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Abstract: Tea is the second most popular nonalcoholic beverage consumed in the world, made from
the buds and young leaves of the tea plants (Camellia sinensis). Tea trees, perennial evergreen plants,
contain abundant specialized metabolites and suffer from severe herbivore and pathogen attacks in
nature. Thus, there has been considerable attention focusing on investigating the precise function
of specialized metabolites in plant resistance against pests and diseases. In this review, firstly, the
responses of specialized metabolites (including phytohormones, volatile compounds, flavonoids,
caffeine, and L-theanine) to different attacks by pests and pathogens were compared. Secondly,
research progress on the defensive functions and action modes of specialized metabolites, along with
the intrinsic molecular mechanisms in tea plants, was summarized. Finally, the critical questions
about specialized metabolites were proposed for better future research on phytohormone-dependent
biosynthesis, the characteristics of defense responses to different stresses, and molecular mechanisms.
This review provides an update on the biological functions of specialized metabolites of tea plants in
defense against two pests and two pathogens.

Keywords: Camellia sinensis; tea plant; specialized metabolites; defense response; insect pest attack;
pathogen infection

1. Introduction

Due to their sessile nature, plants have an innate immune system that helps them
defend against different pathogen infections and insect attacks, and the defense response
is composed of a highly regulated and complex molecular network [1]. After infection by
pathogens, plants can initiate two branches of immunity, including pathogen-associated
molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity
(ETI) [2]. In the process of PTI and ETI, on the one hand, after a local infection by pathogens,
plants can produce a long-lasting resistance to broad-spectrum pathogens in uninfected
distal tissues, and this type of resistance in the whole plant is termed systemic acquired resis-
tance (SAR) [3], and on the other hand, beneficial microorganisms are employed to induce
plant resistance by hormone signaling or modulating host small RNAs, termed induced sys-
temic resistance (ISR) [4]. For example, the utilization of plant growth-promoting rhizobac-
teria (PGPR) strains to activate ISR against two major root diseases in tea plants [5]. Upon
insect attack, plants respond to both herbivore-associated molecular patterns (HAMPs)
and plant-derived damage-associated molecular patterns (DAMPs) and trigger PTI-like
immune responses for defense [2,6]. That is to say, an efficient defense response requires
specific recognition of the pathogen/herbivore and translation into defense signaling to
regulate diverse cellular processes, including transcriptional rewiring and metabolic re-
programming [7]. In plant immune defense networks, plants produce a huge array of
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different specialized metabolites, many of which are assumed to function as defenses.
The classifications for specialized metabolites underwent multiple revisions during their
history [8]. An extensive diversity of metabolites across the plant family have been con-
ventionally classified in groups of ‘primary metabolites’, ‘secondary metabolites’, and
‘phytohormones’ [9]. The ‘secondary metabolites’ are also termed ‘specialized metabolites’
because they are often produced by specific plant lineages, including phenylpropanoids,
terpenoids, alkaloids, sulfur-containing compounds, and modified fatty acids, which per-
form mostly protection functions that allow plants to adapt to their environment [10–12].
However, ever-increasing genetic and chemical studies have reported that these secondary
metabolites could function as potent plant growth regulators [13]. So, a recently published
review has suggested that the functional separation between the three groups is becoming
less clear [7]. Thus, one of their important perspectives is that multifunctionality seems to
be a widespread property of specialized metabolites.

Tea plants (Camellia sinensis (L.) O. Kuntze) belong to Thea of genus Camellia in the
family Theaceae. In nature, tea plants are widely planted in southern China, Indian Assam,
and southeast Asia, and they suffer from severe biotic stresses, such as herbivore and
pathogen attacks, incurring severe losses of yield, and low-quality tea products [14–16].
In tea plants, hundreds of different bioactive metabolites are accumulated, of which the
most enriched natural products are catechins, L-theanine, and purine alkaloids. In addition,
flavonols, anthocyanins, and triterpenoid saponins also occur in large amounts. These
compounds are the representative metabolites and play a major role in the tea’s flavor
and health functions [17–19]. Among these compounds, catechins, caffeine, and volatile
compounds have been found to play defensive roles against tea pests and diseases [20–22].
Tea geometrids are the main leaf-feeding pests in most tea plantations, including two
sibling species, Ectropis grisescens Warren (Lepidopotera: Geometridae) and Ectropis obliqua
Prout (Lepidopotera: Geometridae), which dramatically inflict harm to tea plantations [23]
(Figure 1A). Another pest, the tea green leafhopper, Empoasca onukii Matsuda (Hemiptera:
Cicadellidae), is the most disruptive pest across tea plantations. The nymphs and adults
pierce tender tea shoots and suck the sap, and the adults oviposit in the tender tissues,
seriously affecting tea production and quality [24,25] (Figure 1B). Among the diseases of
tea plants, blister blight disease is caused by the obligate fungus Exobasidium vexans Massee,
which only infects the succulent young leaves and stems. It is one of the serious diseases of
tea plants that occurs in almost all tea-growing countries [26] (Figure 1C). Anthracnose is
the most widespread disease that occurs commonly on the leaves of tea plants, resulting in
damage to the leaves (Figure 1D). This disease is caused by several species of the genus
Colletotrichum, while Colletotrichum camelliae has been recorded in countries like China and
Sri Lanka [20]. Therefore, whether the abundant specialized metabolites of the tea plant
have biological functions and play roles in defense against two pests and two diseases is
meaningful and important.

In this review, we surveyed the existing literature for specialized metabolites elicited
by herbivore infestation and pathogen infection and then summarized the defensive roles
and action modes of specialized metabolites along with the intrinsic molecular mecha-
nisms in tea plants. Further, we also pointed out important directions for future research.
Therefore, we hope this review will help better understand tea plant herbivore/pathogen
interactions and the function of integral metabolite regulatory networks. Moreover, the
multifunctionality of metabolites can provide new explanations for tea plant defense under
constant pressure from various pathogens and pests in their natural environment.
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Figure 1. Symptoms of Ectropis grisescens infestation (A), Empoasca onukii infestation (B), Exobasidium 
vexans infection (C), and Colletotrichum camelliae infection (D) in the tea plantations. 
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Figure 1. Symptoms of Ectropis grisescens infestation (A), Empoasca onukii infestation (B), Exobasidium
vexans infection (C), and Colletotrichum camelliae infection (D) in the tea plantations.

2. The Phytohormones Involved in Pest/Pathogen-Induced Defense in Tea Plants

Plants have evolved sophisticated defense mechanisms to protect themselves from
biotic and abiotic stresses. In defense processes, the activated phytohormonal signaling
networks connect plant perceptions and early signaling transduction to broad transcrip-
tional reorganization and metabolite production, playing a central role in plant defense
responses [27,28]. Many findings have suggested that plant defense responses are fine-
tuned by phytohormones, including well-established jasmonic acid (JA), salicylic acid
(SA), ethylene (ET), and other critical signals, such as gibberellin (GA), abscisic acid (ABA),
brassinosteroid (BR), cytokinin (CK), auxin (indole-3-acetic acid, IAA), and so on [29–33].
Among them, JA is the core signaling pathway that regulates herbivore/pathogen-induced
defense, functioning as a key player in regulating defensive metabolite production [34,35].

In tea plants, JA and SA are the principal signaling molecules that activate defense
pathways, and other phytohormones are required to ensure the proper coordination of
growth and defense. For example, multiple studies have consistently found that the JAs (JA,
JA-Ile, and 12-oxo-10,15(Z)-phytodienoic acid (OPDA)), SA, IAA, and ABA were activated
upon the infestation of E. grisescens and E. onukii (Table 1) [36–39]. Furthermore, a study
found that JA levels significantly increased, whereas GA levels notably decreased in tea
plants upon attack by E. grisescens, with an obvious antagonistic cross-talk between JA and
GA signals [40]. The E. onukii-induced minor increase in JA level has been reported re-
cently [41]. Additionally, exogenous application of JA enhanced the resistance of tea plants
to E. grisescens by activating defense characteristics, including defense gene expression and
the accumulation of defensive proteins and metabolites. For instance, pretreatment with
MeJA increased PPO activity by activating the transcripts of CsPPO2 and CsPPO4 [40] and
induced the biosynthesis of defensive catechins and volatiles [38,42]. In the tea diseases,
C. camelliae infection significantly increased JA and OPDA content, and E. vexans infection
increased the endogenous levels of JA and SA as well as the expression of synthesis-related
genes [43,44] (Table 1). The levels of SA and SA glucose ester, along with the expres-
sion of the UDP-glycosyltransferase (UGT) gene CsUGT87E7, were significantly induced
by gray blight infection, suggesting a positive role of the SA signal in tea resistance to
pathogens [45].
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Table 1. Defense responses of phytohormones in tea plants to pest/pathogen attack.

Pests/Pathogens Phytohormones Defense Responses References

E. grisescen/
E. obliqua

JA, SA, ET,
IAA, ABA

All five phytohormone contents were elevated following
herbivory, and exogenous treatment of JA, IAA, and ACC
enhanced the resistance of tea plants to E. grisescens,

[38,39]

E. onukii SA, JA SA content increased significantly and JA content increased
slightly following herbivory,

[41]

C. camelliae JA, IAA JA and IAA content significantly increased after infection, and
exogenous application of MeJA modulates tea plant
susceptibility to C. camelliae.

[43]
[46]

E. vexans JA, SA JA and SA content significantly increased after infection. [44,47]

E. grisescen: Ectropis grisescens; E. obliqua: Ectropis obliqua; E. onukii: Empoasca onukii; C. camelliae: Colletotrichum
camelliae; E. vexans: Exobasidium vexans; ACC: 1-aminocyclopropane-1-carboxylic acid (the precursor of ethylene).

In conclusion, the above studies suggest that (i) both JA and SA signaling pathways
are the two key signals in tea plants. Similar to other plants, the attacks of chewing pests
(E. grisescens and E. obliqua) and C. camelliae infection preferentially activate the JA pathway,
and the infection of E. vexans significantly activates both JA and SA signals, whereas the
attack of piercing-sucking E. onukii and the infection of gray blight preferentially activate the
SA pathway [34,36,41,44]. Thus, an in-depth understanding of the molecular mechanisms
underlying the herbivore/pathogen-induced phytohormone signaling in tea plants will
require more extensive and comprehensive investigations in vitro and in vivo. (ii) Among
these phytohormone signals, JA signaling is well established as the core pathway that
regulates tea plant defense against herbivores and pathogens. The herbivore/pathogen-
induced patterns of JA in tea plants, consistent with previous studies in other plant species,
suggest that JA signaling is widely conserved among diverse plant species [27]. There
have been numerous studies proving that the JA signaling pathway plays an essential role
in protecting plants from multiple stresses, and JAZ-MYC modules have been studied
precisely [48,49]. In tea plants, the JAZ-MYC modules have been verified to play a crucial
role in response to low temperatures and C. camelliae infection [46,50], and intense research
has revealed essential molecular components of the JA pathway [51,52]. The explicit
modules and the underlying mechanisms still need elaborated investigations. In addition,
few studies have been conducted on SA, ET, ABA, GA, and BR signaling pathways in
defense over the past decade; therefore, more research is requisite in these themes.

3. Defensive Functions of Volatiles Elicited by Pest/Pathogen Attacks in Tea Plants

Plant volatiles have important roles in many aspects of plant interactions with the en-
vironment, and more than 1700 volatile compounds have been characterized in plants [53].
A large number of studies have proposed that both pest and pathogen attacks could elicit
a substantial amount of plant volatiles, which mediated the behaviors of herbivores and
their natural enemies, the growth rate of pathogens, and plant resistance via activating
specific signaling pathways, as well as triggering the plant–plant communications that
made the neighboring plants more resistant to the subsequently coming herbivores [22,54].
According to the biosynthesis pathway, volatile compounds in tea plants can be divided
into fatty acid derivatives, benzenoids, and terpenes, whose precursors mainly originate
from both the cytosolic mevalonate pathway and the plastidic methylerythritol phosphate
pathway [55]. Although the composition and emission amount of herbivore-induced plant
volatiles (HIPVs) are influenced by the herbivore species and the attack degree, many
common compounds are induced by different herbivores. For example, once attacked by
E. grisescens or E. onukii, the tea plants released more than 30 or 20 volatile compounds,
respectively, including (Z)-3-hexenol, (Z)-3-hexenyl acetate, linalool, indole, β-ocimene,
α-farnesene, and (E)-nerolidol, etc., and these compounds have been documented to serve
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three distinct ecological functions: direct defense against insects, attracting insect predators
or parasitoids, and signaling within or between tea plants [22,37,54,56–59] (Table 2).

Table 2. Ecological functions of volatiles in defense against pests/pathogens in tea plants.

Volatiles Targets Functions References

(Z)-3-hexenol E. grisescens
E. obliqua

Enhanced direct and indirect tea resistance by activating JA and ET
signaling, reducing the performance of herbivores, and making tea
plants more attractive, the main parasitoid wasp, and the
(Z)-3-hexenyl-glycoside had anti-insect activity via reducing the
larval growth rate.

[54,58]

(E)-nerolidol E. onukii
C. fructicola

Enhanced tea resistance by activating JA and ABA signaling and
increasing the accumulation of defensive compounds, thus
reducing the performance of herbivores. In addition, inhibited
hyphal growth.

[60]

Indole E. obliqua Primed tea resistance by JA signaling and defense-related
secondary metabolites reduces the growth rate of herbivores. [37]

β-Ocimene E. obliqua
Enhanced tea resistance by activating the signal pathway and
reducing the weight gain of herbivores; in addition, strongly
repelled mated females in behavioral bioassays.

[61]
[57]

Benzyl nitrile E. grisescens Inhibited larval growth in vitro and repelled larvae in behavioral
bioassay. [62]

Geraniol C. camelliae Inhibited the growth of C. camelliae by decreasing the activity of the
defense enzymes. [63]

DMNT E. obliqua Promotes the resistance of neighboring intact plants by activating
JA signaling. [56]

E. grisescen: Ectropis grisescens; E. obliqua: Ectropis obliqua; E. onukii: Empoasca onukii; C. camelliae: Colletotrichum camel-
liae; C. fructicola: Colletotrichum fructicola; E. vexans: Exobasidium vexans; DMNT: (E)-4,8-dimethyl-1,3,7-nonatriene.

Compared with other defensive metabolites, an important feature is that HIPVs can
respond to insect stress more rapidly. For example, volatiles (e.g., (Z)-3-hexenal, (E)-2-
hexenal, and (Z)-3-hexenyl acetate) can be released within minutes after infestation by
pests [37,55], which suggests that HIPVs could perform as defense signals. Over the past
few years, many studies have focused on the signaling mechanisms of specific HIPVs,
such as (Z)-3-hexenol, (E)-nerolidol, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), and indole,
which have been verified to play an important role in the induction of JA-dependent
resistance against pests [37,54,56,57,62]. (Z)-3-hexenol is one of the most intensively studied
HIVPs and exhibits multifaceted defense-related functions, and the defense mechanisms
have been demonstrated in tea plants. Firstly, field and laboratory experiments have
confirmed that (Z)-3-hexenol effectively activated the defense against tea geometrids and
made tea plants more attractive to tea geometrid parasitoids. Secondly, more thorough
investigations proved that (Z)-3-hexenol triggered JA and ET signaling pathways [54,60,64].
Thirdly, the glycosylation of the (Z)-3-hexenol further enhanced insect resistance [22].
Finally, (Z)-3-hexenol was a signaling molecule absorbed by adjacent healthy plants, and
it would be converted into three insect defensive compounds to enhance the tea plant’s
resistance [58]. Accordingly, it could be used as a chemical elicitor to explore the biological
strategies to control tea geometrids.

Glycosylation is a key mechanism that determines the chemical complexity of metabo-
lites in plants [65]. Glycosylation reactions are catalyzed by glycosyltransferases that
transfer an activated nucleotide sugar to acceptor aglycons to form glycosides as well as
sugar esters [66]. In tea plants, CsUGT85A53-1 catalyzed (Z)-3-hexenol to produce (Z)-
3-hexenyl glucoside [18]. Moreover, the linalool and linalool oxides and their glucosides
were accumulated after E. onukii and E. grisescens infestations [67]. These findings were
identical to the results of previous studies in tomato and kiwi fruits [68,69], which imply
that the glycosides of volatiles in plants act not only as direct defensive compounds but



Plants 2024, 13, 323 6 of 13

also as a source of volatile storage that would emit immediately after herbivory attack and
then attract natural enemies of herbivores.

4. Defense Responses of Flavonoids to Herbivore/Pathogen Attacks in Tea Plants

Flavonoids are an important class of secondary metabolites involved in multiple
aspects of plant defense against pathogens, herbivores, and ultraviolet [70]. As a class
of specialized metabolites, phytoalexins and phytoanticipins belong to flavonoids. Phy-
toalexins are synthesized de novo after pathogen infections, and phytoanticipins are either
constitutively present or synthesized from preformed constituents [8]. For example, the
phytoalexin sakuranetin is a biologically important compound due to its antimicrobial
activity and is induced only after pathogen infection in rice plants [71]; quercetin acts as
a phytoanticipin to limit the establishment of biotrophic pathogens, thus delaying or re-
ducing their sporulation [72]. In tea plants, flavonoids contain flavonols, dihydroflavonols,
catechins (flavan-3-ols), flavanones, anthocyanidins, etc. Catechins are especially abundant
in tender buds and leaves, and they play important roles in quality, flavor, and health value,
as well as protecting plants against herbivores and pathogens [17,55]. From the perspective
of biosynthesis, tea flavonoids originate from diverse branches of the phenylpropanoid
pathway, whose precursor is the shikimate pathway-derived phenylalanine. The shikimate
pathway takes place in the plastid and provides many essential substances and precursors
for the biosynthesis of large biomolecules. For example, the shikimate pathway-derived
gallic acid and glucogallin are the essential substrates for the synthesis of polygalloylated
glucoses and galloylated catechins [17]. Several studies have shown that herbivore infesta-
tion activates the biosynthesis of flavonoids, which act as inducible defensive compounds
(Table 3). For example, the studies suggested that a large number of genes involved in the
biosynthesis of flavonoids were activated, and the contents of flavonols, dihydroflavonols,
flavan-3-ols, anthocyanidins, flavones, and flavonoid glucosides, such as myricetin, rutin,
dihydroquercetin, and dihydromyricetin, were elevated, but some flavonoid precursors
and derivatives were decreased in tea plants upon herbivore attack [73,74]. Further in-
vestigation found that E. grisescens infestation significantly increased the accumulation of
quercetin glucosides produced from quercetin catalyzed by UGT89AC1, and an artificial
diet supplemented with quercetin glucoside reduced the larval growth rate [75]. Moreover,
the contents of tricetin, kaempferol 3-O-glucosylrutinoside and methyl 6-Ogalloyl-b-D-
glucose, as well as the expression levels of key genes pertaining to flavonoids biosynthesis,
were significantly up-regulated during E. onukii infestation [41]. Additionally, flavonoids
have been found to be elicited by pathogen infections. For example, E. vexans infection
elevated the accumulation of quercetin and kaempferol glucosides and kaempferol triglyco-
sides but substantially reduced the accumulation of apigenin and myricetin glycosides [76].
In summary, flavonoids responded specifically to different insects and pathogens; never-
theless, targeted metabolites and the underlying precise mechanisms of defense against
insects and pathogens need in-depth investigations, according to the current studies.

Table 3. Defense responses of flavonoids, caffeine, theanine, and amino acids in tea plants to
pest/pathogen attacks.

Metabolites Pests/Pathogens Defense Responses References

Flavonoids E. obliqua Significantly increased the contents of myricetin, rutin,
dihydroquercetin, and dihydromyricetin.

[73]

E. grisescens Increased the accumulation of quercetin glucosides, and an
artificial diet supplemented with quercetin glucoside reduced the
larval growth rate (identified anti-herbivore function).

[75]

E. onukii Significantly upregulated the levels of tricetin, kaempferol
3-O-glucosylrutinoside, and methyl 6-Ogalloyl-b-D-glucose.

[41]
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Table 3. Cont.

Metabolites Pests/Pathogens Defense Responses References

Flavonoids E. vexans Increased levels of quercetin, kaempferol glucosides, and
kaempferol triglycosides, and decreased levels of apigenin and
myricetin glycosides.

[76]

Catechins E. obliqua Increased the contents of C, EC, GC, ECG, and GCG, and declined
the content of EGCG.

[73]

E. grisescens Significantly increased the contents of C, EC, and EGCG, and the
artificial diet supplemented with C, EC, and EGCG reduced larval
growth rate (identified anti-herbivore function).

[38]

E. onukii Induced the accumulation of EC, EGC, EGCG, ECG, EGC-ECG
dimer, and EC-ECG dimer.

[41]

C. fructicola Induced the accumulation of C and EGCG, which strongly
inhibited the growth of the mycelium (identified anti-pathogen
function).

[20]

E. vexans Induced the accumulation of C, EC, EGC, and EGCG. [76]

Caffeine E. obliqua Activated biosynthesis and accumulation of caffeine. [73]

E. onukii Presented no change in response to the herbivore attack. [41]

C. fructicola Induced caffeine accumulation inhibited mycelial growth by
affecting mycelial cell walls and plasma membranes.

[20]

E. vexans Reduced the content of caffeine. [76]

Theanine
amino acids

E. obliqua Increased the levels of theanine and eight basic amino acids
(glutamate, serine, cysteine, tyrosine, methionine, phenylalanine,
glycine, and lysine).

[73]

E. onukii Decreased the levels of theanine, glutamate, aspartate, serine, and
glutathione.

[41]

E. grisescens: Ectropis grisescens; E. obliqua: Ectropis obliqua; E. onukii: Empoasca onukii; C. fructicola: Colletotrichum
fructicola; E. vexans: Exobasidium vexans.

Catechins are the dominant flavonoids in tea plants, classified as ester or non-ester
types. The major non-ester type catechins include catechin (C), epicatechin (EC), gallo-
catechin (GC), and epigallocatechin (EGC), and the major ester-type catechins include
epicatechin-3-gallate (ECG) and epigallocatechin-3-gallate (EGCG) [17]. The concentration
of ester-type catechins is much greater than that of non-ester type [77,78]. Catechins not
only have multiple effects on human health with antimicrobial, antiviral, and antiaging ac-
tivities [79], but also have important defensive functions against herbivores and pathogens
(Table 3). For example, the contents of C, EC, GC, ECG, and GCG were increased, while
the levels of EGCG declined in damaged leaves after an E. obliqua attack during 3–24 h [73].
Our study used mechanical wounding supplemented with the regurgitant of E. grisescens
to simulate herbivore feeding to observe the change in catechins during 24–72 h after treat-
ment [38]. The accumulation of C, EC, and EGCG was significantly augmented compared
to the mechanical wounding, and an artificial diet supplemented with them reduced larval
growth rates in a dose-dependent and time-dependent manner. Both studies showed that C
and EC accumulated significantly, while EGCG decreased within 24 h in the former study
and increased between 24 and 72 h in our study. Among several possible explanations, we
consider the following two aspects: (i) the level of EGCG may be influenced by elicitation
time and treatment type; (ii) the structure of EGCG is complex owing to the number of
hydroxyl groups in the B-ring and presence of a galloyl moiety, and its accumulation may be
influenced by several factors, such as precursors, degradation, or polymerization due to au-
toxidation. In addition, several reports have shown that the accumulation of catechins was
elicited by E. onukii infestations and pathogen infections. During C. fructicola infection, the
contents of C and EGCG were elevated, and in vitro, catechins inhibited mycelial growth in
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a dose-dependent manner [20]. Furthermore, E. vexans infection induced the accumulation
of C, EC, EGC, and EGCG. These results suggested that herbivory and pathogen attacks
elicited the differences in catechin metabolism [76]. Among seven catechins, both C and
EGCG were effectively triggered upon attack by E. grisescens, E. obliqua, E. onukii, C. fruc-
ticola, and E. vexans, which suggested that C and EGCG could respond conservatively to
different herbivores and pathogens, while other components responded differently. These
findings align with many other studies, which have reported the diverse roles of EGCG
in plant–environment interactions [80]; for instance, EGCG has antibacterial, antifungal,
and anti-herbivore properties due to altering the metabolism of folic acid in bacteria and
fungi or enhancing plant resistance against diverse diseases and herbivores [81,82]. Most
studies have focused on the changes in the accumulation of catechins in response to stress;
although only a few studies have tried to verify the defense functions, the underlying
mechanism is seldom studied.

5. Defense Responses of Caffeine, Theanine, and Amino Acids to Pest/Pathogen Attack
in Tea Plants

As the most well-known purine alkaloid, caffeine (1,3,7-trimethylxathine) accumulates
at higher levels in the tea bud and young leaves, and its biosynthesis involves several critical
methylation reactions catalyzed by N-methyl transferases and a 7-methylxanthine nucle-
osidase [83]. Caffeine is not only closely related to nitrogen metabolism, but it also plays
an important role in the direct defense against insect herbivores and pathogens [84–87].
An E. obliqua attack activated the caffeine biosynthesis and increased its accumulation,
while an E. onukii infestation did not change the levels of caffeine. A C. fructicola infection
induced caffeine accumulation, and caffeine strongly inhibited mycelial growth by affecting
the mycelial cell walls and plasma membranes in vitro; however, an E. vexans infection
reduced caffeine levels [20,41,73,76] (Table 3). These studies suggest that caffeine responds
differently to different insects and pathogens.

Theanine is a nonprotein amino acid with the highest content in tea plants, accounting
for 1–2% of dry tea and more than 50% of total free amino acids [55]. Theanine is mainly
distributed in roots, followed by young leaves, stems, flowers, and old leaves, and it is
synthesized from L-glutamic acid and ethylamine by the catalytic action of theanine syn-
thase [17]. Theanine is closely related to nitrogen assimilation and metabolism [86,88]. In
light of the important association between basic amino acids and theanine and nitrogen
metabolism, the levels of theanine and eight basic amino acids (glutamate, serine, cysteine,
tyrosine, methionine, phenylalanine, glycine, and lysine) were variably induced upon the
attack of E. obliqua. While the contents of predominant amino acids, such as theanine,
glutamate, aspartate, serine, and glutathione, were down-regulated by the infestation of
E. onukii [41,73]. These studies suggested that theanine, glutamate, and serine responded
conversely to E. obliqua and E. onukii. In plants, a high carbon flux is committed to the
biosynthesis of phenylalanine, tyrosine, and tryptophan, owing to their roles not only
in the production of proteins but also as precursors to thousands of primary and spe-
cialized metabolites. Of the three amino acids, the major carbon flux proceeds toward
phenylalanine; its derivatives include flavonoids, isoflavonoids, tannins, anthocyanins, and
volatiles, and tyrosine serves as the precursor for quinones, betalains, and isoquinoline
alkaloids [89,90]. E. obliqua infestation induced the accumulation of phenylalanine and
tyrosine, suggesting that phenylalanine and tyrosine may be involved in the biosynthesis
of specialized metabolites, such as flavonoids, volatiles and alkaloids, which have been
proven in tea plants.

6. Conclusions and Perspectives

This review summarized the progress of recent research regarding the defensive
function of specialized metabolites against herbivores and pathogens in tea plants. In
these studies, some direct evidence of phytohormones, volatile compounds, and flavonoids
serving as defense compounds against herbivores and pathogens has been obtained in vitro,
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and the defensive functions and action mode along with the intrinsic molecular mechanisms
have been partly elucidated, long lagged behind those of model plants mainly due to the
complicated genetic background and immature transformation system. In current research,
one key question is which specialized metabolites are the potential key defense agents
and what the regulation mechanism is. JA and SA are considered predominant hormones
in defense against pests and pathogens, which regulate the biosynthesis of specialized
metabolites such as benzyl nitrile and indole via JAZs-MYCs interactions. The other way
around, volatiles, such as (Z)-3-hexenol, indole, I-nerolidol, and DMNT, can activate JA,
ET, ABA, and other hormone signaling pathways and regulate defense gene expression
and defense metabolite accumulation, then enhance plant resistance (Figure 2). Thus,
as an important defense factor, the functions of volatiles are as follows: (i) direct anti-
pest and anti-pathogen activities; (ii) enhancing plant resistance by activating hormone
signaling; (iii) being converted into resistance-related glycosides. Moreover, EGCG has
the same action model in defense as volatiles, and EGCG from galloylated EGC has anti-
insect/pathogen activity and can regulate JA signal and methylester enzyme activity
to enhance plant resistance to pests and disease. In our opinion, these key defensive
metabolites not only have anti-insect/disease activity but also stimulate signaling pathways
to activate plant defense and jointly mediate plant resistance to insect pests and pathogens.
These metabolites play crucial roles in the process of tea plant defense against insect pests
and have been assumed to act as key defenders, but the specific mechanisms for their
synthesis and regulation pathways need to be further investigated.
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Further research is needed to improve the following aspects: The glycosylation of
volatile compounds is one of the important mechanisms in tea plants, but relatively little
is known regarding the function of the glycosylation and its mechanism. In addition, the
synthesis pathways of flavonoids have been well studied in tea plants, such as a highly con-
served MYB-bHLH-WD40 (MBW) transcription complex that regulates flavonoids synthe-
sis, but there are few reports on defense-related transcription complex components. Thus,
with the continuous development of experimental techniques, modern high-throughput
technology, and multi-omics analysis techniques, each aspect above will require further
in vivo and in vitro evidence for further exploration of relevant mechanisms. In a word,
we summarize many potential markers for tea plant resistance against pests and pathogens
and improve our understanding of the defense mechanisms of plants.
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