, and the daily transpiration rates in the
picking period were 3.24 mm·d−1, 2.29 mm·d−1, and 1.80 mm·d−1, respectively.

3.2. Effect of Different Water Deficits on Morphological Characteristics of Tomatoes

During growth, the physiological indices of T1, T2, and T3 increased at first, reached
their maximum value, and then slightly decreased, but remained relatively stable. The
trends of the growth indices of tomatoes under different irrigation conditions were basically
the same, as shown in Tables 1 and 2.

Table 1. The effects of irrigation amount on tomato growth indices 2022.

Growth Indices Treatments
Days after Transplant/(d−1)

32 42 52 62 72 87

Leaf area index
T1 0.43 ± 0.08 a 0.94 ± 0.32 a 2.30 ± 0.51 a 3.54 ± 0.47 a 3.69 ± 0.93 a 3.51 ± 0.65 a
T2 0.54 ± 0.20 a 0.85 ± 0.10 ab 1.50 ± 0.19 b 2.36 ± 0.32 b 2.64 ± 0.27 b 2.53 ± 0.34 b
T3 0.41 ± 0.07 a 0.61 ± 0.09 b 1.23 ± 0.13 b 2.00 ± 0.19 b 2.36 ± 0.19 b 2.31 ± 0.25 b

Plant height (cm)
T1 54.78 ± 1.40 a 81.60 ± 1.23 a 133.9 ± 1.65 a 142.8 ± 1.0 a 141.8 ± 1.0 a 140.1 ± 2.5 a
T2 54.03 ± 1.70 a 74.80 ± 1.14 b 116.2 ± 0.60 b 125.6 ± 1.4 b 127.0 ± 1.8 b 129.8 ± 1.9 b
T3 55.08 ± 1.23 a 68.17 ± 1.53 c 104.6 ± 1.82 c 120.5 ± 1.8 c 122.0 ± 1.3 c 122.2 ± 1.1 c

Stem thickness
(mm)

T1 9.49 ± 0.29 a 10.33 ± 0.18 a 12.10 ± 0.21 a 12.54 ± 0.59 a 12.78 ± 0.21 a 12.95 ± 0.68 a
T2 9.24 ± 0.55 a 10.31 ± 0.04 a 11.61 ± 0.70 ab 11.95 ± 0.34 ab 12.19 ± 0.09 b 12.30 ± 0.11 ab
T3 9.37 ± 0.64 a 10.22 ± 0.36 a 11.01 ± 0.30 b 11.28 ± 0.59 b 11.54 ± 0.25 c 11.77 ± 0.33 b

Probability of
significance

Leaf
area index ns * ** ** ** *

Plant height ns ** ** ** ** **
Stem

thickness ns ns ns * * *

The letter(s) at the end of the numbers represent significant differences at p < 0.05; ns means insignificant; * means
significant at p < 0.05; ** means significant at p < 0.01 using the Tukey’s multiple range test.
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Table 2. The effects of irrigation amount on tomato growth indices in 2023.

Growth Indices Treatments
Days after Transplant/(d−1)

30 40 50 60 70 80

Leaf
Area Index

T1 0.53 ± 0.07 a 1.00 ± 0.05 a 2.07 ± 0.21 a 3.27 ± 0.13 a 3.58 ± 0.45 a 3.65 ± 0.40 a
T2 0.56 ± 0.10 a 0.86 ± 0.02 b 1.44 ± 0.08 b 2.19 ± 0.16 b 2.57 ± 0.41 b 2.64 ± 0.21 b
T3 0.61 ± 0.13 a 0.85 ± 0.04 b 1.29 ± 0.09 b 1.99 ± 0.22 b 2.33 ± 0.34 b 2.39 ± 0.43 b

Plant height (cm)
T1 54.63 ± 1.95 a 86.23 ± 1.37 a 128.67 ± 1.61 a 136.67 ± 1.53 a 139.67 ± 1.53 a 140.50 ± 1.80 a
T2 54.67 ± 1.04 a 81.67 ± 1.53 b 103.50 ± 1.08 b 115.38 ± 1.11 b 118.00 ± 1.32 b 126.17 ± 1.26 b
T3 56.00 ± 1.29 a 77.95 ± 1.01 c 99.88 ± 1.03 c 110.80 ± 1.59 c 113.17 ± 0.76 c 119.67 ± 1.15 c

Stem thickness
(mm)

T1 8.89 ± 0.60 a 9.31 ± 0.30 a 10.00 ± 0.20 a 12.24 ± 0.55 a 12.65 ± 0.68 a 12.67 ± 0.90 a
T2 8.77 ± 0.57 a 9.39 ± 0.32 a 10.56 ± 0.23 b 11.18 ± 0.37 b 11.74 ± 0.73 ab 11.81 ± 0.56 ab
T3 8.81 ± 0.57 a 9.10 ± 0.36 a 10.21 ± 0.39 b 10.97 ± 0.59 b 11.04 ± 0.61 b 11.41 ± 0.37 a

Probability of
significance

Leaf Area Index ** ** ** ** ** **
Plant height ** ** ** ** ** **

Stem thickness ns * * * * *

The letter(s) at the end of the numbers represent significant differences at p < 0.05; ns means insignificant; * means
significant at p < 0.05; ** means significant at p < 0.01 using the Tukey’s multiple range test.

As shown in Tables 1 and 2, the effect of a water deficit was significant for the LAI
and plant height (p < 0.01), but not for the stem diameter, 50 days after transplanting
(30 days after the beginning of the water deficit). At 40 days after transplanting (the
20th day of water deficit), the plant height and LAI of T1, T2, and T3 were significantly
different (p < 0.05), and the plant height and LAI gradually decreased with the decrease
in irrigation amount. A significant difference in plant height was observed among the
different irrigation plots as the tomatoes grew (p < 0.01). The LAIs for T1, T2, and T3
were significantly different after 42 days, but the difference between T2 and T3 was not
significant. Compared with the plant height and LAI, water stress had the smallest effect
on the stem diameter. The differences between T1, T2, and T3 started to show after 40 and
62 days of transplanting in 2022 and 2023, respectively (p < 0.05).

3.3. Effects of Different Irrigation Amount on Yield, Quality, and Water Use Efficiency of Tomatoes

As shown in Table 3, the effect of water stress on the tomato fruit quality was signif-
icant. Apart from the total soluble solids content in 2022, the difference under different
irrigation conditions reached a significant level in 2022 and 2023 (p < 0.01). The total soluble
solids content (TSS), soluble sugar content (SSC), and organic acidity (OA) had a negative
correlation with the irrigation level. As the irrigation amount decreased, the TSS, SSC,
and OA levels of the fruits gradually increased, and the ratio of sugar to acid (SAR) also
gradually increased as irrigation levels decreased. With the decrease in irrigation amount,
the content of VC first increased, and then decreased; the levels of VC in the plants was
ranked in the order of T2 > T3 > T1, and the content of VC in T2 and T3 was significantly
higher than that in T1. Furthermore, the fruit nutritional quality indices were higher in
2022 than those in 2023.

Table 3. The effects of irrigation amount on fruit quality.

Year Treatments TSS/(%) VC/(mg·kg−1) OA/(%) SSC/(mg·g−1) SAR

2022
T1 5.27 ± 0.85 b 154.53 ± 5.75 b 0.43 ± 0.01 b 23.19 ± 1.01 b 4.67 ± 0.16 b
T2 5.89 ± 0.29 ab 183.60 ± 7.07 a 0.48 ± 0.02 a 29.58 ± 1.65 a 6.15 ± 0.77 a
T3 6.60 ± 0.20 a 172.42 ± 9.36 a 0.50 ± 0.02 a 30.42 ± 4.27 a 6.51 ± 0.93 a

Probability of significance * ** ** ** **

2023
T1 4.64 ± 0.15 b 130.70 ± 9.75 b 0.48 ± 0.03 b 21.02 ± 1.04 b 4.18 ± 0.07 b
T2 5.25 ± 0.20 a 153.88 ± 10.60 a 0.54 ± 0.02 a 25.33 ± 1.66 a 4.80 ± 0.29 a
T3 5.45 ± 0.40 a 154.67 ± 8.04 a 0.55 ± 0.04 a 26.07 ± 2.48 a 4.89 ± 0.17 a

Probability of significance ** ** ** ** **

TSS: total soluble solids content; VC: Vitamin C; OA: organic acidity; SSC: soluble sugar content; SAR: sugar–acid
ratio. The letter(s) at the end of the numbers represent significant differences at p < 0.05; * means significant at
p < 0.05; ** means significant at p < 0.01 using the Tukey’s multiple range test.
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As shown in Table 4, the yield of tomatoes was positively correlated with the irrigation
amount, while the water use efficiency was negatively correlated with this value. The effect
of a water deficit on the yield and water use efficiency (WUE) reached a quite significant
level (p < 0.01). With the decrease in irrigation amount, the yield per plant gradually
decreased. For example, the yield per plant of the groups T2 and T3 in 2022 decreased,
respectively, by 10.94% and 21.09% compared with that of T1, and the total yield decreased
by 13.17% and 23.20%. In 2023, the yield per plant of the groups T2 and T3 decreased by
13.08% and 26.15%, respectively, and the total yield reduced by 10.90% and 24.38%. With
the decrease in irrigation amount compared to that of T1, the WUE of the groups T2 and T3
increased by 6.94% and 10.58%, respectively, in 2022; these values increased by 18.01% and
24.89%, respectively, in 2023. However, the water use efficiency of the groups T1, T2, and
T3 decreased by 45.73%, 30.07%, and 27.09% more, respectively, in 2023 compared to those
in 2022.

Table 4. The effects of irrigation amount on yield and water use efficiency.

Years Treatments Yield per Plant (kg·plant−1) Yield (t·hm−2) Water Use Efficiency (kg·m−3)

T1 1.28 ± 0.05 a 56.50 ± 0.87 a 38.18 ± 1.05 b
2022 T2 1.14 ± 0.01 b 49.06 ± 0.26 b 40.83 ± 0.21 a

T3 1.01 ± 0.02 c 43.39 ± 0.91 c 42.22 ± 0.87 a

Probability of significance ** ** **

T1 1.30 ± 0.08 a 54.11 ± 0.99 a 26.60 ± 1.59 b
2023 T2 1.13 ± 0.06 b 48.21 ± 1.05 b 31.39 ± 1.67 a

T3 0.96 ± 0.06 c 40.92 ± 0.67 c 33.22 ± 2.02 a

Probability of significance ** ** **

The letter(s) at the end of the numbers represent significant differences at p < 0.05; ** means significant at p < 0.01
using the Tukey’s multiple range test.

3.4. The Determination of Optimal Irrigation Amount Using TOPSIS

By conducting a comprehensive comparison using TOPSIS, GRA, and PCA, Li et al. [31]
proposed that TOPSIS can be better applied to the comprehensive evaluation of greenhouse
tomato yield and quality in north China. Based on the experimental results from 2022
and 2023, this study utilized the TOPSIS method and chose the yield, water use efficiency,
soluble solids, VC content, and sugar–acid ratio as indicators to evaluate the different
irrigation amounts. Comprehensive scores were obtained and ranked, as shown in Table 5.
According to Table 5, the experiments in 2022 and 2023 had a comprehensive ranking of the
irrigation methods in the order of T2 > T3 > T1. T2 had the highest comprehensive score,
and T1 had the lowest one. Thus, under the conditions of high yield and high quality, the
optimal irrigation amount was that of T2.

Table 5. Integrated evaluation of different irrigation amounts using TOPSIS.

Years Treatments D+ D− Ci Rank

T1 0.8844 0.4667 0.3454 3
2022 T2 0.4008 0.6942 0.6340 1

T3 0.4966 0.8131 0.6209 2

T1 0.8866 0.4624 0.3428 3
2023 T2 0.2706 0.7821 0.7429 1

T3 0.4624 0.8866 0.6572 2
D+ and D− represent positive and negative Euclidean distances, respectively; Ci represents comprehensive
evaluation index.
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3.5. Modeling the Diurnal Transpiration of Tomatoes in Substrate Cultivation
3.5.1. Determination of Model Factors

Based on the daily transpiration data of tomatoes measured with a lysimeter (Tm) in
the flowering and fruit-setting and picking periods of T2 in 2022, the daily accumulative
solar radiation (DAR), daily average wind speed (W), daily average water vapor pressure
deficit (VPD), daily average air temperature (Ta) at a height of 2 m from the ground, and
leaf area index (LAI) were selected for path and correlation analyses, as shown in Table 6.

Table 6. Correlation and pathway analyses between T2 daily transpiration and environmental factors
at different fertility stages.

Stage Variable
Direct Path
Coefficient

Indirect Coefficient
Correlation Coefficient

DAR W VPD Ta LAI ∑

DAR 0.057 0.022 0.051 0.020 0.006 0.098 0.795 **
W 0.144 0.054 0.051 −0.068 −0.039 −0.002 0.255

Flowering VPD 0.810 0.723 0.287 0.360 0.031 1.400 0.864 **
Ta 0.087 0.030 −0.041 0.039 0.005 0.033 0.384 *

LAI 0.414 0.044 −0.113 0.016 0.025 −0.028 0.405 **

DAR 0.738 0.265 0.590 0.401 −0.179 1.077 0.888 **
W 0.246 0.088 0.057 0.022 0.075 0.243 0.520 **

Maturation VPD 0.085 0.068 0.020 0.034 −0.041 0.081 0.583 **
Ta 0.025 0.014 0.002 0.010 0.009 0.035 0.421 **

LAI 0.029 −0.007 0.009 −0.014 0.011 −0.001 −0.183

DAR, daily accumulated solar radiation, in mm·d−1; W, daily average wind speed, in m·s−1; VPD, vapor pressure
deficit, in kPa; Ta, daily average air temperature, in ◦C; LAI, leaf area index, in m2·m2. * means significant at
p < 0.05; ** means significant at p < 0.01.

As shown in Table 6, there were different correlations between the Tm and various
variables at the different growth stages. The correlations between the Tm and other variables
during the flowering and fruit-setting stages were ranked from strong to weak as follows:
VPD > DAR > LAI > Ta > W. Here, the correlations between the VPD, DAR, LAI, Ta, and
Tm were significant. The correlation between the VPD and Tm was the strongest, with
a correlation coefficient of 0.864. The path analysis of Tm and the environmental factors
showed that VPD had the biggest impact on the Tm, regardless of whether it was direct
or indirect. However, the correlation analysis between Tm and the related variables in the
picking period showed that the correlation between the Tm and DAR was the strongest,
and the correlation coefficient between each related variable and the Tm was ranked in the
order of DAR > VPD > W > Ta > LAI. Among them, the correlations between the DAR, VPD,
W, Ta, and Tm reached a significant level, while the correlation between LAI and Tm was
the weakest and was not significant. Meanwhile, the path analysis of Tm and the related
variables showed that the influence of the VPD and LAI on Tm decreased, the influence
of the DAR and W on Tm increased, and the DAR had the greatest influence on Tm both
directly and indirectly.

3.5.2. Establishment of Daily Transpiration Model

The analysis in Section 3.5.1 showed that the relationship between the daily transpira-
tion rate (Tm) and the environmental factors changed with the growth and development of
the plants. The leaf area index (LAI) gradually increased with crop growth and reached its
peak at the end of the flowering and fruit-setting period. In this stage, the daily averaged
water vapor pressure deficit (VPD) had the most significant effect on the Tm, followed by
the daily cumulative solar radiation (DAR) and the LAI, and the correlation between the
daily mean temperature (Ta) and the Tm was also significant, but the correlation between
the Tm and wind speed (W) was not significant. Therefore, the VPD, DAR, Ta, and LAI were
selected as parameters to simulate the Tm during the flowering and fruit-setting period.
However, once in the picking stage, the DAR had the most significant effect on the Tm,
followed by the VPD, W, and Ta. The correlation between the LAI and Tm was negative
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and not significant, which indicates that the LAI had a smaller effect on the Tm, and the Tm
was mainly controlled by meteorological factors at this stage. Therefore, the DAR, VPD, Ta,
and W were selected as parameters to simulate Tm during the maturation period. Based
on the relationship between the chosen parameters and the Tm at various growth stages,
Marquardt parameter estimation was utilized to derive the daily transpiration model for
T2 at the different growth stages as follows:

Ts =
{

0.001DAR1.261 + 0.689 ln(VPD) + 0.399 ln(Ta) + 0.527 ln(LAI) 1 ≤ LAI < LAImax
0.011DAR1.04 + 0.189 exp(VPD)− 0.110 ln(Ta) + 5.625 ln(W)− 6.01 LAI = LAImax

(8)

where Ts represents the simulated daily transpiration rate, in mm·d−1; DAR represents the
daily accumulated solar radiation, in mm·d−1; Ta represents the daily average temperature;
W represents the daily average wind speed, in m·s−1; and LAI represents the leaf area
index, in m2·m−2.

3.6. Model Validation

Liu et al. [26] and Li et al. [27] proposed an unsegmented multivariate fitting equation
for estimating the Tm over the full life span of the tomatoes based on the relationship
between daily transpiration, Tm, meteorological factors, and the LAI, which ignored the
variations in crop development and greenhouse meteorological conditions. To validate
the necessity of establishing a segmented model, an unsegmented daily transpiration
estimation model T′ was established by using the meteorological data of the measured
daily transpiration rate and greenhouse for the year 2022, as shown below:

T′ = 0.514 ln(DAR) + 0.08 ln(VPD) + 0.379 ln(Ta) + 1.05 ln(W) + 0.006 exp(LAI) + 0.249 (9)

where Ts represents the simulated daily transpiration rate, in mm·d−1; DAR represents the
daily accumulated solar radiation, in mm·d−1; Ta represents the daily average temperature,
in ◦C; W represents the daily average wind speed, in m·s−1; and LAI represents the leaf
area index, in m2·m−2.

Figure 3 is the comparison between the daily measured and simulated values obtained
by segmented modeling Ts and unsegmented modeling T′ in 2023. Table 7 depicts the
comparison of the simulation accuracies of the Ts and T′ in the flowering and fruit-setting
and picking stages. As shown in Figure 3 and Table 7, unsegmented modeling T′ underesti-
mated the Tm at the flowering and fruit-setting stage, with a mean absolute error (MAE)
and root-mean-square error (RSME) of 0.27 mm·d−1 and 0.34 mm·d−1, respectively, and
an NSE of 0.66. The mean relative error MRE of the segmented model Ts was improved by
5% compared with that of the T′ model, and the MAE, RSME, and NSE were 0.15 mm·d−1,
0.18 mm·d−1, and 0.91, respectively, which were smaller than those of the T′ model. The
simulation accuracies of the T′ model were improved during the maturation period, at
12.99%, 0.25 mm·d−1, and 0.30 mm·d−1 for the MRE, MAE, and RSME, respectively, while
those of the Ts model were 11.07%, 0.20 mm·d−1, and 0.25 mm·d−1. In addition, the NSE of
the Ts model simulation is 0.85, while the NSE of the T′ model is 0.73; thus, the Ts model was
still better than the T′ model. Figure 4 shows the linear fit of the simulated and measured
values of the segmented model Ts at the flowering and maturation stages. The correlation
coefficients R2 of the Ts model at the flowering and maturation stages were 0.92 and 0.86,
respectively. The synthesis of the statistical indicators in Table 7 and Figures 3 and 4 shows
that the simulation accuracy of the Ts model was higher than that of the T′ model; in
addition, fewer parameters were required by the Ts model than by the T′ model. Therefore,
the segmented model Ts was better than the unsegmented model T′, which could accurately
simulate the daily transpiration of Venlo-type greenhouse substrate-cultivated tomatoes.
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4. Discussion

The aim of facility vegetable production has always been to achieve a high yield
and quality [8,31]. Several studies [32–34] have indicated that an appropriate degree of
water stress can improve the quality of tomatoes, while ensuring a stable yield. Using
the current production practices, an improper water supply has resulted in wasted water
resources and a reduced fruit quality [35]. To determine the optimal irrigation lower limit,
this study established three different irrigation gradients (T1, T2, and T3) according to
the matrix water-holding capacity from the beginning of flowering and investigated the
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effect of the irrigation amount on the tomato yield and quality. Previous studies [36,37]
have shown that crop transpiration is positively correlated with the irrigation amount, and
crop quality is negatively correlated with irrigation amount within a certain threshold.
In this study, with the increase in irrigation amount, the daily transpiration rate, plant
height, stem diameter, LAI, and yield increased. The water use efficiency (WUE), total
soluble solids (TSS), soluble sugar content (SSC), and sugar–acid ratio (SAR) decreased
progressively with the increase in irrigation amount. The VC content increased first, and
then decreased with the decreased irrigation amount (Tables 1–4), which is consistent with
the results of previous studies [8,31,37]. However, compared with other studies in a nearby
area [8,24,31], it was found that under the same irrigation conditions, the quality indices,
such as the TSS, SAR, and SSC, of the tomatoes in this study were better than those of the
-soil grown tomatoes, which is consistent with the results of several studies [38–40]. Due
to the different effects of a water deficit on the different yield and quality indicators, the
comprehensive evaluation of different irrigation amounts in this study was conducted by
utilizing the TOPISIS method. The results showed that the T2 treatment with a 70% matrix
water-holding capacity significantly improved the WUE and quality of the tomatoes when
there was no significant decrease in yield, and the comprehensive score was the highest
(Table 5). Therefore, it is recommended to take a 70% matrix water-holding capacity as the
lower limit of irrigation for high-yield and high-quality tomato production. However, due
to the different sensitivities of tomatoes to water at the different growth stages [41], the
impact of water stress on the tomato yield and quality during the various growth stages
remains to be elucidated. Therefore, different water treatments need to be conducted at
different growth stages to further investigate the effects of water stress on the yield and
quality of tomatoes grown in a substrate.

In this study, correlation and path analyses were conducted on the daily transpiration
rate (Tm) and environmental factors in the flowering, fruit formation, and maturation
periods of tomatoes grown in a substrate (Table 6). The results indicated that the Tm
at the different growth stages was mainly influenced by meteorological factors. During
the flowering and fruit formation stage, the Tm was primarily influenced by the vapor
pressure deficit (VPD), while during the picking period, the Tm was primarily influenced
by the daily cumulative amount of solar radiation (DAR). This may be attributed to the
interaction between the greenhouse microenvironment and plants [42]. Crop transpiration
causes cooling and humidification [30], and the transpiration rate of crops will gradually
increase during growth. The canopy of the greenhouse may obstruct ventilation, which
will increase during crop growth, resulting in a gradual increase in the volatility of the
wind speed (Figure 2c2). Additionally, as the crops grew in 2023, the temperature gradually
increased due to external environment influences, and the relationship between the Tm
and meteorological factors, such as wind speed and temperature, also changed. For
instance, previous studies [43,44] have shown that a temperature of 25 ◦C is the most
suitable for tomato growth and development. In the range from 15 ◦C to 25 ◦C, the
increase in temperature promotes the growth and development of tomatoes. When the
temperature exceeds 25 ◦C, the growth and development of tomatoes are inhibited [45]. In
2023, the average daily temperature during the tomato flowering and fruit-setting period
was 21.99 ◦C, while it was 26.23 ◦C during the picking period. The increased temperature
during the flowering and fruit formation stage promoted the growth of the tomatoes.
However, as they grew, the Ta gradually increased, and the increase in temperature during
the picking period inhibited the growth of the tomatoes. The impacts of temperature on
the daily transpiration of tomatoes in a substrate culture were different at the flowering
and fruit-setting and picking periods. Due to the selection of model parameters, the
Tm gradually increased with the increase in LAI during the flowering and fruit-setting
period, and the correlation between the daily transpiration rate of tomatoes and the LAI
reached a significant level (p < 0.01). To accurately simulate the Tm, the change in LAI
must be accounted for, while considering the meteorological factors. During the picking
period, the LAI remained stable, and the correlation between the Tm and LAI was not
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significant. The Tm fluctuated with the DAR, and the Tm was influenced by meteorological
factors. Thus, it was imperative to adjust the model parameters to match the crop’s growth
period alterations.

The FAO indicated that the estimation of evapotranspiration based on pan-evaporation
data for a period of 10 days or longer was warranted [11]; however, the water-holding capac-
ity of the substrate was much lower than that of the soil. Thus, this method, which is widely
used for the irrigation management of greenhouse soil-cultivated crops, could not satisfy
the requirement of precise irrigation management in greenhouses. The Penman–Monteith
model, which is the most widely used approach in evapotranspiration simulation [15,46],
has been validated under various climatic conditions around the world; yet, it is difficult
to obtain the necessary parameters, limiting its application in practical production [29].
Therefore, when simulating the daily transpiration of tomatoes cultivated in a greenhouse
substrate, instead of following the lead of the previous studies [46,47], which first deter-
mined the potential transpiration of the crop and then determined the daily transpiration
under insufficient irrigation conditions by calculating the stress index, this study screened
the model parameters by analyzing the relationship between the daily transpiration of
tomatoes under deficient irrigation conditions and the factors affecting daily transpiration
(Table 6). A segmented model for the daily transpiration of tomatoes grown in a Venlo
greenhouse substrate was established based on the correlation between daily transpiration
and environmental factors at the different growth stages, where the greenhouse environ-
mental factors and LAI were the driving forces, the experimental data from 2022 were
used for training, and the experimental data from 2023 were used for verification. The R2

during the flowering and fruit-setting and picking periods were 0.92 and 0.86, respectively
(Figures 3 and 4). The segmented model proposed in this study, compared with the model
proposed by Liu et al. [26], integrates the physiological processes of the crop itself and the
changes in environmental factors and expands the wind speed and water vapor pressure
deficit terms, which covers the factors more comprehensively. Therefore, this model is more
sensitive to the changes in meteorological parameters and more versatile. However, the
training of the model was based on the 2022 fall data and verification was based on the 2023
spring data, which only verifies the applicability of the model for tomatoes grown in spring.
The applicability of the model to tomatoes grown in fall must be investigated. Nevertheless,
because the model parameters were easy to obtain, this is a simple and fast method for
estimating the daily transpiration of tomatoes, which can serve as a basis for the irrigation
of high-yield and -quality tomato production in a Venlo greenhouse in northern China.

5. Conclusions

Substrate cultivation can be used to more successfully obtain high-quality fruits when
compared to soil cultivation. It is recommended to use a 70% substrate water-holding
capacity as the lower limit of irrigation for Venlo-type substrate tomato cultivation in
north China, which can increase the water use efficiency by 18.00%, while the tomato
yield decreases by 10.90%. Meanwhile, the sugar–acid ratio, VC content, total soluble
solids, soluble sugar content, organic acidity, and other nutritional quality of tomatoes were
improved, which reflects an improved quality, while ensuring a high tomato yield. Daily
transpiration during the flowering and fruit-setting stage was mainly influenced by the
vapor pressure deficit, and it mostly correlated with the daily accumulated solar radiation
value; the model considered the greenhouse environmental and crop factors as drivers. The
R2 during the flowering and fruit-setting and picking stages was more than 0.85, which
could be used to easily and effectively estimate the daily transpiration of tomatoes and
could provide support for the irrigation management of high-quality and -yield tomatoes
in Venlo greenhouse substrate cultivation.
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