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Abstract: The bacterial stem blight of alfalfa (Medicago sativa L.), first reported in the United States
in 1904, has emerged recently as a serious disease problem in the western states. The causal agent,
Pseudomonas syringae pv. syringae, promotes frost damage and disease that can reduce first harvest
yields by 50%. Resistant cultivars and an understanding of host-pathogen interactions are lacking
in this pathosystem. With the goal of identifying DNA markers associated with disease resistance,
we developed biparental F1 mapping populations using plants from the cultivar ZG9830. Leaflets of
plants in the mapping populations were inoculated with a bacterial suspension using a needleless
syringe and scored for disease symptoms. Bacterial populations were measured by culture plating
and using a quantitative PCR assay. Surprisingly, leaflets with few to no symptoms had bacterial
loads similar to leaflets with severe disease symptoms, indicating that plants without symptoms
were tolerant to the bacterium. Genotyping-by-sequencing identified 11 significant SNP markers
associated with the tolerance phenotype. This is the first study to identify DNA markers associated
with tolerance to P. syringae. These results provide insight into host responses and provide markers
that can be used in alfalfa breeding programs to develop improved cultivars to manage the bacterial
stem blight of alfalfa.

Keywords: alfalfa; bacterial plant pathogen; bacterial stem blight; biparental F1 mapping population;
plant disease; Pseudomonas syringae; QTL mapping; genotyping-by-sequencing

1. Introduction

Alfalfa (Medicago sativa L.) is a key forage crop and plays an important role in sustainable
agricultural systems in the United States [1]. Recently, bacterial stem blight (BSB) has been
associated with increased disease and frost damage in alfalfa in central and western states,
negatively impacting alfalfa biomass yield and the nutritive value of the crop [2]. Two bacteria,
Pseudomonas syringae pv. syringae and P. viridiflava, have been shown to cause BSB symptoms
in alfalfa [3]. P. syringae pv. syringae causing BSB is common in the central and western United
States (Oregon, California, Colorado, Utah, Wyoming, Ohio, and Minnesota), and it has also been
isolated in Australia, Europe, and western Iran [4,5]. The factors underlying the re-emergence
of BSB are unknown; however, genetic analysis of the pathogens revealed that both bacteria are
diverse and widespread, making a recent introduction of a more virulent pathogen unlikely [6].
The disease cycle is initiated when the surfaces of alfalfa plants become colonized by bacteria
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present in rain or from infected plant material [7]. Once in contact with the plant foliage, the
bacteria multiply as epiphytes. Exposure to −4 ◦C is sufficient to cause frost damage that may
be catalyzed by the ice nucleation activity of the bacterium, resulting in injury to the epidermis.
The pathogen gains entry through the wounds, and disease symptoms appear 7 to 10 days after
frost. Infected stems show water-soaked, yellowish to olive green lesions, commonly where the
leaf is attached, and lesions extend to one side of the stem. Over time, stem lesions turn amber to
black in color. Stems appear wilted and deformed, turn brown, and die. Lesions on leaves are first
water-soaked, then chlorotic, often with interveinal chlorosis. As the disease progresses, leaves
become necrotic and fall from the stem. The disease is limited to early spring and damage from
BSB can lead to up to 50% of the total yield loss from the first harvest [7]. Currently, there are no
resistant cultivars nor control measures for the disease.

Pseudomonas syringae is a model bacterium for understanding plant-pathogen interactions.
Much of the current understanding of effector-triggered immunity (ETI) in plants was developed
by studying the interactions of Arabidopsis thaliana with P. syringae [8–10]. Recognition of a
pathogen effector protein by a host resistance gene-encoded protein activates a signaling cascade
that leads to disease resistance, usually mediated by the rapid death of cells in the affected
region to restrict the spread of the pathogen. Genetic studies have found resistance in crop
plants against Pseudomonas species to be complex, regulated by several genes depending on
the crop [11–16]. While there have been a variety of studies in legumes focused on disease
resistance-related genes [16,17] and their effector signaling pathways [16,18–20], there have been
few studies of specific genes that confer disease resistance in alfalfa.

In contrast to immune responses, plants can also exhibit tolerance to pathogens. Here,
tolerance is defined as a response that reduces the negative effects of a high pathogen
load on plant fitness. Tolerance has primarily been studied with fungal and oomycete
pathogens [21], but has been identified in A. thaliana inoculated with the bacterial pathogens
P. syringae pv. tomato [22,23], P. viridiflava [24,25], and Xanthomonas campestris [26,27].
Tolerance is considered to be a more stable trait than ETI when developing resistant
cultivars but has not been widely used, mostly due to concerns that tolerant plants could
increase inoculum potential [21]. Tolerance to X. campestris was found to be controlled by a
single gene, RXC1 [27], but no previous studies have been conducted to map tolerance to
Pseudomonas species in any host plant.

Detecting and quantifying pathogen populations in infected material is crucial when
monitoring disease severity and host responses [28]. While visual scoring has been widely
used to evaluate disease resistance, symptoms do not provide information on the extent
of pathogen colonization [28–30]. Culture-based methods are a sensitive technique for
measuring bacterial populations but can be time-consuming and laborious [31,32]. To
overcome this, molecular detection through quantitative PCR (qPCR) assays has been
shown to be an excellent alternative by providing fast and high-throughput detection
and quantification of microorganisms [33]. Several different primer sets have been devel-
oped for detecting and quantifying P. syringae [32,34,35]. The most sensitive qPCR assay
was developed with primers QRT-ps16sV1-F (5′-ACGGGTACTTGTACCTGGTG-3′) and
QRT-ps16sV2-R (5′-CGTTTCCGAGCGTTATCCC-3′) that amplify 87 bp of the 16S riboso-
mal DNA that is specific to P. syringae variable regions 1 and 2 [35]. The assay has a linear
positive correlation of CFU/mg leaf tissue to 16S rRNA measurements, indicating that
bacterial concentration can be calculated based on the quantity of 16S rRNA in a sample.

Previously, alfalfa cultivars varying in fall dormancy and winter survival were tested for
susceptibility to P. syringae pv. syringae strain ALF3. The cultivars Maverick and ZG9830 were
found to have up to 60% of plants with resistance to BSB, as determined by symptoms and bacterial
populations in inoculated stem internodes [2]. Furthermore, transcriptome profiling of stem tissues
from resistant and susceptible plants of Maverick and ZG9830 after inoculation showed that P.
syringae pv. syringae activates the expression of defense response pathways and resistance genes [4].
Alfalfa is an obligate outcrossing highly heterogeneous autotetraploid (2n = 4x = 32), which
makes genotyping a challenge. The use of full-sib F1 populations segregating for Verticillium wilt
resistance combined with genotyping-by-sequencing has proven to be a successful approach to
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identifying disease resistance QTLs and candidate resistance genes in alfalfa [36]. With the goal
of advancing our understanding of the genes involved in response to P. syringae pv. syringae, an
individual plant showing disease symptoms (susceptible), and a plant with no disease symptoms
after inoculation (resistant) were selected from ZG9830 and intercrossed to develop a biparental
F1 mapping population. We used these populations to evaluate disease symptoms and bacterial
load in leaves inoculated with P. syringae pv. syringae strain 1021. Surprisingly, inoculated leaves
without symptoms or with slight disease symptoms had bacterial loads similar to those from
plants with severe disease symptoms, which indicated that these plants exhibit tolerance to
BSB. The populations were genotyped using genotyping-by-sequencing (GBS) to identify DNA
markers and candidate genes associated with response to P. syringae pv. syringae strain 1021.

2. Results
2.1. Disease Phenotypes of F1 Populations

Replicated disease phenotypes were obtained from 225 F1 plants at 10 days post-
inoculation (dpi) with P. syringae pv. syringae strain 1021. A total of 116 plants were tested
from UMN5425 developed from a cross with the susceptible plant as the female parent and
109 plants from UMN5426 with the resistant plant as the female parent. Disease symptoms
were scored on a 1 to 5 scale where 1 = no symptoms and 5 = all leaflets necrotic and dried
with dehiscence of two or more leaflets (see Materials and Methods for the complete disease
scale). The scores from nine leaflets were averaged, and plants were categorized as resistant
(mean score of 1 to 2), semi-resistant (>2 to 3), and susceptible (>3 to 5) (Figure 1). In total,
61 susceptible, 127 semi-resistant, and 37 resistant plants were identified. Estimates of
means, range, standard deviation, coefficient of variation (CV), and broad sense heritability
(H2) were calculated by population and for all F1 plants (Supplementary Table S1) [37].
Mean and CV values were not different among populations or for all F1 plants. Disease
score means were 3.07 for UMN5425 and 2.79 for UMN5426, whereas CVs were 26% and
35% for UMN5425 and UMN5426, respectively. The value of heritability was high (80%),
suggesting that the disease score is less affected by environmental influences.
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Figure 1. Histogram of disease scores from F1 and parental plants. Disease was scored on a 1 to 5 scale
at 10 days post-inoculation after infiltration of leaflets with P. syringae pv. syringae strain 1021. 1 = no
visible symptoms of infection; 2 = minimal chlorosis in the infiltrated area; 3 = necrosis with chlorosis in
the infiltrated area; 4 = necrosis and chlorosis of entire leaflets, dehiscence of one or more leaflet; 5 = all
leaflets necrotic and dried, dehiscence of two or more leaflets. Arrows indicate the average disease score of
the resistant parent (2.0) and susceptible parent (3.5). A total of 116 plants were scored in UMN5425 and
109 plants in UMN5426.

A total of 72 plants, scored as susceptible (45), semi-resistant (18), or resistant (9) from
the F1 populations were clonally propagated, inoculated with strain 1021, and bacterial
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CFUs determined by culture plating and qPCR at 0, 3, 6, and 9 dpi (Figure 2). Quantification
through culture plating had a range of approximately 106 to 109 CFU/g leaflets. In contrast,
higher quantities of bacteria were measured in the qPCR assay, most likely because the assay
measures both viable and non-viable bacteria. Bacterial populations increased significantly
in all categories of plants from 0 to 3 dpi but did not increase significantly at 6 and 9 dpi.
At each time point, there was no significant difference in bacterial load among susceptible,
semi-resistant, or resistant plants, as determined by a one-way ANOVA (p < 0.05) (Figure 2).
Based on these results, symptom severity in alfalfa leaves was not associated with the level
of bacterial load in the infected tissue.
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Figure 2. Comparison of average bacterial populations of P. syringae pv. syringae strain 1021 using
qPCR and culture plating in resistant, semi-resistant, and susceptible plants immediately after
inoculation (0 dpi), and 3, 6, and 9 dpi. The bars represent the average of nine leaflets and the
standard deviation of the mean. dpi = days post-inoculation.

2.2. Genotyping Coverage and Population Structure

The DNA from 242 plants was used for GBS, but during the process of acquiring phenotypic
data, only 210 plants survived. Thus, the analysis was conducted only for plants with data
from both genotyping and phenotyping. In total, 374,619,320 raw reads were obtained via GBS,
and the overall alignment rate was 82% to the alfalfa reference genome of cultivar Zhongmu
No. 1 [38]. After filtering, 28,346 high-quality SNP markers were obtained and plotted according
to their position in the alfalfa genome using a 0.1 Mb window size (Figure 3a). The distribution
of markers by chromosome was as follows: Chr. 1 = 3978 markers, Chr. 2 = 3621 markers, Chr.
3 = 3753 markers, Chr. 4 = 3922 markers, Chr. 5 = 3213 markers, Chr. 6 = 2558 markers, Chr.
7 = 3482 markers, and Chr. 8 = 3819 markers. Although the number of markers was similar
among chromosomes, their distribution across the chromosomes was not uniform and resulted
in gaps in the coverage of some chromosomes, such as 1, 5, and 6 (Figure 3a).
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Figure 3. Single nucleotide polymorphism sites (SNPs) identified in the F1 mapping population. (a) Distri-
bution of SNP markers across eight alfalfa chromosomes using a 0.1 Mb window size. The colored lines
represent the marker density, as shown on the right color legend. (b) Principal component analysis (PCA)
of SNPs. The plot was colored by subpopulations, with UMN5425 in black and UMN5426 in red.
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GWAS analysis is affected by the presence of population structure. Therefore, 28,346 high-
quality SNP markers were used for genetic structure using principal component analysis (PCA).
The PCA scree plot indicates that the first ten PCs explain 11.4% of the total genetic variance,
and the first and second principal components were able to explain 1.7% and 1.2% of genetic
variance, respectively (Supplementary Figure S1). PCA was not able to detect population
stratification between F1 mapping populations UMN5425 and UMN5426 (Figure 3b). This result
demonstrates that using the ZG21 plant as the female or male parent did not affect the genetic
variance. For GWAS analysis, we included population structure information as fixed factors
using the three first principal components to control false positive associations.

2.3. Genome-Wide Association Studies

Genome-Wide Association Studies (GWAS) were performed by combining phenotypic data
and genotypic data. Disease scores were collected from 210 individuals. The additive GWASpoly
analysis identified 11 non-redundant markers that are present within gene regions linked with
tolerance (Table 1). Potential candidate genes linked to marker loci related to BSB tolerance were
identified by conducting a BLAST search against the UniProt database. From the 11 significant
markers, one marker based on the BLAST search and annotation, Chr1_6983943, was
located within a disease-resistance protein with an NB-ARC domain. Using the genome
sequence and transcriptome information, putative exons were identified for this gene
(Supplementary Figure S2a). Two adjacent SNPs, Chr1_6983942 and Chr1_6983944, were
identified and included in the haplotype analysis (Figure 4). SNPs Chr1_6983942 and
Chr1_6983943 were the second and first nucleotides in codon 481. The reference haplotype
(GGT) codes for glycine (Gly), but changes in one or both SNPs will change the amino
acid to cysteine (Cys), alanine (Ala), or serine (Ser) (Supplementary Figure S2b). SNP
Chr1_6983944 had no effect on the amino acid sequence.
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Figure 4. Haploview analysis and pairwise measures of LD between the SNP of interest (in green)
and adjacent markers. The black line at the top of the figure represents a region of the genome
with four lines that represent the relative physical position of four SNPs. Numbers within the red
squares represents the scores (D′) of the pairwise LD between SNPs and a red squared with no
number indicates complete LD (100). Bright red indicates D′ = 1, LOD ≥ 2; blue coloring indicates
D′ = 1, LOD < 2; white coloring indicates D′ < 1, LOD < 2; shades of pink/red coloring indicate
D′ < 1, LOD ≥ 2.
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Table 1. Significant markers associated with tolerance to bacterial stem blight. SNP shows the reference and alternative nucleotides. R2 is the percentage of explained
variance for each marker; Effect is the effect of the nucleotide substitution on BSB disease score.

Marker SNP −log p-Value R2 Effect Uniprot
ID Gene Annotation Role Reference

Chr1_6983943 C/A 3.47 0.056 −0.257 G7J119 − NB-ARC domain disease resistance
protein

Response to biotic
stress [39]

Chr1_95741849 G/A 3.4 0.051 0.251 UPI000B7B775A NAT4 Nucleobase-ascorbate transporter 4 Response to
abiotic stress [40]

Chr2_16508382 T/C 3.73 0.028 0.219 W4ZQ03 −
Bifunctional inhibitor/plant lipid

transfer protein/seed storage helical
domain-containing protein

−

Chr3_75660736 C/G 4.15 0.033 0.404 UPI0011DFD893 − RING-type E3 ubiquitin transferase
Plant growth and
response to abiotic

stress
[41]

Chr4_77596753 T/A 3.36 0.037 −0.266 UPI001016EB81 GAD Glutamate decarboxylase Response to biotic
stress [42]

Chr5_19814514 G/A 3.45 0.031 0.214 A0A445LXJ0 Snl6 Cinnamoyl-CoA reductase-like SNL6 Response to biotic
stress [43]

Chr5_34806446 A/G 3.31 0.008 0.220 A0A061EAW6 UGD UDP-glucose 6-dehydrogenase Cell wall
biosynthesis [44]

Chr7_6703934 T/C 3.38 0.076 0.218 A0A059BED4 PE Pectinesterase Cell wall stability [45]

Chr7_75396634 A/T 3.87 0.029 0.343 A0A445CS76 PSEN Presenilin Protein cleavage [46]

Chr8_78651242 C/T 3.41 0.032 −0.195 A0A371G107 GT-BC10 Glycosyltransferase BC10
Biosynthesis of
polysaccharides

and glycoproteins
[47]

Chr8_80754378 T/G 3.32 0.032 −0.314 A0A445DK30 − Protein kinase domain-containing
protein

Plant signaling
and response to

abiotic stress
[48]
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2.4. Examining Linkage Disequilibrium (LD)

LD analysis among markers associated with tolerance to BSB was performed using
adjacent SNPs in a 10 kb window by Haploview v4.2 [37]. Three blocks were identified with
significant SNPs (Figure 4). One block in Chr1 with three adjacent SNPs (Chr1_6983942,
Chr1_6983943, and Chr1_6983944) was identified. The extent of LD in a genome can
be statistically quantified, allowing a better understanding of genomic variations [38].
The linkage score of Chr1_6983942 and Chr1_6983943 was 98%, and the linkage score of
Chr1_6983943 and Chr1_6983944 was 96%. Interestingly, based on the Pearson’s correlation,
the pairwise comparison between the markers Chr1_6983942 and Chr1_6983943 showed a
strong LD with a correlation of 81%, while Chr1_6983944 compared with Chr1_6983942
correlated 51%, and Chr1_6983943 had a correlation of 53%. Based on these findings, there
are three SNPs within the same region of the chromosome, but only Chr1_6983942 and
Chr1_6983943 had a significant LD. In Chr7, the markers Chr7_6703932, Chr7_6703938, and
Chr7_6703944 are in LD, but they were not in LD with the significant marker Chr7_6703934.
One block was identified in Chr8 with two markers (Chr8_78651227 and Chr8_78651242).
Additional significant associated markers were not in LD with adjacent markers.

To understand how allelic dosage affects the BSB disease score, linear regression was
performed between the phenotypic data and the allele dosage of the markers
Chr1_6983943 and Chr5_19814514 (Supplementary Figure S3). There was a significant
effect of the allele dosage on the BSB disease score for both markers (p-value > 0.01). For
Chr1_6983943, the effect (R) of −0.24 implies that each change from reference to alternative
allele in this locus will decrease the disease score by 0.24. For Chr5_19814514, the R of
0.23 implies increased susceptibility with each allele change. For the marker Chr1_6983943,
there were no genotyped individuals with all reference SNPs (CCCC).

3. Discussion

Bacterial stem blight in alfalfa has both a stem lesion with vascular wilt disease
phenotype and a leaf blight disease phenotype, depending on the site of infection. This
study rated disease symptoms and measured populations of P. syringae pv. syringae after
infiltration of the bacterium into leaves of plants in an F1 mapping population. This
population was developed from plants found to be resistant or susceptible after stem
inoculation and measurement of bacterial populations in inoculated stems. In the F1
population, alfalfa leaves scored as “resistant” with few to no symptoms at 9 dpi and had
similar amounts of bacteria as those with severe symptoms, indicating that these plants
show tolerance to the foliar phase of BSB.

In the majority of P. syringae pathosystems, there is a strong positive correlation
between symptoms and CFUs [22,23]; that is, plants with more severe disease symptoms
have higher CFUs than plants with mild or no visible symptoms. Resistant plants are
generally capable of reducing or eliminating pathogen infection, growth, and reproduction.
The phenomenon of tolerance, the capacity of a plant to survive, reproduce, and adapt to
disease has received less attention. One study analyzed the difference in pathogen growth,
disease symptoms, and host fitness in A. thaliana and P. syringae pv. tomato strain DC3000
to determine the importance of resistance and tolerance and to understand the effects
of covariance [22]. The results showed a quantitative variation in bacterial population
size, severity of symptoms, and the effects of infection on plant fitness. There was a
strong positive correlation between bacterial population size and disease symptoms, but
no correlation between bacterial growth or symptoms and relative fitness after infection
as measured by seed production [22]. In other words, their results suggest the presence
of genetic polymorphisms for tolerance and the coexistence of tolerance and resistance
traits in the same plant genotype [21]. Other studies [24,25] found similar results with the
interaction of A. thaliana and P. viridiflava. This might imply that, like the interaction of A.
thaliana and P. syringae, other pathosystems might show tolerance against a pathogen rather
than resistance, and that we cannot predict host fitness based on the severity of symptoms
and bacterial load [22].
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Significant variation in tolerance opens new opportunities to assess the genetic basis
for tolerance and thus facilitate disease control strategies. In the P. syringae and alfalfa
pathosystem, plant fitness was not measured directly. However, the retention of leaves in
tolerant plants that had high bacterial loads would likely result in higher biomass yields
and possibly higher seed yields. Developing durable disease resistance is a major goal in
plant breeding. Introducing resistance genes into susceptible cultivars often breaks down
rapidly since pathogens can adapt to and overcome them. Tolerance may be an effective
means to reduce damage from disease, although, for polycyclic diseases, tolerant plants
could increase the inoculum in the environment.

P. syringae has an extensive arsenal for causing plant disease [49]. Among these
are phytotoxins causing chlorosis and necrosis, and some inhibit host defenses [50,51].
One of these is coronatine (COR), a nonhost-specific virulence factor with structures and
functions like jasmonate and jasmonic acid-isoleucine [50,52]. This phytotoxin can mimic
and disrupt important plant hormones in cellular defense response pathways, suppress
the salicylic acid (SA) pathway and closure of stomata, and allow the entrance of more
pathogenic bacteria, promoting lesion expansion and bacterial growth. Even though
multiple studies have used COR to understand phytotoxins, there is still a gap in knowledge
on the specific mechanisms used by COR to promote bacterial virulence and disease
symptomatology. In the alfalfa genotypes that do not show disease symptoms in response
to infection by P. syringae, a possible tolerance mechanism could be insensitivity to one or
more phytotoxins. Interestingly, the isolates of P. syringae pv. syringae causing BSB in alfalfa
have genes to produce coronatine (COR), which is unusual in this pathovar [53]. Thus, the
sensitivity of tolerant alfalfa plants to COR and other phytotoxins produced by P. syringae
pv. syringae strain 1021 warrants further investigation.

In P. syringae pv. syringae, N-acyl homoserine lactone (AHL) is the quorum sensing
(QS) signal molecule, and high concentrations of AHL result in the expression of secondary
metabolites and virulence factors that facilitate effective colonization in the host and
disease [54]. In other pathosystems, plants have been able to derive molecules with a
quorum sensing inhibitor (QSI) function used to defeat QS pathogens [55]. Some QSI can
stop the synthesis of AHL, degrade the signal molecule, or target its receptor [55], and
plants can produce several compounds that can target different bacterial strains [56]. Alfalfa
has been found to have AHL-degrading abilities [55], although its expression in the plants
used in these experiments is unknown. Tolerant alfalfa plants did not exhibit water-soaking,
a QS-dependent trait after inoculation and colonization by P. syringae pv. syringae strain
1021, suggesting a possible mechanism underpinning the tolerance observed.

Few studies have mapped QTLs for tolerance in plant-pathogen interactions. In this
study, we used quantitative approaches for gene function prediction, linking phenotypic
data and genotypic data, suggesting that statistically significant variation at the gene locus
of an SNP is responsible for or associated with the tolerance response. As discussed by
Miles and Wayne (2008) [57], the combination of QTL and GWAS analysis can provide a
powerful approach and achieve a higher magnitude of resolution to elucidate genes or
nucleotides that contribute to the phenotype of interest. We identified 11 significant SNP
markers associated with tolerance to BSB. All of these markers were in coding regions with
different reported functions, and some of the most relevant are discussed below. Marker
Chr4_77596753 was located in a locus annotated as GAD involved in the accumulation of
gamma-aminobutyric acid (GABA) by the alpha-decarboxylation of glutamate to gamma-
aminobutyrate [58]. GABA accumulation increases tolerance to abiotic stress, inhibiting
reactive oxygen species (ROS) generation, decreasing ionic accumulation, or regulating
stomatal opening. GAD activity is dependent on cytosolic calcium levels [59]. GABA is also
involved in the biotic stress response, limiting cell death caused by excessive ROS. GABA
levels increase in the interaction of Phaseolus vulgaris with P. syringae pv. phaseolicola [60] or
A. thaliana with P. syringae pv. tomato (Pto) DC3000 [61]. Deng et al. 2020 [42] found that
GAD1, GAD2, and GAD4 play a positive role in both PTI and ETI through the activation of
the MPK3/MPK6 signaling cascade in A. thaliana with Pto DC3000 [42].
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Two markers were located at loci involved in plant defense: Chr1_6983943 was lo-
cated in an NB-ARC domain disease resistance gene, and Chr5_19814514 was located in
SNL6 [43,62]. NB-ARC proteins are key components of the plant immune system. The
NB-ARC proteins contain a central nucleotide-binding domain and two ARC domains with
a conserved HMD motif. The NB domain functions as an NTP-hydrolyzing switch, regulat-
ing signal transduction through conformational changes [63]. The marker Chr1_6983943
produces a change in Gly481, 20 amino acids downstream of the HMD motif (461–463).
Previous reports of NB-ARC as a disease resistance protein include the expression of
VpCN from Vitis pseudoreticulata in A. thaliana to enhance the resistance to Golovinomyces
cichoracearum and Pto DC3000 [64] or the mapping of a NB-ARC gene in the interaction
between Medicago truncaltula and Aphanomyces euteiches [38]. To date, there are no reports of
resistance genes in the interaction of alfalfa and P. syringae pv. syringae, but further analysis
can validate the role of this NB-ARC gene in resistance/tolerance to BSB.

SNL6 encodes a cinnamoyl-CoA reductase-like (CCR) protein with a role in tissue
lignification. The snl6 mutant lines in rice have a lower lignin content with increased
sugar extractability [43]. In alfalfa, CCR down-regulated lines had significantly enhanced
saccharification efficiency [65]. However, SNL6 is a suppressor of NH1-mediated lesion
formation. The snl6 mutant lines in rice fail to develop the NH1-mediated lesions, PR gene
activation, and resistance to Xanthomonas oryzae pv. oryzae [43]. Interestingly, three markers,
Chr5_34806446, Chr7_6703934, and Chr8_78651242 were located at loci annotated as UGD,
PE, and GT-BC10, with roles in cell wall biosynthesis and cell wall stability [44–47]. Cell
walls have an active role in plant defense as a physical barrier or as signaling molecules
triggering plant immune responses and there can be additional modifications involved in
the PTI. Future experiments can employ molecular techniques to narrow down the QTLs
to more specific candidate genes. Additionally, the linkage and association studies might
allow the development of molecular markers in breeding programs for the transfer of
tolerance to BSB to novel alfalfa varieties.

4. Materials and Methods
4.1. Bacterial Culture Conditions

The P. syringae pv. syringae strain 1021 was isolated from an alfalfa plant with bacterial
stem blight symptoms in Scott Valley, CA, USA, in 2017. Preliminary experiments tested
six strains isolated from five locations over a period of five years, with individual plants
selected from ZG9830 [66]. There was no strong evidence for strain-host plant specificity.
Plant responses to strain 1021 were reproducible and the strain was highly pathogenic
on susceptible alfalfa plants. Bacteria were stored at −80 ◦C in 20% glycerol. Prior to
inoculation, the culture was revived on King’s B medium, then a single colony was used
to inoculate 5 mL Nutrient Broth Yeast extract medium and cultured for 24 h at 25 ◦C
in an orbital shaking incubator at 250 rpm. The bacterial suspension was pelleted by
centrifugation for 5 min at 3500 rpm and resuspended in sterile 10 mM KPO4 buffer, with
a pH of 7 to obtain bacterial suspensions at a final optical cell density (OD600) of 0.05,
approximately 5 × 107 CFU/mL.

4.2. Development of Mapping Populations and Plant Growth Conditions

Biparental crosses were made by hand pollination between individual resistant (ZG21)
and susceptible plants (ZG25) selected from ZG9830 [4] and F1 seeds were collected from the
female parents. Seeds of the populations UMN5425 (ZG25 as the female parent and ZG21 as
the male parent) and UMN5426 (ZG21 as the female parent and ZG25 as the male parent) were
sandpaper scarified, planted in pasteurized greenhouse soil in SC1OU cone-tainers (Stuewe
and Sons, Tangent, OR, USA), and maintained in a greenhouse with a 16 h photoperiod.
Vegetative cuttings of each F1 plant were made by rooting stem segments in medium grade
vermiculite. Cuttings were transplanted into a mixture of SunGro Germination Mix (SunGro
Horticulture, Agawam, MA, USA) and pasteurized greenhouse soil and maintained in a
growth chamber with a 16 h/8 h (light/dark) photoperiod at 25 ◦C.
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4.3. Leaf Inoculation and Disease Scoring

Fully expanded leaves at the second or third node from the top of the stem from
growth chamber-grown plants were tagged with cotton yarn on the petiole for inoculation.
Each of the three leaflets of a leaf was infiltrated from the abaxial side with approximately
0.1 mL of a bacterial suspension at OD600 = 0.05 using a needle-less syringe. The negative
control was infiltrated using 10 mM KPO4 buffer, pH 7. After inoculation, the plants
were returned to the growth chamber. For each F1 plant, three leaves (nine leaflets) were
inoculated and used for pathogen quantification.

Symptoms were scored visually at 10 days after inoculation on a 1 to 5 scale
(Figure 5); 1 = no visible symptoms of infection; 2 = minimal chlorosis in the infiltrated
area; 2.5 = chlorosis extending beyond the infiltrated area; 3 = necrosis with chlorosis
in the infiltrated area; 3.5 = necrosis and chlorosis extending beyond the infiltrated area;
4 = necrosis and chlorosis of entire leaflets, dehiscence of one or more leaflet; 5 = all leaflets
necrotic and dried, dehiscence of two or more leaflets. Disease scores from nine leaflets
were averaged and plants were categorized as resistant (1 to 2), semi-resistant (>2 to 3), or
susceptible (>3 to 5).
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4.4. Pathogen Quantification

Inoculated leaflets were removed from plants and weighed individually. Each leaflet
was placed in a FastPrep® 2 mL Lysing Matrix tube (MP Biomedicals, Solon, OH, USA) con-
taining ceramic spheres (6.35 mm) and 0.7 mL of 10 mM KPO4 buffer, pH 7. Samples were
homogenized using an MP Biomedicals™ FastPrep™ high-speed benchtop homogenizer.
Homogenized material was transferred into a microfuge tube, and 10 mM KPO4 buffer
was added to a final volume of 1 mL. Samples were diluted by ten-fold serial dilutions.
To determine CFUs, 10 µL of the sample dilutions were plated in triplicate on KB agar
medium and incubated at room temperature. After 28 h, plates were placed under UV light
to confirm the presence of P. syringae, and CFUs determined.

Each qPCR assay (20 µL) consisted of 5 µL bacterial cells, 1 µL primer forward (10 µM),
1 µL primer reverse (10 µM), 3 µL nuclease-free water, and 10 µL SsoAdvanced Universal
SYBR Green Supermix (BIORAD Laboratories, Inc., Hercules, CA, USA). The primers
utilized were QRT-ps16sV1-F (5′-ACG GGTACTTGTACCTGGTG-3′) and QRT-ps16sV2-R
(5′-CGTTTCCGAGCGTTATCCC-3′) that amplify an 87 bp portion of the 16S ribosomal
subunit (Ps16S gene; PSPTO_r01) [35]. Assays were conducted using an Applied Biosystems
7500 Fast Real-Time PCR System (ThermoFisher Scientific, Waltham, MA, USA) for 40 cycles
with initial polymerase activation for 2 min at 98 ◦C followed by denaturation at 98 ◦C
for 15 s, then annealing/extension at 60 ◦C for 60 s. The melting curve analysis was
performed using the instrument’s default setting after the final cycle. A standard curve
was generated using dilutions of P. syringae pv. syringae strain 1021 cells by plotting the
cycle threshold value (Ct) for each sample of the standard series versus the logarithm of
bacterial concentration (CFU/mL) as determined by culture plating.
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4.5. DNA Extraction and Sequencing

Young leaves were harvested from 242 plants and DNA was extracted using the Qiagen
DNeasy 96 Plant Kit (Qiagen, Valencia, CA, USA) following the manufacturer’s instructions.
A NanoDrop 2000 spectrophotometer (NanoDrop Technologies, Inc. Wilmington, DE, USA)
was used for measuring DNA concentration and quality. The extracted DNA was submitted
to the University of Minnesota Genomics Center for processing and sequencing using the
GBS protocol according to Elshire et al. [67]. Briefly, genomic DNA (100 ng) was digested
with 10 units of ApeKI (NEB) and incubated at 75 ◦C for 2 h. Phased adaptors with a
three-base overhang on the 5′ ends of the bottom strand were ligated with digested DNA
and 200 units of T4 ligase (NEB) at 22 ◦C for 1 h and heat-inactivated. The ligated samples
were purified, and bar codes were added by 18 cycles with 2X NEB Taq Master Mix. Lastly,
pooled libraries were size-selected for the 300 to 744 bp library region (156 to 600 DNA
inserts). The final pool was then diluted to 1 nM and sequenced on the Illumina NovaSeq
6000 using single-end 1 × 100 reads on a single lane of an SP variant flowcell.

4.6. GBS and Variant Calling

The raw sequencing data (fastq files) were cleaned using fastp software v0.23.4 [68] before
being aligned to the alfalfa genome [38] using the Next Generation Sequencing Experience
Platform (NGSEP) software v4.2.0 [69] and the function ReadsAligner to generate Binary
Alignment Map (BAM) files. BAM files were sorted using Picard tools software v3.1.1 with
default parameters [70]. Variants were called with the function MultisampleVariantDetector of
NGSEP software v4.2.0 controlling the PCR duplicates of GBS samples increasing the maximum
number of alignments allowed to start at the same reference site (maxAlnsPerStartPos) to 100
to retain high sensitivity generating a variant call format (VCF) file. The VCF file was filtered
using the function VCFFilter of NGSEP software v4.2.0 as follows: (i) maximum value allowed
for a base quality score: 30; (ii) minimum allele frequency of 0.05; (iii) maintained positions at
least 70% of the samples are genotyped; (iv) minimum genotyping quality 40; (v) ploidy = 4;
(vi) imputation using hidden Markov model implemented in NGSEP v4.0.0. After filtering,
28,346 high quality biallelic SNP markers were obtained and transformed into GWASpoly
format [67] using the function VCFConverter of NGSEP software v4.2.0 [69].

4.7. Association Mapping and Annotation

The genome-wide association studies were performed using the R package GWASpoly
using a Q+K mixed linear model that incorporates three principal components as popula-
tion structure (Q) and a kinship matrix (K) as follows [71]:

y = Xβ + ZSτ + ZQv + Zu + ε

where y corresponds to the observed phenotypes; X is an incidence matrix of fixed effects;
β is a vector of fixed effects; Z is a matrix of incidence mapping genotypes to phenotypes;
S is a structure incidence matrix; τ is a SNPs effects vector; Q is an incidence matrix for
population size; v is the subpopulations vector effects; u is a polygenic effects vector; and ε is
a residuals vector [71]. Finally, markers associated with BSB tolerance were identified using
a threshold False Discovery Rate (FDR) < 0.05 [72], and the candidate loci were annotated
using the M. sativa cv. Zhongmu1 genome [18] and the alfalfa pan-transcriptome [73] were
corroborated by BLAST. Coding regions located in the candidate loci were annotated using
Uniprot ID and the protein function was retrieved using a bibliographical search.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/plants13010110/s1, Figure S1: Principal component analysis (PCA) scree plot
of the first ten principal components generated with 28,346 high-quality SNP markers, Figure S2: Diagram
depicting the NB-ARC disease resistance gene in alfalfa using M. sativa cv. Zhongmu No. 1 as reference
genome, Figure S3: Allele-specific analysis of the markers Chr1_6983943 and Chr5_19814514, Table S1:
Phenotypic variation of disease score. Mean, range, standard deviation (SD), and coefficient of variation
(CV) were calculated by population and for F1 plants.

https://www.mdpi.com/article/10.3390/plants13010110/s1
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