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Abstract: The ability of rice to elongate coleoptiles under oxygen deprivation is a determinant of
anaerobic germination tolerance, critical for successful direct seeding. Most studies on anaerobic
coleoptile elongation have been performed under constant darkness or in flooded soils because a
drilling method was the primary approach for direct seeding of rice. However, aerial seeding is
becoming popular, in which seeds which land on flooded soils are exposed to light during the daytime.
Here, we investigated physiological mechanisms underlying anaerobic elongation of coleoptiles
under light and dark cycles. This study identified two novel varieties, LG and L202, enabling the
development of long coleoptiles under oxygen limitation, comparable to well-characterized varieties
with strong anaerobic germination tolerance. Germination experiments using these two tolerant and
two intolerant varieties, including Takanari and IR64, revealed that light and dark cycles increased
coleoptile length in LG, Takanari, and IR64 relative to constant darkness. Interestingly, even in
intolerant lines, dramatic starch breakdown and soluble carbohydrate accumulation occurred under
oxygen limitation. However, intolerant lines were more susceptible to a representative soluble sugar,
glucose, than tolerant lines under oxygen deprivation, suggesting that coleoptile growth can be
inhibited in intolerant lines due to hypersensitivity to soluble sugars accumulated in anaerobically
germinating seeds.

Keywords: anaerobic germination; coleoptile elongation; Oryza sativa; oxygen deprivation;
submergence; sugar sensitivity

1. Introduction

Direct seeding is an effective labor-saving approach for rice production, allowing
farmers to omit seedling culture and transplanting, the most labor-intensive steps. However,
direct seeding is not widespread in most rice-producing countries due to the lack of
anaerobic germination tolerance in their commonly grown cultivars. Anaerobic growth
of coleoptiles is a determinant for this tolerance because only coleoptiles can emerge and
elongate under submergence until the tip of this organ reaches near the water surface
containing more oxygen [1].

Mechanisms regulating anaerobic elongation of coleoptiles in rice have been inves-
tigated for several decades. It has been recognized that coleoptiles of rice seedlings ger-
minated under oxygen deprivation are stark white even in the light due to the absence
of protochlorophyllide and chlorophylls [2,3]. Thus, anaerobic growth of coleoptiles does
not rely on photosynthesis, and carbohydrate reserves in endosperms are the solo energy
sources supporting rapid coleoptile elongation. Unlike other cereals, rice can break down
starch into soluble carbohydrates in endosperms without oxygen, enabling this wetland
species to germinate under anoxia [4,5]. It was also shown that the degree of starch break-
down under oxygen deprivation positively correlated with the length of coleoptiles in
anaerobically germinating seeds of rice [6,7].
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Signaling cascades regulating starch catabolism during anaerobic germination have
been uncovered in rice. α-amylases are key enzymes degrading starch during anaerobic
germination, whose expression is directly regulated by MYELOBLASTOSIS SUCROSE 1
(MYBS1) transcription factor [8,9]. Physical interaction of MYBS1 with the α-amylase pro-
moter is activated through phosphorylation of MYBS1 by SUCROSE NONFERMENTING
1-RELATED PROTEIN KINASE 1A (SnRK1A) [10,11]. Protein accumulation of SnRK1A
is upregulated by CALCINEURIN B-LIKE PROTEIN-INTERACTING Ser/Thr PROTEIN
KINASE 15 (CIPK15), which is induced under sugar-starved and oxygen-depleted condi-
tions [11]. The nuclear localization of SnRK1A and subsequent starch degradation mediated
by MYBS1 are inhibited by hypoxia-inducible SnRK1A-INTERACTING NEGATIVE REG-
ULATOR 1 and 2 (SKIN1/2) [12]. MYBS1-mediated expression of α-amylases is also
suppressed by MYBS2, which competes with MYBS1 for promoter binding [13].

Genes and loci affecting anaerobic germination tolerance have also been identified by
quantitative trait locus (QTL) analysis in rice. Five QTLs positively affecting anaerobic germi-
nation tolerance were detected in a representative tolerant variety, Khao Hlan On [14]. Of these
QTLs, qAG-9-2 (AG1) with the most significant LOD score and phenotypic variance encoded
TREHALOSE-6-PHOSPHATE PHOSPHATASE 7 (TPP7), suppressing trehalose-6-phosphate
(T6P)-mediated inhibition of SnRK1A activity and starch degradation in anaerobically ger-
minating seeds [15]. Although the tolerant allele of TPP7 was identified in a japonica variety,
Khao Hlan On, a large-scale survey of temperate and tropical japonica accessions revealed
that polymorphisms and transcriptional variations of TPP7 are not associated with coleoptile
elongation under oxygen deprivation, suggesting that anaerobic germination tolerance can
also be regulated by TPP7-independent mechanisms [16]. Another strong QTL contributing
to anaerobic germination tolerance, qAG7.1 (AG2), was found in a highly tolerant variety
Ma-Zhan Red [17]. AG1 (TPP7) and AG2 were introgressed into multiple backgrounds, result-
ing in enhanced starch degradation, soluble sugar accumulation, and anaerobic germination
tolerance with no adverse effects on seed physiology [7,18]. Recently, a combination of
genome-wide association studies (GWAS) and post-GWAS analysis identified several genes
involved in anaerobic germination tolerance, one of which was CLASSY1 (CLSY1), a gene
involved in the RNA-directed DNA methylation pathway [19]. A mutation in CLSY1 altered
methylation profiles and subsequent gene expression patterns, leading to enhanced anaerobic
germination and seedling establishment under submergence.

These studies on anaerobic germination and coleoptile elongation have been per-
formed under constant darkness or flooded field conditions where seeds are buried in the
soil. This is because a drilling method in which light is not available during germination
was the primary approach for direct seeding of rice. However, aerial seeding, in which
seeds are broadcasted on flooded soils by aerial vehicles, is becoming popular due to better
weed control and lower exposure to animal pests [20,21]. In this method, seeds landed on
the soil surface are exposed to light during the daytime. Here, we evaluated the impact
of carbohydrate management and relevant hormones on anaerobic coleoptile elongation
in four rice varieties with contrasting tolerance to anaerobic germination under light and
dark cycles. This study provides new insight into the regulatory mechanisms underlying
anaerobic germination tolerance in rice when light is available.

2. Results
2.1. Screening of Rice Varieties Regarding Coleoptile Elongation under Oxygen Deprivation

The degree of coleoptile elongation under low oxygen has been used as an indicator
for anaerobic germination tolerance in rice [11,15]. To identify new tolerant varieties which
can serve as novel genetic resources for anaerobic germination studies, we compared
18 rice accessions in terms of coleoptile elongation under oxygen deprivation (Figure 1a).
Seeds were incubated in sealed glass vials filled with deoxygenated water under 12 h light
and 12 h dark cycles for 5 days. Of these varieties, LG formed the longest coleoptiles,
whereas IR64 had the shortest ones. The difference in coleoptile length between the two
genotypes was approximately five-fold. Restricted elongation of coleoptiles in IR64 and
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other genotypes with short coleoptiles may result from seed dormancy and slow shoot
elongation that can be observed even under non-stress (aerobic) conditions. To evaluate
these possibilities, the percent germination and shoot elongation of 18 rice accessions were
assessed under aerobic conditions. No genotypes appeared to be dormant (Figure S1). In
addition, varieties with the shortest coleoptiles under anaerobic conditions, such as IR64
and Takanari, formed longer shoots than most lines under aerobic conditions (Figure S2).
These data demonstrate that restricted elongation of coleoptiles under low oxygen in IR64
and Takanari is not attributable to seed dormancy and slow shoot elongation that can be
observed under aerobic conditions. Based on these results, we determined to utilize these
two varieties as intolerant lines in this study.
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Figure 1. The distinct capability of rice accessions for coleoptile elongation under oxygen deficiency.
(a) The coleoptile length of 18 rice varieties germinated under anaerobic conditions for 5 days under
12 h light and 12 h dark cycles. Data represent means ± SE (n = 15). Multiple comparisons of means
were performed using ANOVA followed by Fisher’s least significant difference (LSD) test. (b) Coleoptile
elongation under oxygen deprivation in well-studied tolerant varieties vs. tolerant ones characterized
in this study. Growth conditions used in (b) were identical to those in (a). Data represent means ± SE
(n = 20). Multiple comparisons of means were performed using ANOVA followed by Tukey’s honest
significant test. Bars not sharing the same letter are significantly different (p < 0.05).

Of the 18 accessions surveyed, LG and L202 showed the longest coleoptiles under
oxygen deprivation, selected as tolerant lines in this study. To discern whether this capa-
bility is comparable to that in well-characterized tolerant lines, we conducted anaerobic
germination tests using Khao Hlan On, Ma-Zhan Red, and Arroz da Terra [14,17,22] along
with our tolerant lines, LG and L202 (Figure 1b). Consistent with the result in Figure 1a,
coleoptile elongation under oxygen deprivation in LG was significantly greater than in
L202. The ability of LG and L202 for anoxic coleoptile elongation was equivalent to that in
the three well-characterized tolerant lines. The data indicate that LG and L202 identified in
this study can serve as new genetic resources for a mechanistic understanding and gene
discovery for anaerobic germination tolerance in rice.

2.2. Effect of Light on Coleoptile Elongation under Oxygen Deprivation

Most studies on anaerobic germination tolerance have been carried out under constant
darkness or field conditions in which seeds are buried in flooded soil. In this study,
germination experiments were performed under 12 h light and 12 h dark cycles because
seeds sown by aerial seeding receive light in flooded fields. To evaluate the influence of
light on anaerobic elongation of coleoptiles in rice, representative tolerant and intolerant
varieties were subjected to anaerobic germination experiments under light-dark cycles
and constant darkness (Figure 2). Tolerant lines, LG and L202, had longer coleoptiles than
intolerant lines, Takanari and IR64, under both conditions. Interestingly, coleoptile lengths
in LG, Takanari, and IR64 were longer under light and dark cycles than under constant
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darkness. In L202, coleoptile length was unaltered by changing light conditions. This result
indicates that light and dark cycles can positively affect coleoptile elongation under limited
oxygen, depending on varieties.
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(** p < 0.01, *** p < 0.001; t-test).

2.3. Effect of Growth-Promoting Hormones on Coleoptile Elongation under Oxygen Deprivation

Phytohormones are critical regulators of growth and adaptive responses to various
environmental conditions. For instance, ethylene performs a pivotal role in triggering stress
responses to submergence, including leaf elongation at the vegetative stage in rice [23,24].
Additionally, exogenous ethylene application promotes shoot elongation in rice seeds
germinating in the dark under aerobic conditions [25]. In our experimental system, the
gaseous hormone ethylene cannot be applied to germinating seeds in water. Therefore, the
immediate precursor of ethylene, 1-aminocyclopropane-1-carboxylate (ACC), was used
instead of ethylene (Figure 3a). ACC treatment did not affect shoot elongation under low
oxygen in either tolerant or intolerant genotypes.
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Figure 3. The effect of growth-promoting hormones on coleoptile elongation under oxygen depriva-
tion in rice varieties with and without anaerobic germination tolerance. Seeds were incubated under
12 h light and 12 h dark cycles for 5 days in deoxygenated water containing an ethylene precursor,
1-aminocyclopropane-1-carboxylate (ACC) (a), gibberellic acid (GA) (b), or a mixture of both (c).
Data represent means ± SE (n = 20). Asterisks indicate a significant difference between mock and
hormone-treated samples (* p < 0.05; t-test).
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Under aerobic conditions, gibberellins (GAs) promote seed germination and sub-
sequent shoot elongation in plants, including rice [26,27]. To discern the role of GA in
coleoptile elongation under oxygen deprivation, representative tolerant and intolerant
varieties were anaerobically germinated in deoxygenated water containing GA (Figure 2b).
Unlike aerobic germination, GA did not affect shoot elongation under low oxygen in
tolerant or intolerant genotypes.

Combined application of ACC and GA promoted the elongation of coleoptiles and
other shoot tissues in rice under submergence, relative to ACC and GA alone [28]. In this
system, mesocotyles, first leaves, second leaves, and coleoptiles elongated, whereas only
coleoptiles appeared in our system. These observations imply that the oxygen concentration
in their system is higher than in our system (1 ppm of oxygen). However, the combined
application of these growth-promoting hormones may also have a synergistic effect under
our growth conditions. To test this, we put these hormones in deoxygenated water and
conducted anaerobic germination experiments (Figure 3c). This analysis revealed that
the combined application of ACC and GA significantly promotes coleoptile elongation at
1 ppm of oxygen, even though the application of ACC and GA alone did not affect it.

2.4. Role of Starch Breakdown and Soluble Carbohydrate Accumulation in Coleoptile Elongation
under Oxygen Deprivation

Photosynthesis does not occur in anaerobically germinating seeds because protochloro-
phyllide and chlorophylls are absent, and carbon dioxide is not produced by respira-
tion [2,3]. Thus, seeds and seedlings are heterotrophic under anaerobic conditions, which
rely on carbohydrate reserves in endosperms for coleoptile growth. To monitor the levels
of starch breakdown and soluble carbohydrate accumulation in anaerobically germinating
seeds of tolerant and intolerant lines, carbohydrate assays were carried out (Figure 4).
The concentrations of starch are not distinct in tolerant and intolerant accessions on day 0
(Figure 4a). On day 3, the levels of starch dramatically reduced in all genotypes. The starch
breakdown in LG was more rapid than any others. On days 3 and 5, starch concentration
in tolerant L202 was similar to those in intolerant Takanari and IR64. Consistent with the
dramatic degradation of starch, the concentrations of total soluble carbohydrates were
markedly elevated in all genotypes (Figure 4b). On days 3 and 5, the levels of total soluble
carbohydrates in intolerant Takanari and IR64 were comparable to that in tolerant LG.

We also calculated the amount of starch and total soluble carbohydrates per seed
(Figure 4c,d) because these values can be critical traits influencing the degree of coleoptile
elongation under oxygen deprivation. Consistent with the fresh weight basis data, there
were no significant differences in the amount of starch per seed among the four genotypes
on day 0. LG also rapidly catabolized starch on day 3, relative to other accessions. Unlike
the fresh weight basis data, the amount of starch per seed in intolerant Takanari was
lower than that in tolerant L202 on day 5, suggesting that intensive breakdown of starch
occurred in the intolerant line. The amount of total soluble carbohydrates per seed was
also compared with the fresh weight basis data. The only difference is that the level of
total soluble carbohydrates was greater in Takanari than L202 on day 5 in the fresh weight
basis data, whereas these values were not significantly distinct in the per seed basis data.
Altogether, these results demonstrate that the dramatic breakdown of starch occurs in
anaerobically germinating seeds of both tolerant and intolerant accessions. It is most likely
that the level of starch degradation is not closely associated with the degree of anaerobic
coleoptile elongation under our growth conditions.
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Figure 4. Starch breakdown and soluble carbohydrate accumulation in anaerobically germinating
seeds. Seeds were incubated under 12 h light and 12 h dark cycles for up to 5 days under oxygen
deprivation. The concentrations of starch (a,c) and total soluble carbohydrates (b,d) in seeds or
seedlings were quantified on days 0, 3, and 5. In (a) and (c), the concentrations were calculated on a
per g fresh weight (FW) basis. In (b) and (d), the concentrations were determined on a per seed basis.
Data represent means ± SE (n = 3). Multiple comparisons of means were performed using ANOVA
followed by Tukey’s honest significant test. Bars not sharing the same letter are significantly different
at each time point (p < 0.05).

2.5. Effect of Exogenous Glucose on Coleoptile Elongation under Oxygen Deprivation

The ability of rice to germinate without oxygen depends on the capability of this
wetland species to degrade starch into soluble carbohydrates even in the absence of
oxygen [29,30]. In fact, upland crops, such as wheat and barley, are unable to germinate
under oxygen deprivation due to the failure of starch breakdown [4,5]. Not surprisingly,
the exogenous application of glucose to wheat seeds made it possible to germinate under
anoxia [31]. Although the substantial breakdown of stored starch occurred in anaerobically
germinating seeds of all four accessions (Figure 4a,c), the application of exogenous sugars
may differentially affect anaerobic coleoptile elongation among tolerant and intolerant
varieties. To evaluate this possibility, anaerobic germination tests were carried out by
supplementing deoxygenated water with glucose (Figure 5). Exogenous glucose at 5 mM
increased coleoptile elongation in tolerant LG, whereas it reduced coleoptile length in
intolerant Takanari. Applying 25 mM glucose did not affect coleoptile growth in tolerant
LG, but reduced coleoptile length in intolerant Takanari and IR64. No glucose effect was
observed in L202 at either concentration.
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Figure 5. The influence of exogenous glucose on coleoptile elongation under oxygen deprivation
in rice varieties with and without anaerobic germination tolerance. Seeds were incubated under
12 h light and 12 h dark cycles for 5 days in deoxygenated water containing 0 mM (mock), 5 mM,
and 25 mM glucose. Data represent means ± SE (n = 20). Asterisks indicate a significant difference
between mock and glucose-treated samples (** p < 0.01, *** p < 0.001; t-test).

2.6. Impact of Glucose Sensitivity on Coleoptile Elongation under Oxygen Deprivation

The application of exogenous glucose showed antithetical effects on anaerobic elon-
gation of coleoptiles in tolerant vs. intolerant lines. Excessive accumulation of glucose
within a germinating seed can lead to restricted elongation of the coleoptile because even
glucose, an energy resource, can inhibit plant growth when the concentrations reach toxic
levels [32–34]. In anaerobically germinating seeds, soluble carbohydrates were highly
accumulated in both tolerant and intolerant lines (Figure 4b,d), and glucose supplemen-
tation to these seeds can increase the internal concentrations of soluble sugars to toxic
levels. It can be expected that intolerant lines are more sensitive to glucose toxicity than
tolerant lines, thereby stunting coleoptile growth in intolerant lines. Based on these ob-
servations, we hypothesized that restricted elongation of coleoptiles in intolerant lines
could result from hypersensitivity to soluble sugars highly accumulated during anaerobic
germination. To test this hypothesis, endosperm-less seeds were subjected to germination
tests in deoxygenated water containing a physiological range of glucose concentrations
(Figure 6). This analysis used endosperm-less seeds because if intact seeds are used, varied
levels of endogenous glucose are accumulated in germinating seeds of the four accessions,
which makes it difficult to interpret the impact of glucose on anaerobic coleoptile growth
in each accession. In all genotypes, coleoptile growth was considerably repressed when
endosperms were removed, confirming that carbohydrates provided by endosperms are
vital for anaerobic germination. However, glucose supplementation increased coleoptile
growth in a dose-dependent manner until the concentrations reached 25 mM to 50 mM.
Notably, increased concentrations of glucose to 100 mM, 150 mM, and/or 200 mM reduced
coleoptile elongation, with more severe reductions in anaerobic germination intolerant
lines than tolerant lines. For example, in tolerant lines, such as LG and L202, coleoptile
lengths at 100 mM glucose were not significantly different from those at 25 mM or 50 mM.
In intolerant Takanari and IR64, however, the lengths at 100 mM glucose were significantly
lower than those at 25 mM and/or 50 mM glucose, indicating hypersensitivity to glucose
in intolerant lines.
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Figure 6. The impact of exogenous glucose on coleoptile elongation under oxygen deprivation in
endosperm-less seeds of rice varieties with and without anaerobic germination tolerance. The en-
dosperm of each seed was removed and incubated under 12 h light and 12 h dark cycles for 5 days in
deoxygenated water containing 0 mM (mock) to 200 mM glucose. Data represent means ± SE
(n = 20). Asterisks indicate a significant difference between two data sets indicated by a line
(* p < 0.05, ** p < 0.01, *** p < 0.001; t-test). nd, no significant difference.

To discern whether growth inhibition at high glucose concentrations did not result
from osmotic stress rather than glucose toxicity, mannitol was used as an osmotic control
(Figure 7). As a carbohydrate source for endosperm-less seeds, 50 mM glucose was added
to mannitol solutions. An application of glucose at 150 mM and/or 200 mM significantly
reduced coleoptile growth in all varieties relative to 50 mM glucose. Osmotic controls
for 150 mM and 200 mM glucose, which are a mixture of 50 mM glucose and 100 mM or
150 mM mannitol, did not affect coleoptile growth in the four genotypes. These results
indicate that growth inhibition observed at high glucose concentrations is not caused by
osmotic stress. In summary, the present study has demonstrated that rice varieties without
anaerobic germination tolerance are more susceptible to glucose toxicity than those with
anaerobic germination tolerance.
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Figure 7. Evaluation of the osmotic effect on glucose-induced suppression of coleoptile elongation
under oxygen deprivation in endosperm-less seeds of rice varieties with and without anaerobic
germination tolerance. The endosperm of each seed was removed and incubated under 12 h light
and 12 h dark cycles for 5 days in deoxygenated water containing glucose or glucose + mannitol.
Data represent means ± SE (n = 20). Asterisks indicate a significant difference between two data sets
indicated by a line (* p < 0.05, ** p < 0.01, *** p < 0.001; t-test). nd, no significant difference; G, glucose;
M, mannitol.

3. Discussion

This study identified new rice varieties that form long coleoptiles under oxygen depri-
vation, comparable to well-characterized cultivars with anaerobic germination tolerance,
such as Khao Hlan On, Ma-Zhan Red, and Arroz da Terra (Figure 1). These well-studied
varieties have been used as donor parents for QTL mapping, identifying the chromosomal
regions and genes affecting coleoptile elongation under low oxygen [14,15,17,22]. However,
due to the genetic complexity of this trait, identifying novel tolerant accession as addi-
tional genetic resources is still imperative, facilitating elucidation of the signaling networks
regulating anaerobic germination tolerance in rice.

This study has demonstrated that light and dark cycles increase coleoptile elongation
under oxygen deprivation in most rice varieties relative to constant darkness (Figure 2).
Under aerobic conditions, constant darkness induces etiolation, characterized by long and
thin leaves along with chlorosis, indicating that darkness increases shoot (leaf) elongation.
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Under anaerobic conditions, however, constant darkness reduced shoot (coleoptile) elonga-
tion as compared to light and dark cycles. Although elongated tissues (leaf vs. coleoptile)
are distinct under aerobic and anaerobic conditions, growth responses to constant darkness
differ depending on oxygen availability. Further studies are required to elucidate the role
of long coleoptiles in low-oxygen adaptation in the light and its regulatory mechanisms.

Ethylene and GA are key hormones stimulating shoot elongation under submergence
in rice [35]. The present study showed that the application of ACC, an ethylene precursor,
and GA alone did not alter coleoptile length of all four varieties under oxygen limitation
(Figure 3). The effect of these hormones on coleoptile growth may depend on oxygen
concentrations. Indeed, it was shown that ethylene and GA enhanced coleoptile elongation
in rice under hypoxia, but not under anoxia [36,37]. It is also anticipated that ethylene
performs a positive role in coleoptile elongation when it reaches relatively more aerated
layers of floodwaters [6]. Our anaerobic germination system contained approximately
1 ppm of oxygen, which was insufficient for ethylene or GA response. However, the
combined application of ACC and GA increased coleoptile elongation even at 1 ppm
of oxygen, suggesting that their synergistic effect can augment responsiveness to these
hormones under anoxia. Specific processes and members in ethylene and GA signaling
pathways can be expected to require oxygen to be functional.

The levels of starch breakdown and soluble carbohydrate accumulation under oxygen
deprivation positively correlated with the length of coleoptiles in anaerobically germinated
seeds of rice [6,7]. However, in the present study, the degree of starch breakdown in toler-
ant L202 was similar to or even lower than in intolerant Takanari and IR64 (Figure 4a,c).
Moreover, the level of soluble carbohydrate accumulation in tolerant L202 was comparable
to or even lower than that in the two intolerant lines (Figure 4b,d). These data indicate that
restricted elongation of coleoptiles in intolerant accessions does not result from limited
starch hydrolysis under oxygen deprivation. Ethylene and GA increase coleoptile elonga-
tion of rice under hypoxia, but not under anoxia [36,37]. Similarly, it is possible that the
degree of starch breakdown and soluble carbohydrate accumulation is not a limiting factor
for coleoptile elongation under anoxia. In fact, the studies showing the positive correlation
between starch breakdown and coleoptile growth were performed under hypoxia [6,7],
whereas our experiments were carried out at 1 ppm of oxygen, which is considered anoxia.
These observations suggest that regulatory mechanisms underlying coleoptile elongation
under hypoxia are not identical to those under anoxia.

As the degree of starch degradation was not associated with anaerobic elongation
of coleoptiles in our system, we evaluated the potential impact of soluble carbohydrates
highly accumulated within a seedling. To test this, endosperm-less seeds were incubated in
deoxygenated water containing a representative soluble sugar, glucose (Figure 6). In all
genotypes, low glucose concentrations promoted coleoptile growth, but excessive glucose
led to stunted growth, with higher sensitivity to glucose in intolerant than tolerant lines.
Osmotic control experiments confirmed that glucose-mediated inhibition of coleoptile
growth did not result from osmotic stress (Figure 7). These results suggest that restricted
elongation of coleoptiles under oxygen deprivation in intolerant varieties can be attributed
to hypersensitivity to soluble sugars accumulated during anaerobic germination.

Previous studies revealed the CIPK15-SnRK1A-MYBS1 cascade, the central mechanism
modulating starch degradation and ethanolic fermentation under low oxygen, necessary
for anaerobic coleoptile elongation in rice [11,21]. An anaerobic germination regulator,
TPP7, is expected to stimulate this cascade through dephosphorylation of T6P, an inhibitor
of SnRK1A [15]. Importantly, the activation of the CIPK15-SnRK1A-MYBS1 pathway under
oxygen deprivation depends on sugar starvation; supplementation of sucrose deactivates
this cascade even under low oxygen [11]. As sugar starvation did not occur in our system,
it is most likely that the CIPK15-SnRK1A-MYBS1 cascade is not involved in the regulation
of anaerobic coleoptile elongation in the four rice varieties. In the case where soluble sugars
are highly accumulated, as observed in this study, sensitivity to soluble sugars, such as
glucose, can be a regulatory factor for anaerobic growth of coleoptiles in rice. Further
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studies on genes controlling soluble sugar sensitivity are required to elucidate molecular
mechanisms underlying anaerobic germination tolerance in rice.

4. Conclusions

Coleoptile growth under oxygen deprivation is a critical trait influencing anaerobic
germination tolerance in rice. Most studies on anaerobic coleoptile growth have been
performed under constant darkness because a drilling method was standard practice
for direct seeding of rice. However, aerial seeding is gaining popularity, in which seeds
are exposed to light on flooded soils during the daytime. Therefore, the present study
investigated physiological mechanisms underlying anaerobic coleoptile growth under light
and dark cycles. This study has found novel rice accessions, LG and L202, with the ability
to develop long coleoptiles under oxygen deprivation, equivalent to well-characterized
anaerobic germination tolerant lines. Germination experiments using these two tolerant
and two intolerant lines, Takanari and IR64, have demonstrated that light and dark cycles
enhance anaerobic coleoptile growth in LG, Takanari, and IR64 compared with constant
darkness. Restricted elongation of coleoptiles in intolerant lines was not attributable to
limited starch breakdown and soluble sugar accumulation under anaerobic conditions.
Instead, stunted coleoptile growth in intolerant lines is likely to result from hypersensitivity
to soluble sugars accumulated within anaerobically germinating seeds. Rice varieties
with long coleoptiles under oxygen deprivation seem more tolerant to sugar toxicity than
those with short coleoptiles, enabling vigorous coleoptile growth at high concentrations of
soluble sugars.

5. Materials and Methods
5.1. Plant Materials and Growth Conditions

This study used 21 varieties of Oryza sativa L. Seeds were surface sterilized in 3% (w/v)
sodium hypochlorite and 0.1% (v/v) Tween-20 for 10 min and rinsed thoroughly with water.
Sterilized seeds were immersed in water; only seeds that sank immediately were used for
analyses. For anaerobic germination, sterilized seeds were placed in a glass vial (35 mm
diameter × 78 mm), which was slowly filled with deoxygenated water (approximately
1 ppm of oxygen) and closed with an air-tight cap. Deoxygenated water was obtained
by bubbling nitrogen gas into a 2 L cylinder filled with deionized water for 1 h. Seeds
were incubated for up to 5 days at 28 ◦C under 12 h light (270 µmol/m2/s) and 12 h dark
cycles or under constant darkness. For endosperm-less seed experiments, dehulled seeds
were surface sterilized in the solution mentioned above for 5 min and rinsed thoroughly
with water. The endosperm of each seed was removed using a scalpel blade under a
dissecting microscope, and endosperm-less seeds were subsequently subjected to anaerobic
germination as described above.

5.2. Hormone and Carbohydrate Treatments

Hormones and carbohydrates were resolved in submergence water before bubbling
nitrogen gas. Dimethyl sulfoxide (DMSO) was used to resolve gibberellin (GA3). Mock
solutions for GA and ACC + GA treatments contain 0.001% (v/v) DMSO. ACC, glucose,
and mannitol were resolved in deionized water. After deoxygenation, these solutions were
used as submergence water for anaerobic germination.

5.3. Carbohydrate Assays

Total soluble carbohydrates and starch were quantified using the methods of [38].
Seedling tissue (30 mg) was homogenized in 1 mL of deionized water and incubated at
80 ◦C for 20 min. Following centrifugation, the supernatant was collected in a new tube.
This procedure was repeated twice more, and the three extracts were pooled. The mixed
extract was used to quantify total soluble carbohydrates by the anthrone method. The
extract (25 µL) was added to 1 mL of 0.14% (w/v) anthrone solution in 100% sulfuric
acid, and the mixture was incubated at 100 ◦C for 20 min. After cooling, A620 of the
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solution was measured with a spectrophotometer. For starch, the water-insoluble fraction
was resuspended in 1 mL of water containing 10 units of heat-resistant α-amylase and
incubated at 95 ◦C for 30 min. After cooling, the suspension was mixed with 25 µL of 1 M
sodium citrate (pH 4.8) and 5 units of amyloglucosidase. Following incubation at 55 ◦C
for 1 h, the mixture was centrifuged for 30 min, and the supernatant (10 µL) was used to
quantify glucose by the anthrone method. Glucose was used as a standard for total soluble
carbohydrate and starch assays.

5.4. Statistical Analyses

Statistical analyses were conducted using IBM SPSS Statistics 23 and R version 4.0.3.
Student’s t-test was performed to compare two datasets. For multiple mean comparisons,
ANOVA with Fisher’s least significant difference test or Tukey’s honest significant test was
carried out.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/plants12071565/s1, Figure S1: Percent germination of
18 rice genotypes under non-stress conditions.; Figure S2: Shoot length of 18 rice varieties germinated
under anaerobic conditions.
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