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Abstract: Common rust (CR), caused by Puccina sorghi, is a major foliar disease in maize that leads to
quality deterioration and yield losses. To dissect the genetic architecture of CR resistance in maize,
this study utilized the susceptible temperate inbred line Ye107 as the male parent crossed with three
resistant tropical maize inbred lines (CML312, D39, and Y32) to generate 627 F7 recombinant inbred
lines (RILs), with the aim of identifying maize disease-resistant loci and candidate genes for common
rust. Phenotypic data showed good segregation between resistance and susceptibility, with varying
degrees of resistance observed across different subpopulations. Significant genotype effects and
genotype × environment interactions were observed, with heritability ranging from 85.7% to 92.2%.
Linkage and genome-wide association analyses across the three environments identified 20 QTLs
and 62 significant SNPs. Among these, seven major QTLs explained 66% of the phenotypic variance.
Comparison with six SNPs repeatedly identified across different environments revealed overlap
between qRUST3-3 and Snp-203,116,453, and Snp-204,202,469. Haplotype analysis indicated two
different haplotypes for CR resistance for both the SNPs. Based on LD decay plots, three co-located
candidate genes, Zm00001d043536, Zm00001d043566, and Zm00001d043569, were identified within
20 kb upstream and downstream of these two SNPs. Zm00001d043536 regulates hormone regulation,
Zm00001d043566 controls stomatal opening and closure, related to trichome, and Zm00001d043569
is associated with plant disease immune responses. Additionally, we performed candidate gene
screening for five additional SNPs that were repeatedly detected across different environments,
resulting in the identification of five candidate genes. These findings contribute to the development
of genetic resources for common rust resistance in maize breeding programs.

Keywords: tropical maize; multiparent populations common rust; QTL; GWAS; candidate genes

1. Introduction

Maize common rust is caused by the maize stalk rust Puccinia sorghi Schw during
maize growth and development and is widely distributed in tropical, subtropical, and
temperate areas. It develops easily at 15–25 ◦C and 98% humidity; it reduces photosynthesis
in the leaf area and foliar failure by producing spots on the leaves, resulting in incomplete
filling of the kernels and lower yields. Losses due to common rust in maize have been
reported to range from 12 to 75% [1–4], and, due to ecological and high economic losses,
breeding resistant plants is the best way to combat the disease and improve yields [5,6].

The breeding of disease-resistant varieties begins with the identification of resistance
loci. Previous studies have shown that maize has qualitative and quantitative resistance
to common rust [6–8]. Early studies were conducted to improve maize resistance by
identifying the dominant resistance (Rp) gene; however, because dominant genes do
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not possess horizontal resistance, the loss of maize resistance is often accompanied by
mutations in a specific P. sorghi race [5,9]. Consequently, the focus of research on common
rust resistance in maize has shifted to non-specific quantitative resistance.

Multiple studies have successfully identified quantitative trait loci (QTL) for resistance
to common rust in temperate maize germplasms through linkage mapping, and QTLs
have been reported across all 10 maize chromosomes. One study identified a QTL in
the 2.05–2.06 bin interval in a European dent maize population, explaining 25.5% of the
phenotypic variance consistently found across different genetic backgrounds. Another
study found a QTL in the 7.01 bin interval, explaining 23.6% of the phenotypic variance,
which was also observed in different genetic combinations. However, another study
discovered a QTL in the 3.04 bin interval (98 mb), explaining 20% of the phenotypic variance,
which overlapped with previous research [7,10,11]. These findings suggest the possibility
of potential existence of overlapping QTL regions governing the resistance to common
rust in maize across diverse genetic backgrounds. Enhanced resistance to common rust in
maize occurs when multiple partial resistance QTLs are combined. Accumulating disease-
resistant QTLs can enhance plant resistance, underscoring the importance of identifying
novel QTLs to further enhance maize resistance to common rust [12–18].

Compared to linkage analysis, genome-wide association analysis (GWAS) offers a higher
mapping resolution and is therefore widely utilized in plant molecular breeding studies.
However, this method often generates false-positive associations. Therefore, to obtain accurate
results, it is crucial to eliminate these false associations. Considering the population structure
during GWAS is the most effective approach for reducing these false associations [19–26].
For instance, GWAS analysis was conducted for resistance to common rust in a population
of 274 temperate maize inbred lines. Four SNPs were identified, located on chromosomes
2 (59,014,463 bp), 3 (21,262,214 bp and 56,476,524 bp), and 8 (107,796,411 bp). Subsequently,
four candidate genes (GRMZM2G437912, GRMZM2G031004, GRMZM2G409309, and GR-
MZM2G089308) were selected based on their association with these SNPs [27]. When GWAS
and linkage analysis are combined, the resulting SNP loci fall within QTL regions. These
outcomes are often more reliable than those obtained using GWAS or linkage analysis alone.
Based on current research findings, the simultaneous application of these two methods can
effectively elucidate the genetic mechanisms of quantitative traits [28,29].

In recent years, tropical maize germplasms have been used in studies of common
rust resistance loci due to their broad genetic base [5,9,12]. However, the utilization of a
multiparent population derived from common temperate and different tropical parents
in advance generation (F7) for linkage mapping and genome-wide association analysis
(GWAS) for common rust resistance in maize has not been previously attempted. Crosses
between temperate and tropical lines can maximize genetic variations, provide clear genetic
backgrounds for each plant, enabling better tracking and understanding of the genetic
mechanisms underlying disease susceptibility and resistance. The relative stability of
the F7 generations can narrow the QTL range, thereby enhancing the accuracy. Previous
GWAS studies on common rust resistance in maize have predominantly utilized natural
populations, including 296 tropical inbred lines, and 282 diverse inbred lines, as well
as 380 tropical and subtropical inbred lines. These studies have all used GWAS models
to account for population structure effects but have not explored the use of constructed
populations to mitigate these effects. While natural populations offer time and cost benefits
and directly reflect real ecological conditions, issues such as population structure effects,
lack of genetic variation control, and environmental noise can compromise the GWAS
accuracy. The present study addressed these challenges through multiparent population
construction, ensuring more precise results [30–34].

In this study, three tropical inbred parents (CML312, D39, and Y32) that showed resis-
tance to maize common rust were crossed with a common temperate susceptible backbone
inbred parent, Ye107. A multiparent population comprising three F7 RIL subpopulations
was constructed from these crosses. These three subpopulations were phenotyped in multi-
ple environments to assess their response to common rust, and they were genotyped using
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the genotyping-by-sequencing (GBS) approach. The main objectives of this study were to
identify QTLs and SNP loci that are significantly associated with common rust in different
environments and to screen candidate genes associated with common rust.

2. Results
2.1. Phenotyping of Common Rust Resistance in RILs

Three RIL subpopulations were investigated for their responses to common rust in
three different environments, and phenotypic data were recorded. Descriptive statistics
data showed that the co-efficient of variation of the common rust disease in the three
RIL subpopulations in the three environments ranged from 29.4% to 49.7%, with a high
degree of inter-sample variability (Table 1). The kurtosis and skewness of the common rust
phenotype ranged from −1 to 1 in absolute values across environments, indicating a small
degree of deviation, and the data were normally distributed. The genotypic variance of
the three subpopulations and genotypic variation due to environmental interactions were
statistically significant (p < 0.05). The heritability of common rust disease was high in all
three populations (85.7–92.2%), indicating that the trait is more influenced by genotype and
less by environment.

Figure 1A illustrates the phenotypic differences among the three subpopulations
across three distinct environments. Overall, significant differences were observed among
subpopulations, whereas differences within the same population across different envi-
ronments were less pronounced. Pearson correlation analysis with a significance level of
p < 0.001 revealed strong correlations (0.773–0.856) between the overall performance of
RILs within the same population across different environments. (Figure 1B). The strong
correlation indicated that the RILs responded consistently to common rust infection in
different environments, which not only indicates the high heritability of the common rust
disease reactions but also reflects the high reliability of this experiment, providing a solid
foundation for subsequent QTL/SNP mapping related to common rust resistance in maize.
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Figure 1. Distribution of rust traits in three subpopulations and their correlations. (A) Violin plots of
the phenotypic distribution of the three populations. In (A), a–e shows the letter significance labelling
method, in which the difference is not significant if there is a letter with the same labelling, and
significant if there are letters with different labelling. (B) Heat map depicting the overall performance
correlation of RILs within each of the three populations across different environments.

Table 1. Statistical analysis of common rust phenotype of three RILs populations.

Populations Environments Means Standard
Deviation Skewness Kurtosis Coefficient of

Variation (%)

Variance Components Heritability
(H2) (%)σ2

g σ2
ge σ2

e

Pop1

21JH 4.700 2.066 −0.330 −0.324 44.0

3.182 * 0.219 * 0.218 85.721YS 4.322 2.147 0.218 −0.428 49.7

22YS 5.000 1.831 0.221 0.059 36.6
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Table 1. Cont.

Populations Environments Means Standard
Deviation Skewness Kurtosis Coefficient of

Variation (%)

Variance Components Heritability
(H2) (%)σ2

g σ2
ge σ2

e

Pop2

21JH 5.789 1.705 0.201 0.123 29.4

2.377 * 0.382 * 0.057 90.621YS 5.439 1.871 0.248 −0.133 34.4

22YS 5.964 1.596 0.406 0.143 26.5

Pop3

21JH 5.759 1.644 −0.121 −0.151 28.6

2.494 * 0.177 * 0.036 92.221YS 5.268 1.817 0.166 −0.379 34.5

22YS 5.359 1.876 −0.332 −0.018 35.1

* in the table indicates: p < 0.05.

2.2. QTL Mapping of Common Rust Resistance in Three RIL Subpopulations

To identify QTLs for common rust resistance, we performed QTL mapping in three RIL
subpopulations (Pop1, Pop2, and Pop3) in different environments. SNP markers with ≥10%
missing rates and loci with minor allele frequencies below 5% were excluded from the anal-
ysis. QTL analysis was conducted separately for these three subpopulations, identifying
a total of 20 QTLs located on chromosomes 1, 2, 3, 4, 6, and 8 (Supplementary Table S1).
Due to the inclusion of QTLs identified in different environments and the elimination of
environmental effects, the best linear unbiased prediction (BLUP) information of the three
subpopulations was used for QTL mapping, as depicted in Figure 2 and Table 2 for clarity
and ease of reference.
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Figure 2. Logarithm-of-odds (LOD) profiles of BLUP value of the three subpopulations: (A) Log-of-odds
(LOD) profiles of Pop1 (CML312×Ye107); (B) Log-of-odds (LOD) profiles of Pop2 (D39×Ye107); (C) Log-
of-odds (LOD) profiles of Pop3 (Y32×Ye107). Numbers 1–10 above each figure indicate chromosomes.

Seven QTLs were distributed on chromosomes 2, 3, 4, and 6, and the LOD values
ranged from 3.1 to 6.63, with phenotypic variance (R2) ranging from 8% to 12% (Table 2).
Among these QTLs, the LOD value of qRUST3-3 was the highest, at 5.39, and the phenotypic
variation was 11%. Therefore, we concluded that this QTL has the potential to become
the main QTL for maize resistance to common rust. qRUST6-1 explained the highest
phenotypic variance of 12%, and the additive effects of qRUST2-1, qRUST3-1, and qRUST3-
2 were negative, indicating that these three QTLs could negatively affect maize resistance
to common rust.
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Table 2. QTLs identified for common rust resistance in maize in BLUP environment.

QTL Chr Position (cM) Mapping Interval (cM) LOD Additive_Effect R2 (%)

qRUST2-1 2 28.49 25.05–31.32 4.71 −0.48 0.09
qRUST3-1 3 103.72 101.71–103.72 3.92 −0.59 0.1
qRUST3-2 3 106.73 105.73–108.28 3.17 −0.54 0.08
qRUST3-3 3 54.96 54.41–59.02 5.39 0.7 0.11
qRUST4-1 4 40.43 40.12–43.27 3.37 0.46 0.08
qRUST4-2 4 52.39 51.39–53.39 3.1 0.45 0.08
qRUST6-1 6 36.39 36.39–38.39 4.71 0.92 0.12

2.3. SNP Characterization, Phglogenetic Tree, Principal Componenet Analysis Population and
Heat Map Construcction

A heat map illustrating the marker density across the ten maize chromosomes is shown
in Figure 3. The numbers of SNPs on chromosomes 1 to 10 were 1,223,552; 65,803; 63,745;
73,660; 56,253; 46,108; 52,458; 48,899; 43,833; and 42,070, respectively. Chromosome 1 had
the highest number of SNP markers and chromosome 10 had the lowest number (Figure 3A).
In the filtered SNP dataset, the average SNP missing rate was 0.2, the average minor allele
frequency (MAF) was 0.5, and the filtered SNPs were used for subsequent genome-wide
association studies (Figure 3B,C). The raw SNP dataset for each RIL population was used
for the linkage disequilibrium (LD) decay analysis. We calculated the LD decay for all the
populations and found, at a physical distance of 20 kb at the r2 threshold, a value of 0.2
(Figure 3D). Thus, candidate genes were screened 20 kb upstream and downstream of the
significantly associated SNPs.
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Figure 3. Phenotypic diversity in the atlas. (A) Density of chromosome-specific SNPs in the 0.1 Mb
genomic interval. The number of SNPs is indicated on a green-to-red scale. (B) Distribution of minor
allele frequencies of the SNPs. (C) Frequency distribution of missing genotypes. (D) Whole-genome
LD in the entire panel based on 627 maize RILs.
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The phylogenetic tree showed that all 627 RILs could be categorized into three clusters
(Figure 4). Overall, the phylogenetic tree, principal component analysis, and correlation
heat map revealed that kinship among the RILs was consistent, and the population was
divided into three clusters. The numbers of lines in the three clusters were 180, 223, and
224. The results of the first two principal component analyses validated the three clusters
(Pop1, Pop2, and Pop3) identified by the phylogenetic tree. The small overlap in the center
of the principal component analysis plot was due to the presence of the common parent
Ye107 in all three populations.
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Figure 4. Genetic diversity analysis. (A) Phylogenetic tree of three populations. (B) Principal
component analysis of 627 RILs. (C) Correlation heat map of 627 RILs.

2.4. Genome-Wide Association Analysis of Three RIL Subpopulations

We employed 573,112 SNPs in four different environments for GWAS analysis. SNPs
with minor allele frequency (MAF) ≥ 5% and r2 < 0.2 were used to identify significant SNPs.
A total of 62 SNPs associated with common rust resistance were identified at a threshold
value of −log10(p) > 4.5 (Figure 5; Supplementary Table S2). The 62 SNPs were distributed
on chromosomes 2, 3, 4, 5, 6, 7, 8, and 10. Seventeen significant SNPs were identified in
the BLUP environment, 17 in the 21JH environment, six in the 21YS environment, and
22 in the 22YS environment. Although only one SNP was distributed on chromosome 8,
chromosome 3 had a higher distribution across all environments.

Six SNPs were consistently identified across all the three environments. These SNPs,
along with the ten candidate genes identified, are presented in Table 3. SNPs significantly
associated with common rust resistance were detected on chromosomes 3 and 5 in the
21JH, BLUP, and 22YS environments, with the highest p-values for Snp-224,639,688 on
chromosome 3 in all three environments exceeding 5.7. On the other hand, chromosomes
8 and 10 detected SNPs associated with common rust resistance in the BLUP, 21JH, and
21YS environments. We screened candidate genes 20kb upstream and downstream of
tSNPs based on linkage disequilibrium (LD) decay analysis. Among the 10 candidate
genes screened, Zm00001d043536, Zm00001d043566, Zm00001d043569, Zm00001d044303,
and Zm00001d015778 were functionally annotated, whereas the remaining five candidate
genes have not yet been annotated.
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Table 3. Distribution of significant SNPs and candidate genes consistently identified by GWAS in different environments.

Environment SNP Chr p-BLUP p-21JH p-21YS p-22YS Candidate Gene Gene Annotation

BLUP 21JH 22YS

Snp-203,116,453 3 4.618 4.580 - 5.066 Zm00001d043536 Heat stress transcription factor C-1b

Snp-204,202,469 3 4.978 5.208 - 5.223

Zm00001d043566 Protein STICHEL-like 3
Zm00001d043567 -
Zm00001d043568 -
Zm00001d043569 WRKY-transcription factor 29

Snp-224,639,688 3 5.763 6.145 - 5.949 Zm00001d044303 IQ_motif_EF-hand-BS
Snp-118,608,571 5 5.169 4.812 - 4.596 Zm00001d015778 Leucine-rich repeat

BLUP 21JH 21YS
Snp-118,876,904 8 5.046 5.787 4.654 - Zm00001d010519 -

Snp-102,507,767 10 5.084 5.206 5.548 - Zm00001d025070 -
Zm00001d025071 -
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Figure 5. GWAS analyses in the three RIL populations. (A) Manhattan and Q-Q plots of the BLUP
environment for common rust resistance; (B) Manhattan and Q-Q plots for the 21JH environment for
common rust resistance; (C) Manhattan and Q-Q plots for the 21YS environment for common rust
resistance; (D) Manhattan and Q-Q plots for the 22YS environment for common rust resistance.

2.5. Analysis of Consistent Loci Identified by GWAS and QTL Mapping

To determine whether the two different approaches could jointly screen for candidate
genes associated with common rust resistance, we compared the QTL mapping results
with the GWAS results. As shown in Table 4, Snp-203,116,453 and Snp-204,202,469 on
chromosome 3, identified through GWAS, were located within the interval of qRUST3-3.
Therefore, we designated these two SNPs as the focus of our subsequent research. A search
within 20kb upstream and downstream of the two significant loci revealed three co-located
candidate genes (Zm00001d043536, Zm00001d043566 and Zm00001d043569) associated with
common rust resistance.
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Table 4. Consistent loci detected in two different mapping approaches.

QTL/SNP Chr Position Candidate Gene Gene Annotation

qRUST3-3 3 172,823,884–210,543,887 Zm00001d043536 Heat stress transcription factorC-1b
Snp-203,116,453 3 203,116,453 Zm00001d043566 Protein STICHEL-like 3
Snp-204,202,469 3 204,202,469 Zm00001d043569 WRKY-transcription factor 29

We further analyzed Snp-203,116,453 and the candidate gene Zm00001d043536 (Figure 6).
The relative positions of this SNP and the candidate gene and the positions of the significant
SNPs identified by GWAS on chromosome 3 are presented in Figure 6A,B. This locus has
two haplotypes, CC and TT, and the plants with the CC haplotype showed better resistance
to common rust in maize (Figure 6C). Zm00001d043536 was identified as the first gene
governing resistance to common rust in maize, which might be attributed to the present of
abundant variation in the tropical parents used in this study. We compared the exon base
sequences within the gene interval and found that exon 2 of the gene had three subversions
common to tropical inbred lines, resulting in the transcription of two amino acids that were
different from those of the temperate parent (Figure 6D). During RNA-seq, the gene was
found to be expressed during the growth of both young and mature leaves, demonstrating
its association with common rust resistance in maize (Figure 6E) [35].
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Figure 6. Identification of Snp-203,116,453 candidate genes for common rust resistance. (A) Relative
positions of SNP and candidate genes; (B) Positions of significant SNP in GWAS; (C) Differences
between the two haplotypes in the overall resistance to common rust, with **** indicating p < 0.0001;
(D) Base reversal causing amino acid changes in the candidate gene in different parental lines;
(E) Expression levels of Zm00001d043536 in various tissues. The red box highlights the expression of
the gene in the leaves (DAP: days after pollination DAS: days after sowing).

Similarly, we analyzed another significant locus, Snp-204,202,469, and its associated
candidate genes, Zm00001d043566 and Zm00001d043569, and the results are shown in
Figure 7. Figure 7A,B show the locations of the significant SNP and their associated
candidate genes. We performed haplotype analysis of the SNP and found that there were
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two haplotypes, GG and AA, and the plants of the GG haplotype showed better resistance to
common rust of maize (Figure 7C). Our study of the four parents revealed widespread base
substitutions and changes in the amino acids in two candidate genes that differed between
the tropical and temperate parents (Figure 7D,F). The candidate gene Zm00001d043566
showed the highest expression in the leaves of the plant (Figure 7E), and the candidate
gene Zm00001d043569 showed increased expression in the leaves and internodes after
pollination (Figure 7G), which could prove that the two candidate genes are related to
resistance to common rust in maize.
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Figure 7. Identification of Snp-204,202,469 and associated candidate genes for common rust resis-
tance. (A) Position of significant SNPs in GWAS. (B) Relative position of SNP and candidate genes.
(C) Difference between the two haplotypes in overall resistance to common rust, with **** indicat-
ing p < 0.0001. (D) Amino acid changes in candidate genes due to subversion in Zm00001d043566.
(E) Expression levels of the Zm00001d043566 gene in various tissues. The red box highlights the
expression of the gene in the leaves. (F) Amino acid changes due to subversion in the candidate
gene Zm00001d043569. (G) Expression of Zm00001d043569 in leaves and internodes before and after
pollination. (DAP: days after pollination DAS: days after sowing).

3. Discussion

In this study, three tropical inbred lines were used as female parents, and a temperate
inbred line was used as the common male parent to construct three F7 subpopulations,
totaling 627 RILs. Phenotypic analysis revealed a spectrum of reactions ranging from
high susceptibility to high resistance across all populations, indicating the existence of
polygenic resistance in the selected materials. The significant genotype-environment
interaction variance in the three subpopulations underscores its importance in maize
resistance to common rust. The high heritability observed across populations can be
attributed to the abundant genetic variation resulting from the hybridization of temperate
and tropical germplasms.

3.1. The Comparison of the Results of This Study with Those of Previous Studies

In recent years, studies aiming to identify resistance loci against common rust disease
in tropical maize have discovered new resistance loci and candidate genes owing to the
rich genetic variation present in tropical maize breeding populations. However, these
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studies have primarily focused on analyzing natural or early generation populations, and
investigations into resistance to common rust disease in tropical maize using advanced
generation populations are lacking. This study addressed this gap by employing a different
approach through population construction, aiming to enhance the accuracy of linkage
analysis and genome-wide association analysis results [5,9,12]. The construction advanced
generation populations offer several advantages over natural populations: (1) Although
natural populations effectively reflect real biodiversity and genetic backgrounds, their
complex population structure can compromise the reliability of GWAS analysis. This issue
can be addressed through the population design itself. During the formation of recombinant
parents, the mixing of parental alleles can mitigate the population structure within each
population, thereby reducing the occurrence of false-positive associations and enhancing
GWAS resolution. (2) Environmental conditions experienced by individuals in natural
populations are difficult to replicate. However, high-generation population construction
allows for better environmental control by conducting multiple replicate experiments to
improve phenotype accuracy and subsequently enhance GWAS resolution.

Using a temperate inbred line as a common parent and hybridization with tropical
inbred lines resulted in a broader genetic base than that of the tropical natural popula-
tion. Additionally, constructing advanced generation populations may require more time
compared to early generation populations, as they undergo more rounds of selfing, result-
ing in more fixed genotypes and narrower QTL intervals. These studies can lead to the
identification of genetic loci and selection of candidate genes, laying the foundation for
subsequent gene function validation. Therefore, enhancing the reliability of GWAS analysis
and narrowing QTL intervals are crucial for improving the precision of mapping. The
present study identified overlapping QTLs and SNPs reported in previous studies, along
with novel significant loci that were not previously identified. To enable a clear comparison
of these findings, they are succinctly summarized in Table 5.

Table 5. Comparison of QTL and significant SNPs for common rust resistance in maize in this study
with previous studies.

Chr
This Study Previous Study

QTL/Snp Position QTL/Snp Position Reference

2 qRUST2-1 125,535,857–125,535,857 - - -
3 qRUST3-1 19,468,979–21,766,539 - - -
3 qRUST3-2 17,098,052–18,118,650 - - -
3 qRUST3-3 172,823,884–210,543,887 qCR3-113 113,425,715–224,567,900 [5]
5 qRUST4-1 121,288,117–128,564,645 - - -
5 qRUST4-2 94,866,787–94,866,787 - - -
6 qRUST6-1 99,941,104–110,962,870 - - -
3 Snp-203,116,453 203,116,453 qCR3-113 113,425,715–224,567,900 [5]
3 Snp-204,202,469 204,202,469 qCR3-113 113,425,715–224,567,900 [5]
3 Snp-224,639,688 224,639,688 - - -
5 Snp-118,608,571 118,608,571 qCR5-51 51,355,494–186,678,634 [5]
8 Snp-118,876,904 118,876,904 - - -
10 Snp-102,507,767 102,507,767 - - -

Utilizing different populations to identify QTLs within the same genomic interval
demonstrated the potential of these QTLs as major-effect QTLs. Previous studies have
conducted QTL mapping using five F3 early generation populations, wherein qCR3-113
overlapped with qRUST3-3 in this study, as detailed in Table 6. A previous study used
early generation populations (F3), resulting in a considerably large interval for qCR3-113
(111.4 Mb). In contrast, qRUST3-3 spanned a length of 34.7 Mb compared to the previous
study, and the overlapping QTL in this study exhibited a higher LOD value (5.39) than
the previous study (2.85) [5]. For studies aimed at identifying candidate genes, narrower
intervals and increased LOD values represent a more accurate QTL, underscoring the
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advantage of the F7 population. In another study, 296 tropical maize inbred lines were used
to identify QTLs distributed on chromosomes 1, 3, 5, 6, 8, and 10, among which the QTL on
chromosome 6 (Rp 6.1) was found to be close to qRUST6-1 identified in our study, with a
distance of 564,094 bp [9].

Table 6. Comparison of chromosome 3 QTL and SNPs with previous studies.

Chr THIS STUDY

Distance (bp)

(Kibe et al., 2020) [5]

3

Ye107 × D39(F7) CZL0618 × LaPostaSeqC7-F71-1-2-1-1B(F3)

QTL/Snp Pos LOD QTL/Snp Pos LOD

qRUST3-3
172,823,884

~
210,543,887

37.63Mb 5.39 - qCR3-113
113,425,715

~
224,567,900

111.14Mb 2.85

Snp-203,116,453 203,116,453 - 56,102,674
S3_147013779 147,013,779 -

Snp-204,202,469 204,202,469 - 57,188,690

This study considered eliminating population structure and environmental noise
to enhance GWAS resolution during population construction to achieve accurate SNP
identification. The criteria for SNP selection were based on repeatedly screening in different
environments (Table 3). Haplotype analysis was conducted to determine whether the two
co-located SNPs (Snp-203,116,453 and Snp-204,202,469) were associated with resistance
to common rust disease in maize, indicating that both loci play a significant role for the
target trait (Figures 6C and 7C). Additionally, Snp-224,639,688 was 71,788 bp away from
the qCR3-113 interval, and Snp-118,608,571 on chromosome 5 overlapped with the QTL
qCR5-51 STICHEL interval. Although Kibe et al. also identified QTLs associated with
resistance to common rust disease on chromosomes 8 and 10, the SNPs discovered in
this study did not overlap with these regions [5]. The candidate gene GRMZM2G060540,
which was identified through the screening of S3_147013779 in the study by Kibe et al.,
is of an uncharacterized nature, whereas our study suggests that three candidate genes
(Zm00001d043536, Zm00001d043566, and Zm00001d043569) identified through co-located
SNPs could provide a new direction of research on this stable QTL for common rust
resistance in maize.

3.2. Functional Analysis of Candidate Genes Associated with Common Rust Resistance

One of the three candidate genes, Zm00001d043536, encodes heat stress transcrip-
tion factor c1-b of the HSF family. HSF transcription factors regulate the expression of
abscisic acid (ABA) [36], jasmonic acid (JA) [37], indole-3-acetic acid (IAA), and other plant
hormones [38] which mediate gene activation under heat or other stress conditions to
enhance plant stress tolerance. Thirty HSF proteins have previously been identified in
maize. Zm00001d043566 is a member of the STICHEL-3 protein family. The (STI) gene
encodes a protein containing a domain with sequence similarity to the ATP-binding portion
of the γ subunit of DNA polymerase III of true bacteria [39], which has been shown to
be associated with the regulation of trichome branching number in Arabidopsis [40]. In
maize, this function of this gene has been correlated with the number of trichome branches
through gene homology studies with Arabidopsis [41]. The Zm00001d043569 gene encodes
the WRKY29 transcription factor, which has been shown to regulate ethylene biosynthesis
and response in Arabidopsis thaliana [42]. Previous research has indicated that excessive
immune responses in plants can adversely affect plant growth and development. Plant-
induced ethylene synthesis acts as a negative regulator of immune responses, alleviating
their impact on plants [42]. Furthermore, in GWAS, two annotated genes, Zm00001d044303
and Zm00001d015778, were identified near the significant SNPs. Zm00001d044303, located
near Snp-224,639,688 on chromosome 3, encodes a myosin protein crucial for cytokinesis
and intracellular movement. Zm00001d015778, near Snp-118,608,571 on chromosome 5,
encodes leucine repeats associated with plant innate immunity.
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3.3. The Application of Parental Lines Used in the Present Study in Commerial Breeding

Tropical maize germplasms have long been recognized for their wide range of disease
resistance and have been extensively utilized in the breeding of disease-resistant maize
varieties. Historically, maize breeders have introgressed disease resistance genes from these
tropical inbred lines to improve resistance in temperate germplasms. Ye107, a backbone
inbred line of temperate origin, plays a crucial role in the production of key corn varieties,
such as Yunrui8. CML312, selected from CIMMTY, is a high-quality tropical inbred line that
has contributed to the development of disease-resistant hybrids, such as ‘Yunrui2’. D39 is
an excellent tropical inbred line that produced the hybrid D‘edan5’, which was inoculated
and identified as highly resistant to rust (disease class 1) by the College of Plant Protection
of Anhui Agricultural University (AAU). Y32, a high-quality inbred line derived from the
classic tropical germplasm Suwan, has been instrumental in breeding a high-quality and
stress-resistant hybrid, ‘Yunrui1’. However, as common rust resistance is a quantitative trait
controlled by multiple minor genes, it is challenging for maize breeders to introgress minor
resistance genes from tropical germplasms into the targeted maize germplasm. Many of
these minor genes provide partial resistance and may not be sufficient to confer durable
resistance, necessitating introgression of multiple minor resistance loci. Nevertheless,
advances in molecular marker techniques have refined the process of selection for disease
resistance. Hence, additional candidate loci associated with common rust resistance can be
identified. The present study has laid a strong foundation for the development of common
rust-resistant inbred lines and hybrids in maize.

4. Conclusions

In this study, we used three F7 RIL subpopulations derived from crosses between
three tropical inbred lines and a common temperate parent, comprising 627 recombinant
inbred lines, to elucidate the genetic architecture of maize resistance to common rust.
Linkage mapping identified seven major QTLs that explained 66% of the phenotypic
variance. Using a genome-wide association study (GWAS), we identified SNPs consistently
observed across six distinct environments and compared them with QTL mapping results.
Two SNPs, Snp-203,116,453 and Snp-204,202,469, on chromosome 3 were found to fall
within the interval of QTL qRUST3-3. Based on the positions of these two SNPs and the
linkage disequilibrium decay plots, we identified three candidate genes (Zm00001d043536,
Zm00001d043566, and Zm00001d043569). A comparison with previous studies revealed
an overlap of qRUST3-3 identified in the present study, albeit with significantly reduced
intervals, and the identification of three new candidate genes with protein functional
annotations. Our findings contribute to elucidating the mechanisms underlying common
rust resistance and lay the groundwork for future functional validation studies.

5. Materials and Methods
5.1. Experimental Materials and Field Experiment Design

In this study, the tropical maize inbred lines Y32, CML312, and D39 were used as
female parents, the temperate inbred line Ye107 was used as the common male parent for
hybridization, and all three inbred lines showed resistance to common rust. The F1 plants
were self-pollinated for six generations through the single seed descent method, and three
RIL subpopulations were developed: Pop1 (CML312×Ye107), Pop2 (D39×Ye102) and Pop3
(Y32×Ye107) (Table 7). The three populations pop1, pop2, and pop3 consisted of 180, 223,
and 224 RILs, respectively, totaling 627 RILs. In Yunnan Province, China, the common rust
in maize typically breaks out in July each year. During this period, the selected locations,
Jinghong City (latitude 21.850◦ N, longitude 100.931◦ E, elevation 539 m) and Yanshan
(latitude 23.485◦ N, longitude 104.100◦ E, elevation 1572 m), experienced temperatures
around 25 ◦C and high relative humidity exceeding 81%, creating favorable conditions for
the growth and spread of common rust spores. Subsequently, phenotypic evaluations of the
common rust disease were conducted at these locations. All RILs were planted in 2021 in
Jinghong City (21JH), Yunnan Province, and Yanshan County (21YS), Wenshan Prefecture,
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Yunnan Province. In 2022, the experiment was replicated in YS County, Wenshan Prefecture,
Yunnan Province (22YS). A randomized complete block design was used for all experiments.
Each experimental plot was composed of a 4-m-long row, with a row spacing of 0.70 m and
a plant spacing of 25 cm [43] The trials were conducted according to standard agronomic
practices (Figure 8).

Table 7. Maize parental lines used in developing RIL subpopulations.

Parents Pedigree Ecological Type Rust Resistance Symptoms Scale of CR

Ye107 Derived from US hybrid DeKalb XL80 Temperate Susceptible 9
CML312 S89500-F2-2-2-1-1-B*5-2-1-6-1 Tropical Resistant 3

D39 Selected from Suwan1 Tropical Highly Resistant 1
Y32 Suwan 1-SC9-S8-346-2(Kei 8902)-3-4-4-6 Tropical Highly Resistant 1

CR = Common Rust.
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Figure 8. The population development is shown in the schematic diagram. CML312, D39, Y32 and
Ye107 are the four parents, and Ye107 is the susceptible parent. The F1 generation produced from
the cross of these four parents underwent six consecutive generations of self-crossing to obtain the
F7 RILs.

5.2. Common Rust Disease Evaluation

Three populations were evaluated for common rust response under sustained high
natural disease pressure starting at week 2 after maize dispersal, and maize common rust
incidence levels were surveyed at 7-day intervals three times. Resistance scores were
determined for each RIL based on the percentage of infected area to total area, and the
scores were based on specific criteria listed in Table 8 [43].
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Table 8. Common rust disease scale used for screening the RILs of multiparent population.

Scale Reaction Category Symptoms

1 highly resistant no or very few rust spots on the leaves, or lesion area less than 6% of the total leaf area
3 resistant a small number of spots on the leaves, or lesion area comprising 6% to 25% of the total leaf area
5 moderately resistant number of spots on leaves or lesion area covering 26% to 50% of the total leaf area
7 susceptible number of spots on leaves or area of damage comprising 51% to 75% of the total leaf area
9 highly susceptible large lesion area on leaves or 76% to 100% of leaf death

5.3. Phenotypic Data Analysis

After preliminary processing of the phenotypic data of the three RIL subpopulations
collected at two locations over two years, SPSS Statistics was used to analyze the data. First,
descriptive statistical analyses, including mean, standard deviation, variance, skewness,
kurtosis, and coefficient of variation, were calculated. Using SPSS Statistics. Kurtosis
and skewness estimates confirm a normal distribution for common rust disease reaction.
Broad-spectrum heritability was calculated using the following method [44,45]:

H2 =
σ2

g

σ2
g +

σge2

e + σε2

re

× 100%

where σ2
g is the genetic variance, σge2 is the variance due to environment × genotype

interactions, σε2 is the residual, e represents the number of environments or locations, and
r represents the number of replications per location. H2 identifies the degree of variation
in a phenotypic trait; the more significant the H2, the more the trait is influenced by the
genotype and the less it is influenced by the environment.

Estimation of breeding values: BLUP values for each trait in all environments were
obtained for each inbred line using a linear mixed model in R (v.3.6.1) (http://www.r-
project.org/) with the lme4 package. The formula used for calculating the BLUP values is
as follows [45]:

Yijk = µ + Gk + Ei + Rj(i) + EGik + εijk

where Yijk is the observed value of the jth repetition of the kth genotype in the ith environ-
ment, µ is the overall mean, Gk is the effect of the kth genotype, Ei is the effect of the ith
environment, Rj(i) is the effect of the jth repetition nested in the ith environment, EGik is the
effect of the interaction between the ith environment and kth genotype, and εijk is the effect
of experimental error.

Violin and correlation heat maps were plotted in the hiplot website (https://hiplot.
com.cn/home/index.html, accessed on 15 August 2023).

5.4. DNA Extraction and Genotyping-by-Sequencing (GBS)

Genomic DNA was extracted from young maize leaves of RILs of the three subpopu-
lations using the cetyltrimethylammonium bromide (CTAB) method [45]. The DNA was
digested using the restriction endonucleases Mspl and Pstl (New England Biolabs, Ipswich,
MS, USA) and then ligated with a barcode adapter using T4 ligase (New England Biolabs).
All ligated samples were mixed and purified using the QIAquick PCR Purification Kit
(QIAGEN, Valencia, CA, USA). Primers complementary to the two adapters were used for
PCR amplification. The PCR products were purified and quantified using the Qubit dsDNA
HS Assay Kit (Life Technologies, Grand Island, NY, USA). PCR products between 200 and
300 bp in size were selected using the Egel system (Life Technologies, USA), and library
concentrations were estimated using the Qubit 2.0 fluorometer and the Qubit dsDNA HS
assay kit (Life Technologies, USA). GBS libraries were constructed, and sequencing was con-
ducted according to the GBS protocol [46] Sequencing was performed using an Ion Proton
sequencer (Life Technologies, software version 5.10.1) and P1v3 chip. Final reads were gen-
erated using TASSEL v5.0 (https://github.com/Euphrasiologist/GBS_V2_Tassel5, accessed

http://www.r-project.org/
http://www.r-project.org/
https://hiplot.com.cn/home/index.html
https://hiplot.com.cn/home/index.html
https://github.com/Euphrasiologist/GBS_V2_Tassel5
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on 23 July 2023) [47]. Prior to TASSEL analysis, 80 polyadenylates (poly (A) bases) were
appended to 30 ends of all the sequencing reads [48]. Using the Genome Analysis Toolkit
software (GATK-3.8), SNPs were identified by aligning to the maize reference genome, B73
(B73_V4, ftp://ftp.ensemblgenomes.org/pub/plants/release-37/fasta/zea_mays/DNA,
accessed on 23 July 2023) [49]. A total of 573,112 high-quality SNPs were annotated using
ANNOVAR software (v2013-05-20) [50]. After mapping the filtered raw reads with the
maize reference genome B73 (RefGen_v4) to discover SNPs, the filtering parameter for SNP
data was set to MAF ≥ 0.05 to identify the high-quality SNPs.

5.5. QTL Mapping

The three populations were phenotyped to determine the best results based on whether
the SNPs and QTLs overlapped or not. Populations and phenotypes with the best results
were carefully selected and the results were displayed. Pop2 (D39×Ye107) exhibited
overlapping of SNPs and QTLs. The SNPs were then used to construct a genetic linkage
map using JoinMap4 software [51]. Linkage groups were formed using an LOD threshold
of ≥5.0. QTLs for common rust resistance were identified using the composite interval
mapping (CIM) method using Windows QTL Mapper v2.0 [52]. The LOD threshold was
set based on 1000 random permutation tests with a significance level of p ≤ 0.05 [53].
The results show that QTLs with LOD thresholds ≥3 were considered significant. The
percentage of phenotypic variation (PVE) explained by a single QTL was calculated as the
square of the partial correlation coefficient (R2).

5.6. Structure Analysis

We used Tassel 5.0 for phylogenetic tree analysis, R4.2.1, for principal component
analysis and correlation heatmap plotting, whereas the principal component analysis was
plotted with the scatterplot package, and the correlation heatmap was plotted using the
GAPIT package.

PopLDdecay 3.40 software and perl scripts were used to assess linkage disequilibrium
(LD) and determine the number of markers required for GWAS, detection efficiency, and
accuracy. The LD decay figure was drawn using default parameters.

5.7. Haplotype Analysis

Haploview v4.2 software was used for haplotype analysis of SNP loci. Box line plots
were drawn using Origin2022.

5.8. Genome Wide Association Study

After Illumina NovaSeq6000 sequencing, BAM files were processed, and then GWAS
analysis was performed using the mixed linear model (MLM) implemented in GEMMA
software (https://www.xzlab.org/software.html, accessed on 26 August 2023). Parameters
were set to plink-indep-pairwise 5050.2, −log10(p) > 4.5 [54], and Manhattan and QQ plots
were generated [55].

5.9. Identification and Functional Annotation of Candidate Genes

Maize GDB (https://www.maizegdb.org/gbrowse, accessed on 26 August 2023) and
Maize Reference Genome B73 (RefGen_v4) were used to search for genes associated with
common rust resistance in maize. The screened genes were considered as candidate
genes involved in common rust resistance in maize and then the functions of the screened
candidate genes on Maize GDB were annotated and compared using NCBI (https://www.
ncbi.nlm.nih.gov/, accessed on 26 August 2023).

5.10. Candidate Gene Expression Analysis

We performed a query on a public database (http://ipf.sustech.edu.cn/pub/zmrna/,
accessed on 5 October 2023) to retrieve information related to the expression of three co-

ftp://ftp.ensemblgenomes.org/pub/plants/release-37/fasta/zea_mays/DNA
https://www.xzlab.org/software.html
https://www.maizegdb.org/gbrowse
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
http://ipf.sustech.edu.cn/pub/zmrna/
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localized candidate genes identified by association analysis. FPKM values for the candidate
genes under common rust stress were obtained.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/plants13101410/s1, Supplementary Table S1. QTLs located in three RIL
populations; Supplementary Table S2. Common rust significant SNP set.
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