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Abstract: Semantic segmentation of 3D point clouds has played an important role in the field of
plant phenotyping in recent years. However, existing methods need to down-sample the point
cloud to a relatively small size when processing large-scale plant point clouds, which contain more
than hundreds of thousands of points, which fails to take full advantage of the high-resolution of
advanced scanning devices. To address this issue, we propose a feature-fusion-based method called
FF-Net, which consists of two branches, namely the voxel-branch and the point-branch. In particular,
the voxel-branch partitions a point cloud into voxels and then employs sparse 3D convolution to
learn the context features, and the point-branch learns the point features within a voxel to preserve
the detailed point information. Finally, an attention-based module was designed to fuse the two
branch features to produce the final segmentation. We conducted extensive experiments on two
large plant point clouds (maize and tomato), and the results showed that our method outperformed
three commonly used models on both datasets and achieved the best mIoU of 80.95% on the maize
dataset and 86.65% on the tomato dataset. Extensive cross-validation experiments were performed to
evaluate the generalization ability of the models, and our method achieved promising segmentation
results. In addition, the drawbacks of the proposed method were analyzed, and the directions for
future works are given.

Keywords: plant phenotype; point cloud; semantic segmentation; feature fusion

1. Introduction

Plants, which are an important food source and a significant part of the ecological
environment, are inextricably linked to the survival of humans [1]. To meet the demand for
increasing grain production, breeding experts need to adopt efficient breeding programs to
breed high-yielding and high-quality crop varieties [2]. A high-throughput number of plant
phenotyping datasets can help researchers analyze and track the growth of plants, which is
a great help to plant breeding [3]. However, compared to high-throughput measurements
of crop gene sequences, traditional plant phenotyping methods based on artificial measure-
ments are usually inefficient, which limits the process of modern agricultural intelligent
breeding. In addition, measuring plant phenotypes manually may lead to inaccurate results,
and direct contact with the plants would cause irreversible damage to the plants [4]. Hence,
an automatic high-throughput plant phenotyping technique has become a research point
in the field of modern digital agriculture.

The plant phenotype is a comprehensive assessment of the complex plant character-
istics that we observe, including morphological parameters, traits, physiology, etc. For
most plants, leaves, which are the main component of photosynthesis, take up the largest
proportion of all organs [2,5]. Monitoring and analyzing phenotyping parameters such as
the shape, color, and size of plant leaves in real-time could help to detect pests and diseases,
predict crop yields, and select high-quality crop varieties. Furthermore, plant leaves are
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more regular than other organs with complex structures, and it is easy to obtain samples, so
plant leaves’ phenotype is the most-essential task in plant physiology research. Therefore,
an automatic, high-throughput, and accurate plant leaf segmentation method is of primary
importance for downstream research tasks [6].

With the development of computer vision technology, image processing has been
widely adopted in the field of modern digital agriculture [7]. Many image-based phenotyp-
ing methods, which are low-cost, non-invasive, and high-throughput, have been proposed
to acquire detailed and particular plant traits [8]. Mao et al. [9] proposed an adaptive seg-
mentation method of crop disease imaging based on the fuzzy C-mean clustering algorithm
(FCM), which takes as the input the gray pixels and the mean of the neighborhood of pixels.
Li et al. [10] designed a co-segmentation algorithm based on the optimization model of the
Markov random field to generate a universal and accurate image segmentation of cotton
leaves under natural lighting conditions. Singh et al. [11] proposed an algorithm for an
image segmentation technique that is used for the automatic detection and classification of
plant leaf diseases. Xie et al. [12] converted tobacco images into the Lab color space and then
used support vector machine (SVM) to recognize and count tobacco plants. These methods
could significantly improve the efficiency of plant phenotyping in a non-destructive way.

However, since plants usually have complex structures and occlusions exist in the
leaves, these image-based methods still have some limitations in plant leaf segmentation.
To address this issue, many researchers have introduced 3D point clouds into plant pheno-
typing [13–16]. On the other hand, with the rapid development of 3D sensing techniques,
the way to obtain 3D data becomes less expensive and easier, such as 3D laser scanners, time
of flight cameras, and light detection and ranging (LiDAR) [17–19]. Mortensen et al. [20]
proposed a cluster-based method for segmenting lettuce in color 3D point clouds and
estimating the fresh weight. Jin et al. [21] proposed a median-normalized vector growth
(MNVG) algorithm to segment stems and leaves, after which the phenotypic traits of the
leaf and stem were extracted. Hui et al. [22] used a multi-view stereo (MVS) approach to
quantify and evaluate the canopy structure of plant populations and monitor the growth
and development from the seedling to the fruiting stage. Itakura et al. [23] designed a
method that automatically segmented 3D models constructed from scenes taken from differ-
ent positions for the leaf areas and inclination angles. Jin et al. [24] proposed a voxel-based
convolutional neural network (VCNN) to segment maize stem and leaf, and the results
outperformed traditional methods.

Although the above-mentioned methods are effective for the segmentation of plant
3D point clouds, there still exist two main drawbacks of these methods: (1) traditional
methods are not robust for plants in different stages owing to the variable sizes; (2) learning-
based methods using only one representation of 3D point clouds cannot explore the point
traits thoroughly, which limits the accuracy and generalization ability. The objective of
this work was to address these two deficiencies in the segmentation of plant 3D point
clouds. We evaluated the recently popular learning-based methods on plant 3D point cloud
datasets (i.e., maize and tomato) and propose an adaptive voxel-based approach to extract
local region features. Then, a feature fusion method based on an attention mechanism is
proposed to coalesce pointwise features and voxelwise features.

In summary, the contributions of this work are as follows:

• To the best of our knowledge, this is the first work that uses a multi-representation of
3D point clouds to segment the leaves and stems of plants.

• An adaptive voxel-based method to partition plant 3D point clouds more evenly is
proposed, then a sparse 3D convolution is introduced to accelerate the efficiency.

• An attention-based feature fusion method to merge point features from different
modules is proposed, which may contribute to future developments of plant 3D point
cloud segmentation.
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2. Results

In this section, we first provide the detailed experimental setting and evaluation
metrics and then report the results on two plant datasets, namely maize and tomato.
Furthermore, a cross-validation experiment was constructed, in which we trained the
models on the maize dataset and tested on the tomato dataset, and vice versa, to validate
the generalization ability.

2.1. Experimental Setup

We compared our feature-fusion-based network with three popular learning-based
methods (i.e., PointNet [25], PointNet++2017PointNet2, and DGCNN [26]) on the maize
and tomato datasets. All networks were trained with Adam with a learning rate of 0.001 for
200 epochs on an Nvidia Geforce 3090 GPU. It is worth noting that our proposed FF-Net
took as the input the entire plant point cloud without down-sampling, while the other
three competitors have to down-sample the points as the memory cost is so large that an
overflow occurs. Therefore, the batch size of FF-Net was set to 4, while the other three
were 32.

2.2. Evaluation Metrics

For a fair comparison, we used the same strategy to train all models and report the
per-class Intersection over Union (IoU) [25] and the mean IoU (mIoU) [25] over all classes.
The IoU can be formulated as

IoUi =
TPi

TPi + FNi + FPi
, (1)

where TP (true positive) denotes that the positive class is predicted as the positive class, FN
(false negative) indicates that the positive class is predicted as the negative class, and FP
(false positive) means that the negative class is predicted as the positive class.

The mean intersection over union (mIoU) is the average IoU of all classes, which can
be formulated as

mIoU =
1
N

N

∑
i=1

IoUi. (2)

2.3. Results on Maize dataset

Results: Table 1 presents the semantic segmentation results on the maize datasets,
from which we can observe that all methods achieved a high IoU (>95%) for the ground
category and the second-highest IoU (>80%) for the leaf class. However, PointNet [25]
almost failed to recognize the stem, which is a relatively small class with few points. As
a result, PointNet [25] only achieved a 3.4% IoU for the leaf class. PointNet++ [27] and
DGCNN [26] obtained a relatively small IoU (<40%) for the stem class, which mostly
confounded stems with leaves. Our proposed method outperformed all other methods
for both classes’ IoU and mIoU. Specifically, our proposed method achieved about a 20%
performance gain over PointNet [25], 7% over PointNet++ [27], and 5% over DGCNN [26].
In addition, our proposed method outperformed the other methods for the stem class by a
large margin (>15%).

Table 1. Semantic segmentation results on maize datasets.

Network mIoU Ground Stem Leaf

PointNet [25] 61.59 98.16 3.40 83.21
PointNet++ [27] 74.07 99.25 35.37 87.58

DGCNN [26] 75.60 99.56 38.37 88.87
FF-Net 80.95 99.58 52.76 90.53
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Visualization: It can be seen from Figure 1 that PointNet [25] hardly identified the
stems and recognized them as leaves (falling into the yellow boxes). Benefiting from the
hierarchical feature extraction, PointNet++ [27] achieved some improvement in recognizing
leaves, while still misidentifying some leaves as stems (e.g., Row A of PointNet++ [27]). It is
worth noting that, in Rows B and D, both PointNet [25] and PointNet++ [27] misidentified
the stems as leaves. The reason may be that the stems and leaves of these maize plants
have very similar properties. By contrast, DGCNN [26] can identify the stems as shown
in Rows B and D. As we can see from Figure 1, DGCNN almost recognized all stems, but
still had some misidentification of the petiole (e.g., Rows B and D of DGCNN [26]). There
existed another interesting phenomenon, where DGCNN misrecognized the outline of the
leaf as the stem, as shown in Row C of Figure 1. From the last column of Figure 1, we can
see that our proposed method, the FF-Net, produced the most-similar segmentation results
as the ground truth. Nevertheless, our method still missed some part of the stem when
recognizing, as shown in Rows B and D.

Figure 1. Semantic segmentation comparison on maize point cloud between our proposed method
and other competitors. Row (A–D) indicates the maize point cloud captured at different stages.

2.4. Results on Tomato Dataset

Results: The semantic segmentation results of tomatoes are shown in Table 2, from
which we can see that all methods obtained a relatively high IoU for the ground (>99%)
and leaf (>90%) category. However, PointNet [25] still struggled with the stem class and
obtained a 28.35% IoU, which was about 25% higher than the prediction on the maize
datasets before. PointNet++ [27] achieved a 48.78% IoU for the stem class, which was about
13% higher than the prediction for the maize datasets. DGCNN [26] obtained a 56.73% IoU
for the stem class, which was 18% higher than the prediction for the maize datasets. As can
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be seen from Table 2, our proposed method consistently outperformed other methods in all
three classes.

Table 2. Semantic segmentation results on tomato point cloud datasets.

Network mIoU Ground Stem Leaf

PointNet [25] 73.74 99.61 28.35 93.25
PointNet++ [27] 81.03 99.41 48.78 94.91

DGCNN[26] 83.96 99.67 56.73 95.49
FF-Net 86.65 99.56 64.17 96.21

Visualization: Figure 2 presents the semantic segmentation results of the methods
above on the tomato dataset. The parts of the misrecognition and missed recognition are
outlined with yellow boxes. As we can see from Figure 2, PointNet [25] can recognize most
of the stems that are far away from the leaves, as these stems have significantly different
traits from the stems near the leaves. However, the stems that are close to the leaves
have similar traits as the leaves, and it was a challenging task for PointNet to distinguish
them. PointNet++ [27] performed better than PointNet [25] due to its hierarchical feature
extraction mechanism. As shown in Figure 2, PointNet++ [27] identified more details of
the stems than PointNet [25] (Rows D, E, and F). Nonetheless, there also existed some
misidentifications of leaves for PointNet++ [27], e.g., Row E of PointNet++ [27], where a
leaf in the middle of the plant was misidentified as the stem. We also found an interesting
phenomenon that both PointNet and PointNet++ [27] hardly recognized stems surrounded
by leaves, such as the stems on top of the plants in Rows D, E, and F. As for DGCNN [26],
we can see that most of the stems were identified, even the hardest stems surrounded
by many leaves. As shown in the rightmost column of Figure 2, our proposed method
recognized most outlines of the stems, while still misidentifying some points of the stem
as the leaf class. Even so, our method performed better than all other competitors in
recognizing the details of the stems, as shown in Rows D, E, and F. It is worth noting that a
part of the ground was misidentified as the stem, as shown in the last column of Row E in
Figure 2, which caused the IoU value of the stem class to decrease.

2.5. Results of Cross-Validation

To evaluate the generalization ability of the model, we conducted extensive cross-
validation experiments on both plant datasets. First, we studied the case when the models
were trained on the tomato dataset and tested on the maize dataset. Then, we trained the
models on the maize dataset and tested them on the tomato dataset. For a fair comparison,
we adopted the same parameter settings as the aforementioned experiments and report
the same metrics, namely class IoU and mean IoU. The details are introduced in the
following sections.

2.5.1. Training on Tomato and Testing on Maize

Results: Table 3 shows the segmentation results for being trained on the tomato
dataset and evaluated on the maize dataset. Because the ground in both datasets had
similar traits, all models maintained a high IoU for the ground class (>95%). As for the leaf
class, all models obtained a relatively high IoU (>80%), except for PointNet. However, all
models failed to recognize the stem class, especially PointNet and DGCNN [26], which
only obtained IoUs of 0.35% and 0.69% for the stem class, respectively. Compared with the
segmentation results of the stems being trained and evaluated on the same category of the
maize dataset, the segmentation results for the stems for PointNet [25], PointNet++ [27],
DGCNN [26], and FF-Net, which were trained on the tomato dataset and evaluated on the
maize dataset, were down by 90%, 92%, 98%, and 87%. Our method achieved the smallest
reduction in the IoU for the stem class when generalizing from the tomato dataset to the
maize dataset.



Plants 2023, 12, 1867 6 of 16

Figure 2. Semantic segmentation comparison on the tomato point cloud between our pro-
posed method and other competitors. Row (A–F) indicates the tomato point cloud captured at
different stages.

Table 3. Semantic segmentation results trained on the tomato point cloud datasets and evaluated on
the maize datasets.

Network mIoU Ground Stem Leaf

PointNet [25] 58.68 99.22 0.35 76.47
PointNet++ [27] 63.37 97.80 2.85 89.45

DGCNN[26] 60.3 98.93 0.69 81.28
FF-Net 63.95 95.62 6.71 89.52

Visualization: Figure 3 presents the cross-validation results on the maize dataset of
the above methods, in which Row A (and B) indicates that the models were trained and
evaluated on the maize dataset, while Rows A-C (and B-C) denote that the models were
trained on the tomato dataset, but evaluated on the maize dataset. We can see that almost all
models failed to obtain precise segmentation results, when trained on a different category
of the datasets. PointNet misidentified almost the whole stem as leaves and the bottom
leaf as the stem when trained on the tomato dataset, as presented in Rows A-C. For the
more complicated maize shown in Rows B-C, almost all points were predicted as the stem
class, which was the wrong prediction. As a result, PointNet [25] did not generalize well
on the different categories of the datasets. PointNet++ [27] performed slightly better than
PointNet [25] in generalizability on the different datasets. As we can see in Rows A-C and
B-C of Figure 3, PointNet++ [27] trained on the tomato dataset did not identify the stems of
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the maize dataset precisely, which performed worse than when it was trained on the maize
dataset. DGCNN obtained similar performance to PointNet++ [27] in generalizability to
the different datasets.

Figure 3. Comparison of semantic segmentation on the maize point cloud between our proposed
method and other competitors. The top rows (A,B) are the segmentation results that were produced
by networks trained on the maize dataset, while the bottom rows (A-C,B-C) are the corresponding
cross-validation, i.e., produced by the corresponding networks trained on the tomato dataset.

2.5.2. Training on Maize and Testing on Tomato

Results: The segmentation results of the cross-validation for which the models were
trained on the maize dataset and evaluated on the tomato dataset are shown in Table 4. As
we can see from the table, all models obtained relatively high IoUs for the ground class
(>95%) and leaf class (>90%). However, the IoU for the stem class of all models dropped
sharply compared to that of the models trained on the tomato dataset, which was similar
to the cross-validation mentioned above. PointNet [25] did not identify any of the stem
points of the test dataset when generalized to the tomato dataset from the maize dataset.
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Table 4. Semantic segmentation results trained on the maize point cloud datasets and evaluated on
the tomato datasets.

Network mIoU Ground Stem Leaf

PointNet [25] 63.14 98.93 0.0 90.49
PointNet++ 63.37 97.80 2.85 89.45

DGCNN 64.38 99.68 2.75 90.72
FF-Net 63.85 96.59 3.83 91.12

Visualization: Figure 4 shows the cross-validation results on the tomato dataset of
all these methods, in which Row A (and B) indicates that the models were trained and
evaluated on the tomato dataset, while Rows A-C (and B-C) denote that the models were
trained on the maize dataset, but evaluated on the tomato dataset. As we can see, all
models almost correctly classified the ground and leaf points, except for PointNet, which
misidentified part of the leaves as the stems when trained on the maize dataset. However,
all models barely recognized the stem points when generalizing from the maize dataset to
the tomato dataset.

Figure 4. Comparison of semantic segmentation on the tomato point cloud between our proposed
methods and other competitors. The top rows (A,B) are the segmentation results that were produced
by the networks trained on tomato dataset, while the bottom rows (A-C,B-C) are the corresponding
cross-validation, i.e., produced by the corresponding networks trained on the maize dataset.

3. Materials and Methods
3.1. Datasets

In this study, we adopted Pheno4D [28] as the experimental dataset. The Pheno4D
dataset has a total number of 224 point clouds, which were captured daily from 7 maize
and 7 tomato plants after the first sprouts of the plants were observed. The maize dataset
was captured for about two weeks and the tomato for about three weeks, which means that
all the data were obtained in an early growth stage.

3.2. Data Pre-Processing

The points from Pheno4D are labeled as “ground”, “stem”, or “leaf”, in which the
point of the same leaf receives its unique label, making it distinct from the other leaves on
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the same plant. As the focus of our work was to study plant semantic segmentation, we
relabeled all leaf points with the same label. For maize plants, there are two methods to
separate the plant point cloud into stems and leaves, namely the leaf collar method and the
leaf tip method. To be suitable for subsequent processing of the data, we used the labels
derived from the leaf tip method to generate new unified leaf labels. Figure 5 presents the
original segmentation and our relabeled semantic segmentation.

Figure 5. The upper row shows the maize point cloud, and the bottom shows tomato. (A): Original
point cloud. (B): Segmentation with each leaf having a distinct label. (C): Segmentation with each
category having a distinct label.

We used Plants 1–5 as the training set and Plants 6–7 as the testing set, for both maize
and tomato. From Table 5, we can see that the maize plants had 35 point clouds as the
training set and 14 as the testing set, while the tomato plants had 55 point clouds as the
training set and 22 as the testing set. The distribution of points in the semantic classes is
critical to a learning-based network. Table 6 shows the distributions of leaves, stems, and
the ground, where the ground accounts for the largest percentage, while stems account for a
small proportion. The inhomogeneous distribution of these classes introduces challenges to
learning-based methods. In addition, we put all point clouds into a file in the Hierarchical
Data format (HDF) for convenience and rapid access.

Table 5. Amount of training and testing datasets.

Category Training Set Test Set

Maize 35 14
Tomato 55 22

Table 6. Distribution of classes in the training set and testing set.

Category
Training Set (%) Testing Set (%)

Ground Stem Leaf Ground Stem Leaf

Maize 50.03 5.50 44.47 48.56 7.40 44.04
Tomato 49.35 4.56 46.09 50.73 4.32 44.95
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As plants grow over time, the size of point clouds in different growth stages changes
significantly. Table 7 shows the average number of points for a plant cloud captured at
different stages. The columns in Table 7 correspond to the stages, from which we can see
that the quantitative gap from the lowest to the highest can be more than 2.94 million.
The heterogeneous size of different plant point clouds should be taken into account when
designing segmentation methods to partition plants into different organs. For constructing
experiments for previous point-cloud-learning-based methods, such as PointNet [25],
PointNet++ [27], and DGCNN [26], we followed the commonly used strategy for plant
point clouds, where a large-scale point cloud is partitioned into fixed-size cubic blocks, each
of which is then processed independently by a deep learning network. We also sampled
the points in a block at a fixed number of N (2048 was chosen in our experiments). For a
fair comparison, we did not drop any point that remained after sampling, so there would
exist some blocks with less than 2048 points. After the inference phase, the predictions of
blocks from the same plant point cloud were combined to obtain a full segmentation. Our
code and relabeled dataset are available at: https://github.com/daojianqingchou/FF-Net,
accessed on 8 April 2023.

Table 7. The average number of points (millions) for plant point clouds captured at different stages.

1 2 3 4 5 6 7 8 9 10 11

Maize - - - - 1.53 1.57 0.74 0.82 1.02 1.25 1.33
Tomato 2.01 2.76 2.53 2.34 2.94 2.16 2.34 1.90 1.88 3.68 3.64

3.3. Methods
3.3.1. Point-Based Methods

Most point-based deep learning methods take as the input the point cloud with a fixed
number of points. However, a point cloud captured by LiDAR devices usually contains
hundreds of thousands of points. Feeding the entire point cloud to the networks costs
a huge amount of memory, which is a challenge to devices such as video cards. The
most-straightforward solution to this challenge is down-sampling the point cloud to an
acceptable scale with a large rate, which results in a significant loss of geometric details.
Some researchers use another strategy, in which a point cloud is partitioned into fixed-size
cubic blocks, and then, the block is processed as an independent point cloud in parallel.
In these methods, the choice of the block size depends on the scale of the point cloud. If
a cubic block is large, the down-sampling of the points in the block to a fixed number
of points will introduce a severe loss of geometric information. In turn, the small blocks
lead to a large resolution of the point cloud, which does not actually reduce the memory
computational cost.

3.3.2. Voxel-Based Methods

The voxel-based methods, which are another kind of substitute to process large-scale
point cloud, first convert points into many voxels and then apply vanilla 3D convolutions.
One of the biggest advantages of this method is that it can maintain the physical properties
of point clouds and apply standard convolutional frameworks. This is actually a regular
grouping method according to the voxel in which the points reside. Due to the factors such
as the size, occlusion, and inhomogeneous distribution of plant points, the voxelized point
cloud is sparse and has a highly variable point density throughout the space. Therefore,
after grouping through voxelization, voxels of the plant point cloud would contain a
variable number of points. As illustrated in Figure 6, where a part of a tomato point cloud
is voxelized and enlarged, Voxel 4 has significantly more points than the other three voxels.

https://github.com/daojianqingchou/FF-Net
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Figure 6. The inhomogeneous distribution of points in different voxels. (A): A tomato point cloud.
(B): Part of the tomato point cloud for A. (C): The voxelization of part B, where voxel 4 has more
points than voxel 1, 2, and 4.

3.3.3. Proposed Method

To handle the previously mentioned challenges: (1) the scale of the plant point clouds
was changed along with the growth stages; (2) a sub-sampling process was needed to
handle the large-scale point cloud for existing methods, and we propose a fusion-based
method, which consists of a voxel-branch, a point-branch, and an attention-based fusion
method, as illustrated in Figure 7. We give a detailed description of each branch in the
following sections.

Figure 7. Overall architecture. Here, the top row is the voxel-branch, which captures the local
geometric relationship. The middle row is the point-branch, which learns pointwise features and
adopts a series of Voxel-PointNet blocks to strengthen the relationships between points within a
voxel. The bottom row presents the symbol annotations.

3.3.4. Voxel-Branch

The voxel-branch partitions a plant point cloud into many equal voxels, each of which
contains a different amount of points. Then, a mini-PointNet is employed to extract the fea-
tures of the points that reside in a voxel, followed by a gathering module to generate a global
feature as the feature of the voxel. To fully explore the geometric relationships between the
points in a voxel, we devised an adaptive feature extractor, which is formulated as

fi = MLPs(pi ⊕ (pi − ∑
j∈Vi

pj)⊕ (pi − vi)), (3)

where pi denotes the point coordinates of the i-th point, pj indicates the point among the
voxels in which the point i resides, and vi denotes the border coordinates of the voxel
containing i. Finally, the concatenation of the three parts (⊕ is the concatenating operator)
forms the voxel feature through a linear layer.
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Asymmetric Sparse Convolution Block

Due to the heterogeneous distribution of plant organs, the voxels from the plant point
clouds are sparse, which is even worse when the resolution is increased. To address this
challenge, we adopted a submanifold-based 3D sparse convolutional framework. Inspired by
the observation and conclusion in [29], we designed an asymmetric residual block to strengthen
the horizontal and vertical kernels, as illustrated in Figure 8, which alleviated the influence
of sparsity. Actually, the asymmetric kernel may cover most of the critical parts of the plant
structures. Additionally, the designed asymmetrical residual block could save computational
cost and memory due to the fewer weights compared with the regular cubic kernel.

Figure 8. The asymmetric 3D kernel to strengthen the skeleton part of plants.

Inverse Sparse Convolution Block

After a series of asymmetric sparse convolution (ASPC) blocks, the remaining voxels
have learned the enriching contextual information between points at different scales. Here,
we used a very similar U-net structure for the voxel-branch to connect four inverse sparse
convolution (ISPC) blocks to restore the original shape. Skip connections were used to
connect the features from the ASPC blocks and ISPC blocks with the same spatial shape.

3.3.5. Point-Branch

As the main objective of the voxel-branch is to extract contextual information at
different scales, the points in a voxel still lack specific pointwise features. As a result, points
in a voxel share the same voxel label, which could be ambiguous when two different parts
of a plant point cloud (e.g., leaf and stem) are partitioned into a voxel.

To address this issue, we designed the point-branch to explore detailed pointwise
features. First, we adopted a mini-PointNet for the raw inputs to produce learned points’
features, which were fed into the voxel partitioning module. Then, the features of the points
were partitioned into voxels according to their coordinates, followed by an aggregating
operation to generate the voxel features. It is worth noting that the voxel partition actually
acts as the neighbor area searching module, which is similar to the K-nearest neighbor (KNN)
searching strategy, but more efficient. The voxelwise features and pointwise features output
from mini-PointNet were fed into a series of Voxel-PointNet (VPN) blocks to produce more
particular pointwise features with contextual information from different scales. Finally, a
feature fusion module based on an attention mechanism (Atten-Fusion) was devised to
fuse the features from both branches. We detail the VPN and Atten-Fusion methods in the
following sections.
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Voxel-PointNet Block

PointNet [25] and its upgraded version PointNet++ [27] have an excellent capacity to
extract point features and neighboring point features, respectively. However, the large computa-
tional and memory cost of the K-nearest neighbor searching methods prevent both PointNet
and PointNet++ from being extended to large-scale point clouds. In this work, we propose
a voxel-based PointNet, which aggregates point features by considering the voxels produced
by the voxel-branch as neighboring regions. The VPN is an efficient strategy to easily obtain
multi-scale hierarchical features by reusing the ASPC block automatically to down-sample the
voxel scale.

Attention-Based Fusion Module

For each point, it eventually obtains point features and voxel features from the point-
branch and voxel-branch, respectively. It is an essential task to fuse useful features from both
branches together under the interference of massive useless information. In general, the two
features are summed up or concatenated to produce fused features, but both approaches
suffer from a large number of non-informative features, which can be formulated as

f̃ = concatenate( f1, . . . , fN), (4)

f̃ =
N

∑
i=1

fi, (5)

where f̃ is the fused features. Inspired by the attention mechanism, which can focus on
useful information by measuring the importance of each feature channel, we designed
an attention-based fusion (AF) module to filter useless information. Our AF module
calculates two attention score vectors for both branch features of each point and sums the
vectors followed by a softmax function. The calculation of the attention score is formulated
as follows:

αi = so f tmax( ∑
b∈{v,p}

MLPb( f b
i )), (6)

where b denotes the branch type, either voxel or point; MLPb here also corresponds to the
branch type. The fused point features are calculated by summing the product of point
features from both branches and their corresponding attention scores, formulated as:

f̃i = [ f v
i , f p

i ]× αi, (7)

where f̃i denotes the fused features of point i and f v
i and f p

i indicate the point features
from the voxel-branch and point-branch, respectively. Figure 9 illustrates the details of our
proposed attention-based feature fusion module.

Figure 9. Attention-based feature fusion module.
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Loss Function

The imbalanced distribution of different classes introduces a challenge to the training
of neural networks. Take, for example, the fact that, in the point cloud of maize or tomato,
the appearance of stems is much less than the leaves and ground. This issue biases
the neural network towards the classes that appear more in the dataset and limits the
performance of the network.

To address the imbalanced distribution issue, we followed the existing methods [30,31]
and added more weights to the less-represented class by using the weighted cross-entropy
loss. Our total loss function was composed of two parts, namely voxel-loss and point-loss.
For the voxel-loss, we used a combination of the weighted cross-entropy loss and Lovász-
softmax loss to maximize the intersection over union (IoU), which can be formulated as

Lossv = −∑
i

αi p(yi)log(p(ỹi)) + lovasz(y, ỹ) (8)

αi =
1√

fi
, (9)

where fi indicates the frequency of the i-th class and yi and ỹi denote the true and predicted
class, respectively. For the point-loss, only the weighted cross-entropy loss was adopted to
supervise the training. The total loss can be formulated as

Loss = Lossv + Lossp. (10)

4. Discussion
4.1. Efficiency of the Methods

The average latency of these methods on a 3D plant point cloud is presented in Table 8.
We can see that the same method had a higher latency on the tomato dataset than on the
maize dataset, as a tomato point cloud had a more complicated structure and more points
than a maize point cloud. PointNet [25] had the lowest latency on both the maize and
tomato datasets, while PointNet++ [27] and DGCNN [26] had the highest and second-
highest latency, respectively. This was because both PointNet++ [27] and DGCNN [26]
adopted KNN as the neighbor area search strategy, which has a O(n2) time complexity.
PointNet is a pure MLP-based method without any neighbor searching operations, and
our method relies on voxelization to search the neighborhood area, which has a O(n)
time complexity. Our proposed method, called FF-Net, employs two branches, i.e., the
voxel-branch and the point-branch, to overcome this problem. The voxel-branch takes
full advantage of the 3D sparse convolution to extract spatial features efficiently, and the
point-branch adopts mini-PointNet to learn the point features within a voxel, completing
the pointwise features. This is one of the reasons why our method had higher efficiency,
but lower latency than the other competitors. Another reason why our proposed method
was more efficient was that mini-PointNet extracted point features only within the voxel in
which the point resides, which saves time in searching the local areas.

Table 8. The average latency (seconds) of the methods on semantic segmentation tasks.

Dataset FF-Net PointNet [25] PointNet++ [27] DGCNN [26]

Maize 5.57 4.42 96.85 9.14
Tomato 30.18 27 244.18 40.27

4.2. Effectiveness of the Methods

The experimental results showed that our proposed method outperformed the com-
petitors in terms of the mIoU and almost the IoU in all classes for the maize and tomato
datasets. The main reason was that our method took as the input the original points with-
out any down-sampling, which enabled the model to learn richer features. The semantic
segmentation task of point clouds depends not only on pointwise features, but also on
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the relationships between the neighboring points. Another reason why our proposed
method was more effective than the other competitors was that our model fuses the point
features from point-branch and voxel-branch through an attention-based module, which
could filter the useless features to preserve more useful information based on trainable
attention weights. In addition, we conducted cross-validation experiments to evaluate
the generalization ability of these methods. The experimental results showed that the
methods learning relationships between points (e.g., PointNet++ [27], DGCNNN [26], and
FF-Net) performed better than the method only learning point features (e.g., PointNet [25]).
It is worth noting that our method achieved the best mIoU on the maize dataset, while
DGCNN performed better on the tomato dataset in the cross-validation experiments. This
was because DGCNN is a strongly graph-based method that can fully explore the edge re-
lationships between the center and neighboring points. However, the KNN-based neighbor
search method adopted by DGCNN is time-consuming, which impeded its application to
the high-resolution point clouds.

5. Conclusions

This work focused on the semantic segmentation of high-resolution 3D plant point
clouds. To this end, we relabeled the large-scale plant dataset Pheno4D [28] according to the
semantic categories and generated a Hierarchical Data Format (HDF) file for accelerating
access. Then, a feature-fusion-based method named FF-Net was proposed to segment the
point cloud by two branches, namely the point-branch and voxel-branch. The experimental
results showed that the proposed method outperformed three widely used methods on
both the maize dataset and the tomato dataset. Furthermore, we explored the generalization
capabilities of these methods, and our method achieved competitive results. We hope that
this work will provide a novel idea for the semantic segmentation of the high-resolution
3D plant point clouds. In the future, we will continue improving the recognition of small
classes and enhancing the generalization ability of the model.
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