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Abstract: Alzheimer’s disease (AD) is the most prevalent neurodegenerative condition, primarily
affecting seniors. Despite the significant time and money spent over the past few decades, no therapy
has been developed yet. In recent years, the research has focused on ameliorating the cytotoxic
amyloid beta (Aβ) peptide aggregates and the increased elevated oxidative stress, two interconnected
main AD hallmarks. Medicinal plants constitute a large pool for identifying bioactive compounds
or mixtures with a therapeutic effect. Sideritis scardica (SS) has been previously characterized as
neuroprotective toward AD. We investigated this ability of SS by generating eight distinct solvent
fractions, which were chemically characterized and assessed for their antioxidant and neuroprotective
potential. The majority of the fractions were rich in phenolics and flavonoids, and all except one
showed significant antioxidant activity. Additionally, four SS extracts partly rescued the viability in
Aβ25–35-treated SH-SY5Y human neuroblastoma cells, with the initial aqueous extract being the most
potent and demonstrating similar activity in retinoic-acid-differentiated cells as well. These extracts
were rich in neuroprotective substances, such as apigenin, myricetin-3-galactoside, and ellagic acid.
Our findings indicate that specific SS mixtures can benefit the pharmaceutical industry to develop
herbal drugs and functional food products that may alleviate AD.

Keywords: Sideritis scardica; Alzheimer’s disease; plant extracts; neuroprotection; antioxidant; amyloid beta

1. Introduction

AD is the most prevalent form of dementia and an escalating neurological ailment
that disproportionately affects older people. The disease’s primary symptoms are memory
loss, confusion, and depression, which worsen over time until the patient is dependent
on others to perform essential functions such as eating, moving, and speaking [1]. For the
last 20 years, cholinesterase inhibitors and N-methyl D-aspartate receptor antagonists have
been used to treat AD by providing palliative care only. Thus, a pressing need exists to
develop a novel therapeutic approach to treat the disease more efficiently [2].

Even though the pathogenetic mechanism of AD is largely unknown, the generation
of Aβ aggregates is considered one of the central initiating events of the disease, leading
to neurodegeneration [3]. Hence, Aβ aggregate reduction is one of the main approaches
currently being investigated for AD treatment, with some promising results already in
clinical trials. These results led to the controversial accelerated approval by the United
States Food and Drug Administration of a novel medication named Aducanumab, which
targets amyloid beta peptide aggregates. However, the cost of this drug is high, and
the European Medicines Agency has not approved it due to controversies regarding its
effectiveness in improving clinical outcomes and safety. Therefore, there is still much work
to be done to effectively treat AD [4,5].
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Oxidative stress is another major AD hallmark, which leads to the generation of
various toxic substances that can trigger disease development [6]. Previous studies have
demonstrated that the consumption of antioxidants may lower the likelihood of AD onset
and slow the disease’s progression [7–9]. Consequently, antioxidants can play a significant
role in AD therapy [10]. Furthermore, oxidative stress and amyloid plaques may be
interconnected in a way where the increased presence of oxidative stress is associated with
the development of amyloid plaques, which in turn further elevate oxidative stress. The
simultaneous restraint of these two phenomena may prove beneficial for AD patients [11].
Bioactive compounds or extracts from medicinal plants have important antiamyloid and
antioxidant properties. Some of them may have the capacity to be used as future AD
drugs, depending on their effectiveness and safety profile [12]. Thus, various medicinal
plants can be useful in increasing the availability of ingredients or constituents for drug
development, maximizing drug efficiency, and decreasing costs [13–15]. Presently, many
medicinal plant species are considered sources of functional food with health-beneficial
properties for AD [16].

There are more than 150 species in the genus Sideritis, which is a member of the
Lamiaceae family, growing primarily in mountainous regions, with the majority located
in the Mediterranean countries and Macaronesia. The genus name comes from the Greek
word for iron, “sideros”, since these species were used in the ancient era to treat battle
wounds caused by iron weapons. Its well-known health-beneficial properties led to its
use in traditional medicine [17]. Sideritis taxa are mainly used to produce herbal teas to
treat colds, flu, and bronchitis, and for the relief of mild gastrointestinal discomforts. A
relevant herbal monograph (EMA/HMPC/39453/2015) on the traditional usage of four
Sideritis species in herbal tea form has been compiled [18]. Recent research has shown
Sideritis spp. to possess antioxidant, anxiolytic, anticholinesterase, anti-inflammatory,
analgesic, antimicrobial, and antifungal properties [18–22]. Furthermore, a randomized,
double-blinded, placebo-controlled clinical trial has shown that the daily intake of a Sideritis
euboea extract enhances the growth of probiotics in the intestine [23].

Sideritis scardica (SS), with the alias “mountain tea”, is a medicinal, aromatic plant com-
monly used in Mediterranean countries to prepare medicinal herbal infusions. Mountain
tea has a long tradition of usage in the Balkans ethnomedicine for treating the common
cold and gastrointestinal disorders, while it is thought to maintain antioxidant and anti-
inflammatory properties [24–26]. Extracts derived from SS have high contents of flavonoids
and phenolics, substances with many pharmacological effects, such as antioxidant, an-
ticancer, and antiviral properties [27–29]. Furthermore, methanolic and natural deep
eutectic extracts of SS have demonstrated antiaging potential as well; ethanolic extracts
showed remarkable anti-inflammatory, antimicrobial, and antioxidant capacities, while an
SS dichloromethane extract exhibited anti-inflammatory activity [30–33]. SS hydroalcoholic
extracts inhibit the reuptake of serotonin, noradrenaline, and dopamine. Therefore, they
can potentially be used in treating neurotransmitter imbalances associated with various
mental disorders [34]. Additionally, psychostimulant and antidepressive properties were
exhibited in rats [35]. Regarding AD, SS extracts proved to reduce Aβ aggregation and
toxicity in AD mouse models, in Caenorhabditis elegans, and in neuronal cell lines [36–38]. Es-
pecially in mice, they improved memory and learning and enhanced α-secretase expression,
favoring the non-amyloidogenic processing of the amyloid precursor protein, while in a
recent study, SS aqueous extracts reduced anxiety and memory loss [36,39]. In cell lines, SS
extracts reduced tau hyperphosphorylation, another AD hallmark, and promoted the non-
amyloidogenic pathway [38]. In other studies, SS extracts improved cognition in healthy
individuals and patients with mild cognitive impairment (MCI), a condition regarded as a
possible AD precursor [40–42]. To this end, a mixture of SS and Bacopa monnieri extracts
positively impacted patients with MCI, in a double-blind, randomized, placebo-controlled
clinical trial [43]. Finally, a similar parallel groups trial in healthy individuals exhibited
that daily consumption of two mountain tea dosages boosted cerebral blood flow, reduced
anxiety, and elevated visual sustained attention and working memory [44].
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Here, we successively generated eight distinct SS extracts using solvents of different
polarity levels and evaluated their antioxidant and neuroprotective capacities to assess
their potential in developing functional foods targeting AD. The SS plants were obtained
for experimental cultivation in Northern Greece. Various in vitro methodologies were
employed to estimate the various SS extracts’ ability to function as neuroprotective agents.

2. Results
2.1. Chemical Characterization of the SS Extracts

The experimental pipeline was initiated by the content determination and quantifica-
tion of the isolated extracts (petroleum ether (SSPE), dichloromethane (SSDM), methanolic
(SSM), and initial aqueous (SSSW1)) and methanolic fractions (diethyl ether (SSDE), ethyl
acetate (SSEA), butanol organic phase (SSB), and remaining aqueous (SSW2) isolated ex-
tracts) of S. scardica. To achieve this, ultra-performance liquid chromatography (UPLC)
tandem mass spectrometry with electron spray ionization (ESI) in either positive or negative
mode and spectrophotometric protocols have been utilized.

2.1.1. High Levels of Phytochemicals Are Present in Several SS Extracts

Initially, we assessed the total contents of the main phytochemical categories such
as phenolics (TPC), flavonoids (TFC), condensed tannins, and monoterpenoids in the
SS extracts. This would help us to ensure the reproducibility of the results, to better
characterize the extracts, and to obtain an initial insight into the antioxidant capacity levels
of the fractions, as the above categories possess prominent antioxidant potential [45–47].
SSW1 was the extract with the highest TFC (~812 µmol catechin hydrate equivalents/gram,
~1024 µmol rutin equivalents/gram extract) and the highest TPC (~814 mg gallic acid
equivalents/gram extract). Considerable TFC values were recorded for SSM, SSB, SSW2,
and SSEA, while a relatively high TPC values were measured for SSM, SSDM, SSW2, and
SSB. Conversely, the SSPE and SSDE fractions demonstrated low flavonoid and phenolic
levels (Tables 1 and 2).

Table 1. Quantitative information illustrating the phytochemical contents of the four isolated
(petroleum—SSPE; dichloromethane—SSDM; methanolic—SSM; initial aqueous—SSW1) extracts
of S. scardica. The results represent the means ± SD of six separate studies. Tukey’s test (p < 0.05)
showed that means and standard deviations (SDs) proceeded by different letters in the same row
importantly vary from one another.

Chemical Class/
Analyte

Extracts of Sideritis scardica

SSPE SSDM SSM SSW1 Expression Units

Phenolics

Hydroxybenzoic acids

4-hydroxybenzoic acid - 0.34 ± 0.02 a 32.16 ± 6.16 b 150.42 ± 8.21 c

µg/g of dry fraction
Protocatechuic acid - 1.21 ± 0.03 a 62.11 ± 4.59 b 148.66 ± 11.36 c

Gallic acid - 0.24 ± 0.16 a 68.21 ± 4.00 b 89.54 ± 2.36 c

Vanillic acid 0.22 ± 0.01 a 3.21 ± 0.99 b 32.70 ± 2.25 c 67.65 ± 2.36 d

Syringic acid - - 73.42 ± 5.32 a 235.69 ± 11.21 b

Hydroxycinnamic acids

p-coumaric acid - 1.31 ± 0.01 a 93.21 ±1.05 c 13.35 ± 1.49 b

µg/g of dry fraction

Caffeic acid 0.15 ± 0.01 a 1.21 ± 0.02 b 78.99 ±3.42 c 76.87 ± 8.99 c

Ferulic acid 1.23 ± 0.08 a 1.12 ± 0.79 a 55.65 ±4.42 b 179.54 ± 6.35 c

Rosmarinic acid - 1.11 ± 0.04 a 0.042 ± 0.01 b -
Chlorogenic acid 0.56 ± 0.04 a 11.96 ± 2.34 b 1036.20 ± 215.36 c 1987.48 ± 102.21 d

Forsythoside A 24.54 a 198.27 ± 10.21 b 25612.65 ± 542.03 c 39564.00 ± 496.22 d

Verbascoside 69.54 a 258.98 ± 1.99 b 32148 ± 1949.45 c 48768.16 ± 2020.97 d
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Table 1. Cont.

Chemical Class/
Analyte

Extracts of Sideritis scardica

SSPE SSDM SSM SSW1 Expression Units

Ellagitannins

Ellagic acid 0.79 ± 0.05 a 2.37 ± 0.01 b 9.65 ± 1.21 c 8.01 ± 1.87 c µg/g of dry fraction

Total Phenolic Content 23.11 ± 1.21 a 452.36 ± 18.32 b 697.47 ± 15.54 c 814.56 ± 31.21 d µg of gallic acid
eq./g of dry fraction

Flavonoids

Flavanones

2′-hydroxyflavanone - 2.22 ± 0.17 a - 284.69 ± 15.61 b

µg/g of dry fraction7-hydroxyflavanone - - - 170.20 ± 9.61
4′-methoxyflavanone 6.46 ± 0.04 - - -
5-methoxyflavanone 8.13 ± 0.82 6.21 ± 0.06 - -

Flavones

Apigenin 0.89 ± 0.09 a 1.54 ± 0.08 b 119.37 ± 8.36 c 197.86 ± 2.90 d

µg/g of dry fractionApigenin-7-O-glucoside - 0.96 ± 0.01 a 71.65 ± 0.56 b 133.42 ± 11.40 c

Luteolin-7-O-glucoside - - 75.49 ± 3.03 a 176.24 ± 9.01 b

Isorhamnetin 1.00 ± 0.01 a 5.92 ± 0.49 b 14.23 ± 0.11 c 10.63 ± 0.03 d

Flavanols

Quercetin-3-O-rhamnoside - 2.42 ± 0.11 a 94.56 ± 3.65 b 182.51 ± 9.57 c

µg/g of dry fraction
Quercetin-3-O-rutinoside 1.33 ± 0.13 a 18.99 ± 2.27 b 114.00 ± 13.21 c 369.22 ± 20.39 d

Quercetin-3-O-galactoside - - 48.12 ± 3.21 53.61 ± 4.32
Myricetin-3-O-galactoside - 24.53 ± 2.11 a 127.36 ± 10.37 b 436.17 ± 18.15 c

Kaempferol-3-O-rutinoside - 29.22 ± 2.48 a 110.33 ± 9.65 b 267.45 ± 18.12 c

Isoflavones

Naringin - - 70.36 ± 1.47 - µg/g of dry fraction

Total Flavonoid Content
148.59 ± 6.5 a 223.51 ± 18.36 b 897.24 ± 19.87 c 1024.49 ± 36.14 d µg of rutin eq./g of

dry fraction

54.02 ± 3.64 a 127.36 ± 9.63 b 549.21 ± 21.98 c 812.59 ± 28.36 d µg of catechin eq./g
of dry fraction

Total Condensed
Tannins Content 1.41 ± 0.02 a 8.23 ± 0.23 b 10.82 ± 1.01 c 11.24 ± 0.83 c µg of catechin eq./g

of dry fraction

Total
mono-Terpenoid Content 3.27 ± 0.16 a 26.23 ± 1.25 d 9.46 ± 1.10 c 7.26 ± 0.52 b µg of linalool eq./g

of dry fraction

Total Soluble
Protein Content - - 26.56 ± 2.36 a 89.23 ± 3.16 b mg of BSA eq./g of

dry fraction

Total Soluble
Sugar Content 0.01 ± 0.00 a 0.24 ± 0.02 b 5.17 ± 0.28 c 16.66 ± 0.37 d nmol of mannose

eq./g of dry fraction

Pigments

Chlorophyll-a 26.74 ± 2.26 a 69.54 ± 3.17 b 149.36 ± 7.23 c 298.15 ± 6.36 d

µg of pigment/g of
dry fraction

Chlorophyll-b 11.23 ± 0.14 a 36.14 ± 1.32 b 245.98 ± 14.11 c 368.98 ± 15.14 d

β-Carotene 51.23 ± 0.01 c 4.13 ± 0.28 b 0.24 ± 0.36 a -
Lycopene 79.13 ± 0.32 c 10.56 ± 1.11 b 1.42 ± 1.48 a -

The SSDM was the richest extract in the monoterpenoids (~25 µg of linalool equivalents
per gram), while the SSW1 contained significantly higher concentrations of condensed tan-
nins (~11 µg of linalool equivalents per gram), soluble proteins (~89 mg of BSA equivalents
per gram), and soluble sugars (~17 mg of BSA equivalents per gram) in comparison with
the rest of the fractions. In addition, SSW1 was significantly enriched with the pigments
chlorophyll-a and -b.
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Table 2. Quantitative information illustrating the phytochemical contents of the four isolated (diethyl
ether—SSDE; ethyl acetate—SSEA; butanol (organic phase)—SSB; butanol (aqueous phase)—SSW2)
fractions of methanolic extract (SSM) of S. Scardica. The results represent the means ± SD of six sepa-
rate studies. Tukey’s test (p < 0.05) showed that means and SDs proceeded by different letters in the
same row importantly vary from one another.

Chemical Class/
Analyte

MeOH Fractions of Sideritis scardica

SSDE SSEA SSB SSW2 Expression Units

Phenolics

Hydroxybenzoic acids

4-hydroxybenzoic acid 0.43 ± 0.02 a 0.52 ± 0.13 a 5.76 ± 0.001 c 1.33 ± 0.02 b

µg/g of dry fractionProtocatechuic acid - 0.40 ± 0.09 a 6.52 ± 0.51 b 32.56 ± 2.69 c

Vanillic acid 0.12 ± 0.06 a 3.21 ± 0.23 b 10.02 ± 1.00 c -
Syringic acid - 0.40 ± 0.17 a 10.99 ± 0.69 c 6.99 ± 0.42 b

Hydroxycinnamic acids

p-coumaric acid - - 5.05 ± 0.12 b 1.46 ± 0.00 a

µg/g of dry fraction

Caffeic acid 0.38 ± 0.00 a 0.44 ± 0.00 a 12.69 ± 0.61 c 7.57 ± 0.06 b

Ferulic acid - - 6.59 ± 0.21 b 1.01 ± 0.00 a

Rosmarinic acid - - 6.32 ± 0.05 -
Chlorogenic acid 0.40 ± 0.00 b 0.07 ± 0.00 a 6.12 ± 0.42 c 36.21 ± 3.01 d

Forsythoside A - 0.06 ± 0.00 - -
Verbascoside - - 7.55 ± 0.10 b 1.27 ± 0.06 a

Ellagitannins

Ellagic acid 4.00 ± 0.07 d 0.02 ± 0.00 a 2.01 ± 0.07 c 0.30 ± 0.00 b µg/g of dry fraction

Total Phenolic Content 54.32 ± 3.67 a 189.74 ± 4.26 b 284.31 ± 16.32 c 365.28 ± 16.83 d µg of gallic acid
eq./g of dry fraction

Flavonoids

Flavones

Apigenin 5.00 ± 0.01 a - - 30.11 ± 2.36 b

µg/g of dry fractionApigenin-7-O-glucoside - - 7.62 ± 0.25 8.36 ± 1.37
Luteolin-7-O-glucoside 5.99 ± 0.49 b 0.05 ± 0.00 a 8.45 ± 0.79 c 12.34 ± 1.01 d

Flavanols

Quercetin-3-O-rhamnoside 1.31 ± 0.01 b 0.09 ± 0.00 a 9.42 ± 0.66 c 1.23 ± 0.04 b

µg/g of dry fraction
Quercetin-3-O-rutinoside - - - 1.54 ± 0.11
Quercetin-3-O-galactoside - - - 0.88 ± 0.00
Myricetin-3-galactoside 4.62 ± 0.37 d 1.08 ± 0.02 c 0.30 ± 0.01 b 0.05 ± 0.00 a

Kaempferol-3-O-rutinoside - - 2.31 ± 0.09 b 1.11 ± 0.08 a

Isoflavones

Naringin - 0.06 ± 0.00 a 6.12 ± 0.32 c 1.51 ± 0.08 b µg/g of dry fraction

Total Flavonoid Content
184.33 ± 6.4 a 289.34 ± 3.68 b 423.66 ± 19.85 c 547.59 ± 17.78 d µg of rutin eq./g of

dry fraction

86.34 ± 4.56 a 453.97 ± 19.63 c 697.74 ± 19.95 d 190.16 ± 8.88 b µg of catechin eq./g
of dry fraction

Total Condensed
Tannins Content 4.05 ± 0.38 b - 4.33 ± 0.02 b 1.23 ± 0.00 a µg of catechin eq./g

of dry fraction

Total
mono-Terpenoid Content 1.99 ± 0.00 b 3.27 ± 0.00 d 2.60 ± 0.07 c 0.03 ± 0.00 a µg of linalool eq./g

of dry fraction

Total Soluble
Protein Content - - 0.04 ± 0.00 b 0.026 ± 0.00 a mg of BSA eq./g of

dry fraction

Total Soluble
Sugar Content - - - 0.04 ± 0.00 nmol of mannose

eq./g of dry fraction

Pigments

Chlorophyll-a 1.00 ± 0.03 a 4.03 ± 0.78 b 127.45 ± 6.32 c -
µg of pigment/g of

dry fraction
Chlorophyll-b 12.25 ± 0.37 b 0.24 ± 0.00 a 100.99 ± 8.11 c 9.23 ± 0.25 b

β-Carotene - - - -
Lycopene - - - -
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2.1.2. Identification of the Polyphenolics Present in the SS Extracts

For the identification of the commonest polyphenolic acids and flavonoids, selective
ion recording (SIR) mode (Figure 1) was employed, whereas individual polyphenolic
compounds were assessed through a multiple reaction monitor (MRM) transition with the
use of commercially available external standards (Table S1). The International Conference
of Harmonization’s standards were used to validate the analytical procedure (Table S2) [48].
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ellagic acid; 13—isorhamnetin; 14—chlorogenic acid; 15—kaempferol-3-O-rhamnoside; 16—
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Figure 1. Selected ion recording (SIR) spectra: (A) (i) the petroleum (SSPE), (ii) dichloromethane
(SSDM), (iii) methanolic (SSM), and (iv) initial aqueous (SSW1) isolated extracts and (B) the fractions
of the methanolic extract (i) diethyl ether (SSDE), (ii) ethyl acetate, (iii) organic-phase butanol (SSB),
and (iv) aqueous-phase butanol (SSW2) of S. scardica. Scanning (m/z; 120–650) was carried out utiliz-
ing collisions energies and m/z in the negative and positive electrospray ionization (ESI±) mode in
accordance with the collision energy as presented in Table S1: 1—4-hydroxybenzoic acid; 2—vanillin;
3—protocatechuic acid; 4—p-coumaric acid; 5—gallic acid; 6—caffeic acid; 7—ferulic acid; 8—syringic
acid; 9—2′-hydroxyflavanone; 10—7-hydroxyflavanone; 11—apigenin; 12—ellagic acid; 13—isorhamnetin;
14—chlorogenic acid; 15—kaempferol-3-O-rhamnoside; 16—apigenin-7-O-glucoside; 17—quercetin-3-O-
rhamnoside; 18—luteolin-7-O-glucoside; 19—quercetin-3-O-galactoside; 20—myricetin-3-O-galactoside;
21—naringin; 22—quercetin-3-O-rutinoside; 23—verbascoside; 24—forsythoside; 25—rosmarinic acid;
26—4′-methoxyflavanone; 27—5-methoxyflavanone.
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Concerning all extracts, forsythoside A and verbascoside were the most enriched
phenolic acids (39564 and 48,768 µg/g respectively) in SSW1, followed by chlorogenic acid
(1987 µg/g) in the same extract. Myricetin-3-O-galactoside (~436 µg/g) and quercetin-3-O-
rutinoside (~369 µg/g) were the most abundant flavonoids in SSW1 as well. SSW1 and SSM
were the extracts with the higher concentrations in the identified compounds (Tables 1 and 2).

2.2. SS Extracts Possess Important Antioxidant Properties

We used three approaches to investigate the antioxidant ability levels of the SS frac-
tions. Firstly, we employed a DPPH assay, which measured the capacity of the SS extracts
in scavenging the DPPH stable radical 1,1-diphenyl,2-picrylhydrazyl in terms of the ex-
tract concentration required to exhibit a 50% antiradical effect (EC50) [49]. This approach
revealed a strong antiradical efficiency (AE) for the SSB extract, which surpassed the cor-
responding AE of the standard antioxidant Trolox, which was used as a positive control
(AETrolox(DPPH·): 5.59). SSEA exhibited significant AE as well. The other extracts showed
relatively weaker DPPH scavenging activity, especially SSDM and SSW2, whose radical
scavenging activity values were close to zero (Table 3). We did not detect any scavenging
ability in the SSPE.

Table 3. Antioxidant capacity levels of the different mixtures derived from SS aerial parts, as estimated
by DPPH·, FRAP, and DCF-DA assays. Results are shown as average values ± standard deviations.
EC50 in DPPH corresponds to the concentration of antioxidants necessary to decrease the initial
DPPH by half and is measured in mg antioxidant/mg DPPH. EC50 in DCF-DA corresponds to the
concentration of fraction required to decrease by 50% the presence of radical oxygen species, induced
by 50 µM of H2O2.

SSPE SSDM SSM SSW1 SSDE SSEA SSB SSW2

DPPH
EC50 - 13.38 ± 0.10 2.17 ± 0.06 1.86 ± 0.07 2.88 ± 0.30 0.44 ± 0.02 0.16 ± 0.02 5.40 ± 0.23
AE - 0.08 0.46 0.54 0.35 2.28 6.25 0.19

FRAP
µmol

AAE/g 49.5 ± 13.7 234.4 ± 31.2 963.9 ± 26.2 256.2 ± 16.0 585.7 ± 51.1 2263.5 ± 79.5 2707.6 ± 28.2 234.4 ± 2.1

µmol
TEAC/g 60.3 ± 19.8 254.0 ± 35.6 1024.2 ± 60.7 275.9 ± 27.8 616.5 ± 34.5 2332.4 ± 68.7 2854.9 ± 71.0 252.1 ± 11.9

DCF-DA
assay EC50µg/mL - 2.69 2.47 40.86 0.62 0.57 2.06 12.65

Secondly, we utilized the FRAP (ferric-reducing activity power) assay, which measured
the plant extracts’ potential to reduce Fe3+-tripyridyltriazine to Fe2+-tripyridyltriazine [49].
The results were similar to the DPPH assay, since SSB was the most potent antioxidant,
followed by SSEA. SSM exhibited considerable potential, while the remaining mixtures
were less effective, except for SSPE, which showed minor reducing ability (Table 3).

Finally, we assessed the antioxidant competence of the fractions in SH-SY5Y cells
treated with hydrogen peroxide. We employed the DCF-DA assay, which measured the pro-
duction of free radicals in cells [50]. The extracts were applied in a range of concentrations
(2–200 µg/mL), and the results exhibited that they significantly lower the oxidative stress
caused by hydrogen peroxide’s presence (Figure 2). This effect was more evident in concen-
trations ≥ 50 µg/mL. Below those levels, the protective action of the plant extracts started
fading out. The only exception was SSPE, which did not show significant antioxidant
activity. The EC50 values revealed strong antioxidant potential for SSEA, SSDE, SSB, SSM,
and SSDM, while considerable activity was demonstrated for SSW2 and SSW1 (Table 3).

Overall, the SSB and SSEA mixtures showed substantial antioxidant potential in every
assay. The DCF-DA assay also provided proof of a similar capacity for the other extracts,
despite their relatively weaker antioxidant results in the DPPH and FRAP assays. The
only exception was SSPE, which did not exhibit the antioxidant capacity in any of the
employed approaches.
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2.3. SS Mixtures Are Cytotoxic above a Specific Concentration

We investigated the possible cytotoxic effect of the SS mixtures in the SH-SY5Y neurob-
lastoma cells to define the maximum non-toxic concentration that cells could be incubated
with in the neuroprotectivity assessment experiments. Each mixture was tested at a variety
of concentrations, and it was shown that SSPE is cytotoxic at concentrations ≥ 200 µg/mL,
SSW1 and SSDE at concentrations ≥ 400 µg/mL, while the remaining mixtures were char-
acterized as cytotoxic ≥800 µg/mL (Figure 3). Table 4 shows the matching half-maximal
effective concentrations (EC50), which were also computed.

Plants 2023, 12, x FOR PEER REVIEW 9 of 24 
 

 

 
Figure 3. Determination of the maximum non-toxic concentrations of the different SS mixtures on 
SH-SY5Y cells. The error bars display the SEM from five separate tests. Note: * shows statistical 
significance of p < 0.05 and *** of p < 0.001 when compared to control untreated cells. 

Table 4. Cytotoxic potency of SS extracts in SH-SY5Y cells in terms of half-maximal effective 
concentrations. EC50 corresponds to the concentration of extract required to reduce the cell viability 
by 50%. 

 SSPE SSDM SSM SSW1 SSDE SSEA SSB SSW2 
Cell 

viability 
assay 

EC50 
(μg/mL) 

249.09 477.25 451.85 534.18 362.39 470.65 631.59 601.71 

2.4. SSDM, SSM, SSW1, and SSDE Exhibit Neuroprotectivity against Amyloid Beta Toxicity 
To investigate the possible neuroprotective potential of each mixture, SH-SY5Y cells 

were incubated with the highly neurotoxic amyloid beta 25–35 (Aβ25–35) peptides in the 
absence or presence of the SS extracts. Each SS mixture was tested in a range of 
concentrations determined through the cytotoxicity investigation (Figure 3). Four of the 
eight mixtures showed a statistically important capacity against Aβ25–35 neurotoxicity in 
specific concentrations. Specifically, SSW1 was the most potent and showed 
neuroprotectivity in concentrations of 50–200 µg/mL, SSM also at 50–200 µg/mL, SSDM 
at 2–50 µg/mL, and finally SSDE at 2 µg/mL only. The stronger antineurotoxicity was 
recorded after treatment with 200 µg/mL of SSW1, which increased the cell viability by 
1.33-fold in comparison with cells treated solely with the neurotoxic amyloid peptides. 
The remaining four extracts (SSPE, SSEA, SSB, and SSW2) did not demonstrate a 
neuroprotective effect (Figure 4). 

Figure 3. Determination of the maximum non-toxic concentrations of the different SS mixtures on
SH-SY5Y cells. The error bars display the SEM from five separate tests. Note: * shows statistical
significance of p < 0.05 and *** of p < 0.001 when compared to control untreated cells.



Plants 2023, 12, 1716 9 of 22

Table 4. Cytotoxic potency of SS extracts in SH-SY5Y cells in terms of half-maximal effective con-
centrations. EC50 corresponds to the concentration of extract required to reduce the cell viability
by 50%.

SSPE SSDM SSM SSW1 SSDE SSEA SSB SSW2

Cell viability assay EC50
(µg/mL) 249.09 477.25 451.85 534.18 362.39 470.65 631.59 601.71

2.4. SSDM, SSM, SSW1, and SSDE Exhibit Neuroprotectivity against Amyloid Beta Toxicity

To investigate the possible neuroprotective potential of each mixture, SH-SY5Y cells
were incubated with the highly neurotoxic amyloid beta 25–35 (Aβ25–35) peptides in the
absence or presence of the SS extracts. Each SS mixture was tested in a range of concen-
trations determined through the cytotoxicity investigation (Figure 3). Four of the eight
mixtures showed a statistically important capacity against Aβ25–35 neurotoxicity in specific
concentrations. Specifically, SSW1 was the most potent and showed neuroprotectivity in
concentrations of 50–200 µg/mL, SSM also at 50–200 µg/mL, SSDM at 2–50 µg/mL, and
finally SSDE at 2 µg/mL only. The stronger antineurotoxicity was recorded after treatment
with 200 µg/mL of SSW1, which increased the cell viability by 1.33-fold in comparison
with cells treated solely with the neurotoxic amyloid peptides. The remaining four extracts
(SSPE, SSEA, SSB, and SSW2) did not demonstrate a neuroprotective effect (Figure 4).
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To confirm this finding, we tested whether SSW1, which showed the highest neuropro-
tective potential, could have the same effect in retinoic-acid-differentiated SH-SY5Y cells.
Indeed, SSW1 showed a strong neuroprotective action against Aβ25–35 by partly restoring
the viability of the cells treated with the neurotoxic peptides (Figure 5). In particular, while
the Aβ25–35 treatment caused the viability of the cells to fall to ~53% compared with the
untreated cells, the addition of 200 and 100 µg/mL SSW1 restored the cell viability to ~74%
and ~72%, respectively. Treating cells with 50 µg/mL of SSW1 restored the cell viability to
~62% but was not statistically significant, while 2 µg/mL of SSW1 did not have any effect.
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3. Discussion

Here, we present evidence that SS extracts possess neuroprotectivity against neu-
rotoxicity caused by amyloid beta peptides and significant antioxidant potential. The
methodology selected for the estimation of such potential has been successfully employed
in previous studies investigating similar modes of action by other medicinal plant ex-
tracts [51,52]. The extraction process for the generation of the fractions favors the separation
of the plant’s bioactive compounds at higher concentrations in the extracts [53]. Various
solvents of different polarities were used to generate eight SS fractions of distinct secondary
metabolites’ contents, as evidenced by the chemical characterization data. Thus, plant
material fractioning enables a thorough examination of the plant’s relevant properties by
maximizing the possibility of uncovering a health-beneficial potential that otherwise may
remain inconspicuous.

In general, the mode of action of the various antioxidants can differ, so it is highly
recommended to employ at least two different approaches when investigating the antioxi-
dant activity of the heterogenous plant extracts [54]. Here, the antioxidant potentials of the
fractions were assessed using three different techniques: DPPH, FRAP, and DCF-DA assays.
These tests were used to determine the extracts’ capacity to scavenge free radicals, their
reducing activity, and their antioxidant potential in living cells, respectively [49]. Regarding
the neuroprotection experiments, Aβ25–35 peptides are the shorter Aβ forms that retain
the cytotoxicity of the full-length forms (Aβ1–42) in a similar pattern; thus, the region they
cover is considered the active region of the neurotoxic Aβ peptides [55,56]. Therefore,
Aβ25–35 is a convenient tool that has been used in conjunction with the SH-SY5Y human
neuroblastoma cells to establish a cell line model for AD [51,52,57,58].

For this work, the plant material originated from SS plants cultivated according to
good agricultural practice, which assured a stable and high-quality plant material enriched
with the desired components. In addition, cultivation ensured the reproducibility of this
work’s findings because of the standardized plant material that was used, in opposition to
plants originating from the wild, which are more susceptible to chemo-variations [59]. At
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the same time, a significant genetic adaptive variation has been shown between diverse
natural SS populations [60]. Additionally, SS plants of different origins show remarkable
differences in their phenolic and flavonoid contents, depending on genetic factors and the
different geoclimatic conditions occurring in their habitats [54,61].

As demonstrated earlier in plants growing in Greece, Serbia, Bulgaria, and North
Macedonia, the TFC and TPC testing showed the presence of significant levels of flavonoids
and polyphenols in SS. The antioxidant potential of SS fractions, as evaluated by DPPH
and FRAP assays, was shown to correlate positively with the presence of phenolics and
flavonoids observed in previous studies [27,62]. To this end, SSB and SSEA had relatively
high TFC values together with considerable TPC values and showed the most substantial
antioxidant potential, in accordance with previous studies in wild SS plants and cultivars
from Bulgaria showing similar results for SS extracts generated with the use of butanol and
ethyl acetate [62,63]. The DPPH and FRAP assays showed a weaker antioxidant capacity
for the remaining extracts, even though some of them demonstrated high TFC and TPC
values, such as SSM and SSW1. These two extracts possess a considerable soluble protein
content, and it has been documented that the interactions of phenolics with proteins can
limit their reactive groups and antioxidant potential [64,65]. Furthermore, previous studies
suggest that the antioxidant activity is not always correlated with the TPC and that it
is dependent on the structure–activity relationships of the bioactive compounds [66–69].
Nevertheless, except for SSPE, the DCF-DA assay demonstrated that all SS mixtures exert
important antioxidant activity in vitro. This potential can be explained by the existence of
bioactive substances with documented antioxidant effects such as chlorophyll-a and -b,
vanillic acid, 4-hydroxybenzoic acid, syringic acid, p-coumaric acid, caffeic acid, ferulic
acid, verbascoside, and quercetin-3-O-rhamnoside, among others [70–78]. Notably, SSPE
was the only extract that did not display any discernible antioxidant ability with any of
the utilized approaches. This indicates that the non-polar solvent petroleum ether did not
extract strong antioxidant compounds, contrary to the other solvents used here that possess
higher polarity indexes. Similar findings were observed in other plants such as Achillea,
Phaseolus, and Mentha species, and it is generally considered that polar extracts possess
stronger antioxidant potential because of the polar solvents’ ability to more effectively
isolate antioxidant compounds such as highly hydroxylated forms of phenols [79–81].

The higher extract concentrations exerted cytotoxicity on the cells, probably due to
the presence of specific substances becoming cytotoxic above a specific concentration.
Previously, SS extracts have been shown to cause cytotoxicity in rat glioma cells through
oxidative stress induction and cell cycle arrest, leading to apoptosis and autophagy. Pheno-
lics present in the SS extracts, such as apigenin and luteolin, cause similar effects and are
considered at least partly responsible for the observed toxicity [63,82].

Four of the eight studied SS mixtures demonstrated a statistically important neu-
roprotective capacity against the cytotoxicity caused by amyloid beta peptides, further
confirming the potential of SS to provide mixtures or constituents that can be beneficial to
patients with AD. Previous studies have shown that methanolic, ethanolic, and aqueous SS
extracts, as well as ethanolic partitions, can reduce Aβ1–42 aggregation and stop neuronal
loss in cell lines and mouse and worm models of AD [36–38]. Specifically, in mice, SS
extracts have been shown to decrease soluble Aβ1–42 and Aβ aggregation by enhancing the
phagocytic microglia response of Aβ and inducing the expression of a-secretase ADAM10,
which cleaves Aβ [36]. Here, we show that four SS extracts (SSDM, SSM, SSW1, and SSDE)
can also reduce the cytotoxic activity of Aβ25–35, with SSW1 showing this potential in
differentiated cells as well. In addition, for the first time, we present neuroprotectivity in
SS extracts generated by using less-polar solvents, such as dichloromethane. Nevertheless,
the more polar extracts, such as the methanolic and aqueous extracts, are the strongest in
terms of neuroprotectivity, as also indicated by previous findings [36–39]. The presence
of known neuroprotective SS compounds (Tables 1 and 2), such as luteolin, apigenin, fer-
ulic acid, chlorogenic acid, caffeic acid, ellagic acid, myricetin, quercetin, protocatechuic
acid, gallic acid, vanillic acid, syringic acid, p-coumaric acid, kaempferol, verbascoside,
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and forsythoside A, likely confers Aβ25–35 anti-neurotoxicity to the four neuroprotective
fractions presented here [83–98]. Notably, ellagic acid and myricetin-3-O-galactoside are
enriched in these four fractions, proportionally to their neuroprotective potential.

Conclusively, SS extracts are characterized by antioxidant capacity and neuropro-
tectivity, which are properties that can target important AD hallmarks. Especially, the
dichloromethane (SSDM), methanolic (SSM), initial aqueous (SSW1), and diethyl ether
(SSDE) mixtures possess both desired qualities. At the same time, the butanolic (SSB) and
ethyl acetate (SSEA) fractions demonstrate a striking antioxidant effect. Future directions
should include the administration of the extracts—and especially of SSW1, which shows
the highest neuroprotective potential—in AD mouse models to gather additional evidence
regarding their potential against AD. Nonetheless, the results of this work strengthen
the notion that SS can be exploited as an additional, affordable source of bioactive com-
pounds or mixtures to be used in the development of herbal drugs, functional foods, and
supplements, targeting AD.

4. Materials and Methods
4.1. Chemicals

Solvents: Water, acetonitrile, acetone, chloroform, and methanol, were obtained from
Honeywell (Charlotte, NC, USA). LC-MS-grade formic acid was supplied by Thermofisher
(Waltham, MA, USA). Sulfuric acid, phenol, hydrochloric acid, n-butanol, ethyl acetate,
diethyl ether, petroleum ether, and dichloromethane were supplied by Sigma Aldrich (Saint
Louis, MO, USA). DMSO was supplied by Santa Cruz (Dallas, TX, USA).

Analytical standards: All standards were supplied by Extrasynthese (Lyon, France)
except catechin, rutin, ascorbic acid, mannose, and linalool, which were supplied by Sigma
Aldrich, as well as apigenin, forsythoside A, and verbascoside, which were provided by
Adooq Bioscience (Irvine, AB, Canada). Bovine serum albumin (BSA) was purchased from
Thermofisher. Trolox, an antioxidant vitamin E derivative, was obtained from Abcam
(Cambridge, UK).

Reagents: Aluminum chloride, sodium nitrite, sodium hydroxide, TPTZ, iron (III)
chloride solution, ammonium iron (II) sulphate, Folin–Ciocalteu’s phenol reagent, thiazolyl
blue tetrazolium bromide, 2′,7′-dichlorofluorescin, and DPPH were purchased from Sigma
Aldrich. The amyloid beta peptides (Aβ25–35) were supplied by Genscript (Piscataway,
NJ, USA).

Assay kits: A bicinchoninic acid (BCA) protein assay kit was supplied by Thermofisher.
Cell Culture: The cell culture reagents and media were supplied by Biosera (Nu-

aille, France).

4.2. Plant Material

The plant material was gathered in an experimental field at the Institute of Plant
Breeding and Genetic Resources of the Hellenic Agricultural Organization “DIMITRA” in
Thermi, Greece, from a population of S. scardica that had been cultivated under “organic”
farming conditions. The germplasm of the initial population originated from the East Mace-
donian mountain area (Greece). The plant material was recognized by a plant taxonomist.
The aerial parts of the three-year-old plants were gathered during flowering (June 2017)
and air-dried under shadows, and the preparation of the extracts and other fractions was
conducted at the Laboratory of Pharmacognosy, University of Nicosia, Nicosia, Cyprus. A
voucher specimen was submitted to the same lab for future use, under the code number
0617-SdrtscELGO.

4.3. Preparation of SS Extracts

The plant material (fixed-weight 49.49 g) was exhaustively extracted into a Soxhlet
extractor with the solvents petroleum ether (850 mL), dichloromethane (800 mL), and
methanol (800 mL) consecutively (for 20 h, 30 h, and 34 h, respectively), and the three col-
lected fractions (SSPE, SSDM, SSM) were concentrated under vacuum to the point of
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dryness. The aerial parts of Sideritis scardica were then extracted with 400 mL of 75 ◦C
water and the fraction (SSW1) was evaporated to dryness under reduced pressure. The
dry remainder of the methanolic fraction was dissolved in 400 mL of 75 ◦C water, filtrated,
and partitioned using the following solvents: diethyl ether, ethyl acetate, and n-butanol
(20-fold of 26.75 mL, 20-fold of 25.75 mL, and 9-fold of 15 mL, respectively). The organic
layers of these solvents (SSDE, SSEA, and SSB respectively) and the remaining aqueous
extract (SSW2) were evaporated to dryness. This procedure is graphically presented in
Figure 6. Before use, the extracts were dissolved in DMSO or methanol (1 mg/mL), passed
through a 0.22 µm filter (cellulose nitrate; Sartorium Stedim, Guttenberg, Germany), and
maintained at −20 ◦C in the dark.
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4.4. Total Phenolic Content (TPC) Assessment

The TPC values of the fractions were evaluated with the use of a polyphenolic quan-
tification assay kit (Bioquochem, Asturias, Spain) as per the kit directions. A gallic acid
calibration curve (linear range: 0–0.8 mg/mL, y = 9.7x + 0.0155, R2 > 0.9962) was the basis
for how the TPC values were computed. The analysis was carried out in triplicate, and
the findings were presented as µg of gallic acid equivalents per gram of dry extract with
standard deviations.

4.5. Total Flavonoid Content (TFC) Determination

With a few adjustments, the TFC measurements were carried out as previously pub-
lished [99]. Briefly, 20 µL of aluminum trichloride (10% aqueous solution) and 20 µL
of sodium acetate were added to 40 µL of every extract after it had been diluted with
120 µL of methanol (0.5 M aqueous solution). The resultant mixtures were left at room
temperature for 40 min protected from light before having their absorbance quantified at
415 nm with a microplate reader (LT4500, Labtech, Heathfield, UK). The rutin (linear range:
0–2 mM, y = 0.6339x + 0.0144, R2 > 0.9997) and catechin calibration curves (linear range:
0–1.2 mM, y = 1.0711x − 0.0009, R2 > 0.9974) were used to calculate the TFC. The TFC was
measured in µmol of catechin hydrate or rutin/g of dry fraction, and the measurements
were performed in triplicate. The findings are presented as averages with SDs.
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4.6. Total Condensed Tannin Content Assessment

The amount of condensed tannins was estimated using an earlier reported tech-
nique [100]. In a nutshell, one part of each extract was diluted with one part of 70% ice-cold
acetone. Then, six parts of n-butanol/hydrochloric acid (37%) (95:5% v/v) were included
and the resultant mixtures were heated at 95 ◦C for around one hour. Then, the solution
mixture was left to reach RT, quenched by adding ammonium iron sulfate (NH4Fe(SO4)2)
2% (w/v), and then heated for a further 2 h at 80 ◦C. The absorbance of the cooled mixture
was eventually quantified at 550 nm using an LT4500 reader. Based on a catechin calibration
curve (linear range: 10–100 µg/mL, y = 0024x − 0.020, R2 > 0.996), the total amount of
condensed tannins was calculated. The findings are presented as µg of catechin equivalents
per gram of dry fraction.

4.7. Total Monoterpenoid Content Assessment

A technique previously reported by Ghorai et al. [101] was modified to assess the
total monoterpenoid content. Namely, 200 µL of each extract (previously dissolved in
methanol; 1 mg/mL) was completely combined with 1.5 mL of chloroform before standing
for 3 min. Then, 100 µL of concentrated sulfuric acid was carefully added (under continuous
cooling) and the suspensions were kept protected from light for 2 h in an orbital shaker.
The formed precipitant was isolated, air-dried, and then dissolved in 95% (v/v) methanol.
With an LT4500 microplate reader, the absorbance was measured at 538 nm. Based on a
linalool calibration curve (linear range: 0–60 µM, y = 0.0050x + 0.0035, R2 > 0.994), the
total monoterpenoid content was calculated. The findings were given as µg of linalool
equivalents per g of dry fraction.

4.8. Total Soluble Sugar Content (TSSC) Assessment

The procedure used to assess the TSSC was modified somewhat from what had
previously been described [99]. In a nutshell, a mixture of equal volumes of each fraction
(separately) and concentrated sulfuric acid was shaken for half an hour at RT. The resulting
mixture was then heated at 90 ◦C for 5 min after 30 µL of 5% phenol was introduced to each
fraction. An LT4500 microplate reader was used to quantify the absorbance of the cooled
solutions at 490 nm. The mannose calibration curve, with a linear range of 0–100 nM and a
y = 0.021x + 0.019 R2 > 0.999, was used to compute the TSSC. The findings were given as
nmol of mannose equivalents per gram of dry fraction.

4.9. Total Soluble Protein Content (TSPC) Assessment

To calculate the TSPC, 50 mg of each dry fraction was taken up in distilled water and
vortexed extensively for 50 min. The BCA kit was used to measure the amount of protein
in the sample, and an LT4500 reader was employed to quantify the absorbance at 562 nm.
A standard curve for BSA (linear range: 0–2 mg/mL, y = 0.69x + 0.14 R2 > 0.995) was used
to determine the TSPC. The protein content was calculated as mg of protein per gram of
dry fraction.

4.10. Pigments Assessment

The total contents of chlorophyll-a and -b, lycopene, and β-carotene were assessed as
formerly reported [99]. The following formulas were applied to calculate each content (1)–(4).

Chlorophyll-a (µg/g of dry fraction) =
[
(0.999A663 − 0.0989A645)

20

]
(1)

Chlorophyll-b (µg/g of dry fraction) =
[
(1.77A663 − 0.328A645)

20

]
(2)

Lycopene (µg/g of dry fraction) =
[
(−0.0458A663 + 0.204A645 + 0.372A505 − 0.0806A453)

20

]
(3)



Plants 2023, 12, 1716 15 of 22

β-carotene (µg/g of dry fraction) =
[
(0.216A663 − 1.224A645 − 0.304A505 + 0.452A453)

20

]
(4)

The findings are provided as values of µg of pigment (chlorophyll-a or -b, lycopene,
or β-carotene) per gram of dry fraction.

4.11. Preparation of Standards and Samples

The stock solutions of the standards were made in methanol, except luteolin-7-O-
glucoside in an acetonitrile/water mixture (1:1); 2′-hydroxyflavanone, 5-methoxyflavanone
in a methanol/acetonitrile mixture (1:1); and apigenin, forsythoside-A, and verbascoside,
which were solubilized in aqueous methanol (70% v/v) at a 1000 ppm concentration. The
working solutions were created by adding ice-cold methanol to the respective standard
stock solutions. To reduce the auto-oxidation of polyphenols (mainly flavonoids), every
solution was kept darkened and shielded from light. Additionally, before application,
the stock, standard, and sample solutions were maintained at −20 ◦C. Prior to the UPLC-
ESI-MS/MS investigation, all solutions were subjected to membrane filtration (0.22 µm
cellulose nitrate).

4.12. UPLC and MS
4.12.1. Liquid Chromatography (LC) Conditions

We employed a Waters Acquity UPLC system (Waters Corp., Milford, MA, USA),
which included an autosampler chamber, two pumps, and a degasser. The chromato-
graphic separation was carried out using an ACQUITY UPLC BEH C18 (100 × 2.1 mm,
particle size: 1.7 µm) column, heated to 30 ◦C, and eluted as previously published by
Zhu et al. (2020), with some modifications [102]. In a nutshell, the mobile phase was
composed of acetonitrile (eluent A) and formic acid 0.1% (v/v) (eluent B) solution. With
a flowrate of 0.3 mL/min, linear gradient conditions of 5–100% A (0–4 min), 100–90% A
(4.0–4.1 min), 90%A (4.1–5 min), 90–5% A (5–5.01 min), and 5% A (5.1–6 min) were applied.
The autosampler was set to 4 ◦C and the injection volume was 10 µL.

4.12.2. MS/MS Conditions

A Xevo Triple Quatrable mass spectrometer detector (Waters Corp.) was employed
in the MS/MS studies. It was run in either positive or negative ionization mode. The
selected MRM mode was employed to perform the quantitative study. Prior to the sample
analysis, each standard underwent MS manual tuning to optimize the MRM conditions
at a concentration of 1 ppm (Tables 1 and 2, Figure 1). The following optimum tuning
parameters were used to obtain the highest signal levels: 3.0 kV; cone voltage: 36 V;
source temperature: 150 ◦C; disolvation temperature: 500 ◦C; source disolvating gas flow:
1000 L/h and gas flow: 20 L/h. High-purity nitrogen gas was utilized as the drying and
nebulizing gas, while ultra-high-purity argon was employed as a collision gas. MassLynx
software was employed for data collection and processing (version 4.1, Waters Co., Milford,
MA, USA).

4.12.3. Standardization of UPLC and MS Conditions

To optimize the experimental setting for the separation of the analytes and the produc-
tion of symmetrical signal peaks, a thorough adjustment of the key parameters pertaining
to the mobile phase, elution mode, flow rate, and stationary phase was carried out. Solvents
such as acetonitrile/water and methanol/water in a variety of ratios were explored to de-
termine the best mobile phase combination, but none of them produced symmetrical peaks
or allowed for efficient separation. The water was made acidic for this purpose by adding
formic acid at a concentration of 0.1% (v/v). The ionization of the analytes was assisted
by the substitution of water with formic acid, which also promoted the peak symmetry
and shape and enhanced the extract separation. The best separation with regard to the
stationary phase was accomplished on an ethylene-bridged hybrid (BHE) column heated to
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40 ◦C. The ESI was used in either negative or positive (ESI±) mode for the fragmentation
of polyphenolic substances.

4.12.4. Method Validation

The International Conference of Harmonization standards were followed [48]. For
each of the studied analytes, the parameters linearity, limits of detection (LOD) and quan-
tification (LOQ), precision, and accuracy were identified and assessed (Table S2). The
generated standard curves of the standards were plotted using a linear regression equation
of response peak areas as a function of various concentrations of compounds ranging from
0 to 500 ppb. All examined substances demonstrated good linearity, while their correlation
coefficients (R2) were >0.99 (Table S2). Lastly, the reproducibility of the analytical method-
ology by means of the percentage of recovery (Table S2) was assessed. In this connection,
each fraction of S. scardica was spiked with each standard solution of polyphenolic com-
pound. The findings of at least six repetitions were obtained from spike samples that were
generated in triplicate. According to the mathematical relation (5), where A is the final
quantity detected, A0 is the initial amount, and Aa is the added amount, the percentage of
recovery was calculated as follows:

% recovery = ((A − A0)/Aa) × 100% (5)

The precision and reproducibility of the aforementioned methodological approach
were demonstrated by the average recovery rates of all polyphenolic compounds detected,
which varied from 86.3% to 102.6%.

4.12.5. Linearity, Accuracy, and Precision of the Methodology

The LOD and LOQ values, which were computed using the signal-to-noise (S/N)
ratios, set at 3 and 10, respectively, were used to assess the specificity and selectivity
of the analytical process. For polyphenolic substances, the LOD and LOQ ranges were
0.56–109.9 ppb and 1.11–105.2 ppb, respectively. With regard to the values in Table S2, of all
the polyphenolic compounds listed, forsythoside-A had the lowest LOD and gallic acid had
the highest, indicating that forsythoside’s sensitivity to detection was significantly higher
than that of the other polyphenolic compounds that had been ionized under ESI. In con-
trast, luteolin-7-O-glucoside and 7-hydroxyflavanone were shown to have the maximum
sensitivity when ionized in ESI+ mode compared to the other compounds. By computing
the percentage of relative standard deviation (% RSD), it was then possible to assess how
comparable the different samples were to one another within the same uniform. Six repli-
cated samples of equal concentrations were examined within one day for their intraday
accuracy and within six consecutive days for their interday accuracy to calculate the % RSD.
In particular, the intra- and interday RSD findings for the polyphenolic chemicals ranged
from 0.38 to 4.15% (Table S2).

4.13. DPPH Free Radical Scavenging Assay

The antioxidant activity was assessed using the DPPH• assay in accordance with the
approach reported by Parejo et al., with slight changes, with the use of the stable radical
1,1-diphenyl,2- picrylhydrazyl (DPPH•) [51,103]. To assess the antioxidant potential of
all eight fractions, several extract concentrations were used. Briefly, 25 µL aliquots of the
diluted fractions were dissolved in 975 µL of the mother DPPH• solution (2 × 10−5 M in
methanol), respectively, then the mixtures were vortexed and the reaction mixtures were
left at RT. The absorbance was recorded at 517 nm at various time intervals using a UV–Vis
spectrophotometer. Finally, a reduction in absorbance was determined when the reaction
reached the maximum. The absorbance of the fractions in the absence of DPPH• was
subtracted from the corresponding absorbance with DPPH•. The calibration curve was
used to compute the concentration of DPPH• in the medium. The proportion of DPPH• still
present in the steady state for each fraction concentration examined was determined using
the formula below: percentage of remaining DPPH• = [DPPH•]at t=T/[DPPH•]at t=0, where
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T is the time required to attain a steady state. The quantity of extract required to reduce the
initial DPPH concentration by half was utilized to express the antioxidant capacity of each
fraction (EC50). The formula for calculating the antiradical efficiency (AE) is AE = 1/EC50.
Trolox was employed as a positive control.

4.14. Ferric-Reducing Antioxidant Power (FRAP) Assay

The FRAP assay was carried out using the approach used by Benzie et al. [104]. First,
200 mL properly diluted aliquots of each plant extract were mixed with 1800 mL of FRAP
solution. The FRAP solution was composed of 37.5 mL of 0.3 M acetate buffer (pH 3.6),
3.75 mL of 10 mM TPTZ in 40 mM hydrochloric acid, and 3.75 mL of 20 mM iron(III) chloride
solution. The mixtures were kept for 10 min at RT and the absorbance was quantified at
593 nm with a V-630 Jasco UV–Vis spectrophotometer. Using ascorbic acid and Trolox
standard curves, the antioxidant capacity was quantified as ascorbic acid equivalents (AAE
mol/g sample) and Trolox equivalent antioxidant capacity (TEAC mol/g sample).

4.15. Cell Culture

SH-SY5Y human neuroblastoma cells were supplied by ATCC (Manassas, VA, USA)
and were grown in Dulbecco’s modified Eagle’s medium complemented with 10% fetal
bovine serum, 5% horse serum, 2 mM glutamine, and 1% antibiotics (penicillin and strepto-
mycin). The cells were kept at 37 ◦C in a cell culture incubator under 5% CO2. The SH-SY5Y
cells were differentiated after supplementing their medium with 10 µM retinoic acid for
one week.

4.16. Dichlorofuoresence Diacetate (DCF-DA) Assay

The DCF-DA assay, in which DCF-DA is oxidized by reactive oxygen species (ROS)
to its fluorescent form dichlorofluorescein (DCF), was used to identify the presence of
intracellular ROS [105]. Here, 15,000 SH-SY5Y cells per well in a black clear-bottomed
96-well plate (SPL Life Sciences, Naechon-myeon, South Korea) were plated overnight, and
the next day they were treated with 20 µM of DCF-DA solution for 45 min in a humidified
incubator. Next, the cells were incubated with various SS fraction concentrations and 50 µM
of hydrogen peroxide for 1 h. The fluorescence intensities of each well were quantified at
535 nm in a Synergy H1 microplate reader (Biotek, VT, USA) using a 485 nm excitation
wavelength. Trolox was used as a standard antioxidant. Five independent experiments
were performed. The EC50 values were estimated online with the use of an EC50 calculator
made by AAT Bioquest [106].

4.17. Peptides Preparation

After the Aβ25–35 peptides were diluted in distilled water at a 1 mM concentration,
aggregation formation was enabled by incubating the solution at 37 ◦C for a week. Before
usage, the peptides were kept in aliquots and frozen at −20 ◦C.

4.18. MTT Assay

The MTT colorimetric assay was conducted to investigate the SH-SY5Y cell viability
after treatment with SS plant extracts, or Aβ25–35 peptides, or the combination of both
extracts and peptides [107]. First, 30,000 cells were placed in each well in clear 96-well
plates. The following day, the cells were treated with different concentrations of the
fractions, or 30 µM of Aβ25–35 peptides, or the combination of both for two days. Then, the
cells were treated with 45 µg/mL of thiazolyl blue tetrazolium bromide at 37 ◦C, and after
4 h the media was aspirated and 150 µL of DMSO was poured into every well to solubilize
the dark blue formazan crystals that were formed. The plate was agitated for 30 min on
an orbital shaker with foil covering it. Using a Synergy H1 reader, the absorbance was
quantified at 570 nm. After subtracting the blank reading, the absorbance of the treated
cells was determined as a percentage in relation to the control. Five separate experiments
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were performed. The EC50 values were estimated online with the use of an EC50 calculator
made by AAT Bioquest [106].

4.19. Statistical Analysis

The reported data are averages of n replicates with SD or SEM values. Using the
statistical software GraphPad Prism (version 9.3.1, GraphPad Software, San Diego, CA,
USA), a one-way analysis of variance followed by Dunnett’s test was employed to evaluate
the statistical importance of the variances between control and treated cells. Here, p < 0.05
was required for statistical significance.

5. Conclusions

Conclusively, we have demonstrated for the first time that SS extracts ameliorate
Aβ25–35 toxicity. Together with their antioxidant capacity, SS extracts may be useful for de-
veloping herbal drugs and functional food products or supplements that may alleviate AD.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants12081716/s1, Table S1: Multiple Reaction Monitoring con-
ditions for polyphenolic acids and flavonoids in UPLC-MS/MS analysis; Table S2: The limit of
detection (LOD), quantification (LOQ), linearity, precision, and accuracy results for the screened
polyphenolic compounds.
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76. Zduńska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant Properties of Ferulic Acid and Its Possible Application.
Ski. Pharmacol. Physiol. 2018, 31, 332–336. [CrossRef]

77. Vertuani, S.; Beghelli, E.; Scalambra, E.; Malisardi, G.; Copetti, S.; Toso, R.D.; Baldisserotto, A.; Manfredini, S. Activity and Stability
Studies of Verbascoside, a Novel Antioxidant, in Dermo-Cosmetic and Pharmaceutical Topical Formulations. Molecules 2011, 16,
7068–7080. [CrossRef]

78. Zheng, Y.-Z.; Deng, G.; Liang, Q.; Chen, D.-F.; Guo, R.; Lai, R.-C. Antioxidant Activity of Quercetin and Its Glucosides from
Propolis: A Theoretical Study. Sci. Rep. 2017, 7, 7543. [CrossRef]

79. Barchan, A.; Bakkali, M.; Arakrak, A.; Pagán, R.; Laglaoui, A. The effects of solvents polarity on the phenolic contents and
antioxidant activity of three Mentha species extracts. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 399–412.

80. Nawaz, H.; Shad, M.A.; Rehman, N.; Andaleeb, H.; Ullah, N. Effect of solvent polarity on extraction yield and antioxidant
properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Braz. J. Pharm. Sci. 2020, 56. [CrossRef]
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