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Abstract: The aim of this research was to identify and quantify biologically active compounds from
avocado (Persea americana L.) seeds (AS) utilizing different techniques with the use of ultrasound (US),
ethanol (EtOH), and supercritical carbon dioxide (scCO2) for possible applications in (bio)medicine,
pharmaceutical, cosmetic, or other relevant industries. Initially, a study of the process efficiency
(η) was carried out, which revealed yields in the range of 2.96–12.11 wt%. The sample obtained
using scCO2 was found to be the richest in total phenols (TPC) and total proteins (PC), while the
sample obtained with the use of EtOH resulted in the highest content of proanthocyanidins (PAC).
Phytochemical screening of AS samples, quantified by the HPLC method, indicated the presence of
14 specific phenolic compounds. In addition, the activity of the selected enzymes (cellulase, lipase,
peroxidase, polyphenol oxidase, protease, transglutaminase, and superoxide dismutase) was quanti-
fied for the first time in the samples from AS. Using DPPH radical scavenging activity, the highest
antioxidant potential (67.49%) was detected in the sample obtained with EtOH. The antimicrobial
activity was studied using disc diffusion method against 15 microorganisms. Additionally, for the
first time, the antimicrobial effectiveness of AS extract was quantified by determination of microbial
growth-inhibition rates (MGIRs) at different concentrations of AS extract against three strains of
Gram-negative (Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas fluorescens) bacteria, three
strains of Gram-positive (Bacillus cereus, Staphylococcus aureus, and Streptococcus pyogenes) bacteria,
and fungi (Candida albicans). MGIRs and minimal inhibitory concentration (MIC90) values were
determined after 8 and 24 h of incubation, thus enabling the screening of antimicrobial efficacy for
possible further applications of AS extracts as antimicrobial agents in (bio)medicine, pharmaceutical,
cosmetic, or other industries. For example, the lowest MIC90 value was determined for B. cereus after
8 h of incubation in the case of UE and SFE extracts (70 µg/mL), indicating an outstanding result and
the potential of AS extracts, as the MIC values for B. cereus have not been investigated so far.

Keywords: avocado seed; Persea americana; HPLC; phenolic compounds; enzymatic activity;
phytochemistry; antioxidant; antimicrobial activity

1. Introduction

Avocado (Persea americana L.) is a nutritious tropical fruit belonging to the Lauraceae
family and is known also as alligator pear. Due to its taste and texture and medicinal and
nutritional properties, avocado has become indispensable on menus around the world,
which has increased its production over the last decade. Its higher direct consumption and
industrial processing is reflected in its fastest and highest production growth in 2020 and
in previous years among tropical fruits, especially for the most popular Hass variety [1].
Accordingly, avocado seeds (AS), which are underutilized as inedible part and therefore
discarded, can account for up to 26% of the total fruit weight [2] and represent large
amounts of waste biomass but are, on the other hand, an inexpensive alternative source of
potential bioactive compounds that remain unrecovered.
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In addition to the exceptional nutritional quality of avocado fruits, the chemical profile
of various AS extracts comprises a high content of phytochemicals exhibiting a variety
of biological activities. These include polyphenols, triterpenoids, acetogenins, fatty acids,
and other compounds that have resulted in various properties and are beneficial to health
because of their antihypertensive, antimicrobial, antioxidant, larvicidal, and hypolipidemic
activity [3–5]. For example, aqueous AS extract showed a reduction in low-density lipopro-
tein cholesterol, total cholesterol, and triglycerides levels in hypertensive rats and also
reduced their blood pressure [6], while aqueous AS extract reduced hyperglycemia in adult
male rabbits [7]. AS extracts are also promising in the management of diabetes mellitus,
as blood glucose levels in rats were significantly decreased because of antihyperglycemic
and hypoglycemic activities [8], and inhibitory activities on some type 2 diabetes enzymes
(α-glucosidase and α-amylase) have been also demonstrated [9]. Additionally, avocado
leaves and seeds are also used in traditional medicine for the management of Alzheimer’s
disease, which was also supported by an in vitro study that showed antioxidant and anti-
cholinesterase activities [10]. The in vitro cytotoxic properties of AS against divergent types
of cancer cell lines have also been reported in the literature [11–13] and have been examined
in preclinical animal models [14].

For retrieval of the mentioned phytochemicals and biologically active substances from
AS, mainly traditional and conventional methods have been used, including maceration,
Soxhlet extraction (SE), and steam distillation, as these methods are easy to use and are well
established. Nevertheless, these methods are time-consuming, require large amounts of
organic solvents, and operate at high temperatures. Consequently, this leads to higher emis-
sions of volatile organic solvents, can result in degradation of thermo-labile compounds,
and significantly reduce the biological activity of the obtained active ingredients [15]. These
shortcomings have recently prompted studies of more efficient, advanced, and green ex-
traction techniques including ultrasonic (UE) [16], enzyme-assisted [17], cold-pressed [18],
microwave [19], and supercritical fluid (SFE) extraction [20,21].

Among the above-mentioned extraction techniques, UE is one of the emerging meth-
ods, as it often provides a high extraction yield, uses mild temperatures, and is simple
and inexpensive. Due to the frequency of ultrasonic irradiation, vibration occurs between
matrix molecules, which leads to cavitation and, consequently, by creating macroturbu-
lences and high-velocity inner-particle collisions, to easier leaching of bioactive compounds
from the plant matrix into the solvent [22]. On the other hand, SFE with carbon dioxide
(scCO2) as a solvent provides separation at near-ambient temperatures, therefore mini-
mizing the degradation of thermo-labile compounds. Moreover, due to its green process
(e.g., solvent-free products, short extraction time, low operating temperature, high extract
quality, environmental friendliness, simplicity, etc.) and the great characteristics of scCO2
(e.g., innocuous to environment and human health, non-toxicity, mild critical temperature,
low critical pressure, non-flammability, odorless nature, prevent extract oxidation, easily
volatilized, etc.), it is one of the most promising techniques in the recovery of pure and
clean extracts with bioactive compounds that can be used in biomedicine and for cosmetics,
pharmaceutical products, nutraceuticals, and functional food [22,23]. It should be noted
that a very limited number of studies using SFE for extraction of biologically active com-
pounds from AS has been found in the literature. Hence, this investigation focuses on
phytochemicals and bioactive compounds derived from AS and compares well-established
UE and SE to the sustainable extraction method of SFE, which has never been done before.
The findings of this study present useful information and tools, as avocado by-products
from industrial processing could be used to generate a functional, high-value-added prod-
uct with biological activity through efficient, feasible, and sustainable extraction processes.

The content of bioactive compounds and overall yield are vigorously influenced by
the method of extraction and by the choice of solvent. Therefore, the presented research
emphasizes the comparison of different extraction techniques (UE, SE, and SFE), process
conditions (temperature and time), and solvents (H2O, EtOH, and CO2 with EtOH as co-
solvent) used on the production yield of phytochemicals and high-value-added bioactive
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compounds such as phenols (TPC), proanthocyanidins (PAC), proteins (PC), and specific
polyphenols (i.e., flavonoids and phenolic acids) in the AS extracts. A major contribution
and the importance of our research is in the comparison of SFE results with the results
obtained from the remaining, more widely used extraction methods, namely UE and SE.
To the best of our knowledge, and after reviewing the literature, the content of certain
polyphenols in SFE AS extracts has not yet been reported. This is also the first study in
which various enzymatic activities (α-amylase, cellulase, lipase, peroxidase, protease and
transglutaminase, polyphenol oxidase, and superoxide dismutase) have been determined in
UE, SE, and SFE AS extracts and compared. In addition to the various enzymatic activities,
the antioxidant and antimicrobial activity of UE, SE, and SFE extracts were also evaluated
and compared. Antimicrobial activity was determined against 15 microorganisms including
Gram-negative, Gram-positive bacteria, and fungi. Additionally, the antimicrobial activity
of the extracts was quantified after 8 and 24 h of incubation by determination of microbial
growth-inhibition rates (MGIRs) at five different concentrations and by determination of
MIC90 value, which, to the best of our knowledge, has not yet been so thoroughly studied.
Our study provides a comprehensive insight and new information on the recovery of
bioactive compounds from AS, which could be potentially used in cosmetics, functional
food, nutraceuticals, pharmaceutical products, and (bio)medicine.

2. Results and Discussion
2.1. Effect of Changing Solvent and Techniques on Process Efficiency

The results in Figure 1 represent the extraction yield and thus indicate the efficiency
of the performed AS extractions using three different methods (UE, SE, and SFE). UE
provided the highest yield with 12.11%, followed by SE (9.88%) and SFE (2.96%). There
was also a statistically significant difference between extraction yields as determined by
one-way ANOVA. A Tukey’s post hoc test revealed that the extraction yield was statistically
significantly lower using SFE (p < 0.001) as the extraction method compared to UE and SE.
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Figure 1. Extraction yields (η) obtained by ultrasonic extraction (UE; solvent H2O), Soxhlet extraction
(SE; solvent EtOH), and supercritical fluid extraction (SFE; solvent scCO2, co-solvent EtOH) of
avocado seed (AS).

The explanation lies in the use of different solvents in the extractions. H2O, which
was used in UE, is the most polar solvent. Following in polarity is EtOH, used in SE. CO2
in SFE is non-polar, and therefore, EtOH was added as a co-solvent, which increases its
polarity and thus enables better solubility and isolation of more polar phytochemicals such
as polyphenols. Additionally, grinding the AS before the extraction processes allowed
the reduction of particle size and increased the surface area, which contributed to higher
extract diffusion (and consequently higher η) during the extraction process. Tan and
colleagues [24] recently performed aqueous UE and achieved a 15.13% yield. SE with EtOH
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and SFE with EtOH as co-solvent was performed by Páramos et al. [21]. The study revealed
that among the solvents, EtOH provided the best yield with SE (8.2–10.3%), while in SFE,
the addition of EtOH as a co-solvent allowed yields from 1.9 to 6.9%. The higher yields of
SE are mainly due to the longer extraction time and the greater amount of the more polar
solvent used, which otherwise speaks in favor of SFE, leading to lower energy and material
consumptions. According of the reviewed literature, a small number of studies reported
on the extraction of biologically active compounds from AS using SFE, and even fewer
reported extraction yields. The before-mentioned research by Páramos et al. [21] studied
the influence of temperature and pressure, as main operating variables, on extraction
efficiency. The highest extraction yield (6.9%) was achieved at 250 bar and 80 ◦C. Recently,
Restrepo-Serna et al. [25] reported on a biorefinery approach for valorization of AS through
SFE. SFE was conducted at 80 ◦C and 250 bar, and the yield of AS extract amounted to
0.12 g/g of raw material. On the other hand, Wang et al. [26] performed SFE at 50 ◦C and
250 bar using only CO2 as solvent and achieved a yield of 1.61%. On that account, the
choice of using EtOH as a co-solvent turned out to be favorable. Hereafter, to increase the
efficiency of SFE itself, it would be necessary to optimize important variables (operating
conditions) in the process.

2.2. Presence of Phytochemicals in AS Samples

The AS extracts were subjected to a phytochemical screening using various well-
known standard qualitative methods. The results are shown in Table 1.

Table 1. Screening for various phytochemicals in AS extracts obtained by ultrasonic extraction (UE;
solvent H2O), Soxhlet extraction (SE; solvent EtOH), and supercritical fluid extraction (SFE; solvent
scCO2, co-solvent EtOH).

Phytochemicals UE (H2O) SE (EtOH) SFE (scCO2 + EtOH)

Alkaloids + + +
Anthocyanins ++ + -

Anthraquinones - - -
Carbohydrates - - -

Cardiac glycosides - - -
Coumarins + ++ -
Emodins - - -

Flavonoids + + +
Phenolic compounds + + +

Phlobatannins - - -
Saponins + +++ ++
Steroids ++ ++ +
Tannins - - -

Terpenoids + + ++
Quinones ++ +++ +

The presence of phytochemicals is denoted by + (low amount), ++ (moderate amount), and +++ (abundant
amount) and the absence by -.

It is important to highlight that alkaloids, flavonoids, phenolic compounds, saponins,
steroids, terpenoids, and quinones were present in all three types of extracts. The research
showed the absence of anthraquinones, carbohydrates, cardiac glycosides, emodins, phlo-
batannins, and tannins. Anthocyanins and coumarins were present in the UE and SE
extracts, while they were absent in the SFE extract, which can be justified by explaining
the polarity of the solvents used in the extraction process. Anthocyanins are known as
water-soluble flavonoids [27] and were not extracted by SFE most likely due to the lower
polarity of scCO2 and EtOH solvent mixtures. Coumarins are well soluble in EtOH and
slightly soluble in H2O, while the solubility of scCO2 depends on the variables in the
extraction process itself (operating pressure and temperature) [28,29], and therefore, it is
possible that they were not extracted under the applied operating conditions.
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No phytochemical screening on SFE avocado seed extracts was detected in the reviewed
literature, which means that this study is the first to provide additional insight into a more
modern, green, and unconventional technique for extracting phytochemicals from AS. On the
other hand, quite a few studies [30–33] with a preliminary screening of phytochemicals in AS
extracts obtained by conventional extractions have already been published, but the results
themselves are difficult to compare due to the different extraction methods, conditions, and
solvents used. For example, Rivai et al. [34] found the presence of tannins and the absence
of flavonoids, terpenoids, saponins, and steroids in EtOH and H2O extracts of AS, which
is inconsistent with results in the presented study. On the contrary, Oboh et al. [10] found
the presence of alkaloids, saponins, and terpenoids and the absence of anthraquinones and
phlobatannins in the aqueous extract, which is in line with the presented results. Here, it
is necessary to emphasize, however, that the chemical profile, the content, and activities of
biological compounds from AS may differ due to the influence of the variety, origin, season,
maturity, growth, post-harvest, and environmental conditions [35].

2.3. Content of Total Phenols, Proanthocyanidins, and Total Proteins in AS Samples

As seen in the previous subsection, the presence of phytochemicals in AS extracts,
the method, and the solvent used greatly affected both the extraction efficiency and the
successful extraction of various phytochemicals. Accordingly, a quantitative investiga-
tion of the content of TPC, PAC, and PC of the examined AS extracts was carried out.
The results of the study are presented in Figure 2.
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Figure 2. Content of total phenols (TPC), proanthocyanidins (PAC), and total proteins (PC) in AS
extracts obtained by ultrasonic extraction (UE; solvent H2O), Soxhlet extraction (SE; solvent EtOH),
and supercritical fluid extraction (SFE; solvent scCO2, co-solvent EtOH).

TPC obtained with SFE was the highest among all extracts and amounted to 36.01 mg
GAE/g of extract. Compared to SFE, TPC with UE (6.31 mg GAE/g) was almost six times
lower, while TPC with SE (15.91 mg GAE/g) was almost two times lower than SFE. In the
reviewed literature, the TPC values for AS extracts ranged up to 146.60 mg GAE/g with
UE using hydroalcoholic mixtures as solvents [36], while no TPC values were detected in
the reviewed literature using only H2O as a solvent. Segovia et al. [37] demonstrated that
ultrasonic power and temperature have a huge impact on the extraction of polyphenols
with H2O as solvent, as with the increase of the mentioned parameters, the TPC should
also be enhanced. Therefore, it is likely that the UE efficiency of the present study is lower
due to the low operating temperature (20 ◦C), and with more optimal conditions (higher
operating temperature), the UE yield of AS extracts could be increased. With SE using
EtOH as solvent, the TPC values ranged between 19.87–29.92 mg GAE/g [21,38], while
with SFE, the TPC values reached up to 51.36 mg GAE/g [21]. Hence, the lower TPC
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value for SE compared to SFE is also justified, as SE needs higher operating temperatures
to improve solvent solubility and to reduce its viscosity and surface tension, while high
temperatures can lead to degradation of certain phenolic compounds and therefore lower
TPC. On the other hand, low viscosity and near-zero surface tension allow scCO2 to easily
penetrate the matrix material to extract phenolic compounds. Additionally, Kruskal–Wallis
H test showed that there was a statistically significant difference between TPC prepared
by different extraction methods. A post hoc Dunn–Bonferroni test revealed that there
was statistically higher content of TPC present in extract obtained by SFE compared to
SE and UE.

Hereafter, PACs were determined in AS extracts. The experiments showed that the
PAC value was the lowest in the SFE extract (2.84 mg/g), followed by the UE extraction
(24.67 mg/g). The highest PAC value, 32.13 mg/g, was detected in the AS extract obtained
with SE. After a thorough review of the already-published literature, it was found that the
PAC value was not quantitatively determined comparatively in AS extracts. Only a study
by Noorul et al. [39] determined PAC using the vanillin-H2SO4 protocol in AS extracts ob-
tained by SE. The EtOH extract showed 13.70 µg catechin/mL and the H2O extract 9.30 µg
catechin/mL. PACs are phytochemicals with added value, as their health aspects (e.g.,
antimicrobial, antioxidant, anticancer, antidiabetic, and neuroprotective activities) have
been validated [40,41]. The mentioned results of the presented study are important data
for potential further applications of AS extracts in biomedicine, pharmaceutical products,
cosmetics, functional food, and nutraceuticals. Additionally, PC in AS extracts was exam-
ined. The highest PC value is contained in the SFE extract (16.10 mg/g), followed by the
UE extract (12.43 mg/g) and finally the SE extract (11.74 mg/g). In the reviewed literature,
quantitatively determined PC was not detected in AS extracts, but in some studies [42–44],
proximate composition analyses were performed, where PC values reached up to 23.0%.
The use of scCO2 affects the AS cells by damaging the cell walls, which results in the release
of intracellular materials. Consequently, intracellular proteins contribute to PC [45], which
explains the higher content in the SFE extract. Regarding content of PAC and PC, there was
also a statistically significant difference using different extraction methods.

2.4. Content of Certain Phenolic Compounds in AS Samples

A comprehensive analytical characterization of certain phenolic compounds was
performed in AS extracts. The HPLC allowed effective and rapid separation and identifi-
cation of 14 divergent phenolic compounds based on comparison of retention times with
corresponding standards. The content of three flavonoids (epicatechin, hesperidin, and
quercetin), ten phenolic acids (benzoic acid, 2,3-dihydroxy benzoic acid, 4-hydroxy benzoic
acid, caffeic acid, chlorogenic acid, cinnamic acid, p-coumaric acid, ferulic acid, gallic acid,
and salicylic acid) and vanillin was determined in UE, SE, and SFE extracts of AS, which
are presented in Table 2.

Regarding the flavonoids in AS extracts, the common fact between the UE and SE ex-
tracts is that hesperidin predominated (118.10–226.78 mg/100 g DW), while its content was
lower in the SFE extract (9.37 mg/100 g DW). In comparison, hesperidin was also detected by
Zaki et al. [46], but its content was much higher in peel extracts (up to 61.94 mg/100 g DW) than
in seed extracts (up to 2.62 mg/100 g DW). However, the presence of quercetin was found in the
SFE extract (58.07 mg/100 g DW), while it was not detectable in the remaining extracts. In the
reviewed literature, different quercetin contents in AS extracts are reported, ranging from 0.07 to
88.18 mg/100 g [5,19,46–48]. Since epicatechin is a building block of proanthocyanidins, whose
total content was high, especially in the UE extract, it was unambiguously identified in all AS
extracts (15.56–39.20 mg/100 g DW) by comparing the retention time with that of the standards.
It has also been confirmed many times in similar AS extracts in the reviewed literature [5,16],
up to a content of 2.91 mg/100 g DW.
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Table 2. Content of certain phenolic compounds in AS extracts obtained by HPLC after ultrasonic
extraction (UE; solvent H2O), Soxhlet extraction (SE; solvent EtOH), and supercritical fluid extraction
(SFE; solvent scCO2, co-solvent EtOH).

Content (mganalyte/100 gDW ± SD)

UE (H2O) SE (EtOH) SFE (scCO2 + EtOH)

Flavonoids
(-)-Epicatechin 39.20 ± 0.68 a 15.56 ± 0.02 b 18.26 ± 0.06 b

Hesperidin 118.10 ± 1.51 a 226.78 ± 2.39 a 9.37 ± 0.85 b

Quercetin - - 58.07 ± 1.72

Phenolic acids

Benzoic acid 4.73 ± 0.17 - -
2,3-dihydroxybenzoic

acid 106.48 ± 1.80 a 34.26 ± 0.27 b 14.42 ± 0.14 c

4-hydroxybenzoic acid 15.41 ± 0.19 a 7.74 ± 0.10 b 3.47 ± 0.11 b

Caffeic acid - - 5.92 ± 0.05
Chlorogenic acid 9.36 ± 0.81 a 2.24 ± 0.55 b 0.73 ± 0.12 b

Cinnamic acid 34.36 ± 0.65 a 11.33 ± 0.22 b 13.06 ± 0.43 b

p-Coumaric acid 3.23 ± 0.05 a 6.26 ± 0.06 b 3.25 ± 0.06 a

Ferulic acid 4.97 ± 0.11 a 6.86 ± 0.26 a -
Gallic acid 3.08 ± 0.35 a - 3.99 ± 0.20 a

Salicylic acid - 15.15 ± 0.56 a 1.56 ± 0.18 b

Other o-Vanillin 55.02 ± 1.31 a 24.85 ± 1.11 a 45.89 ± 2.78 a

Total content of analyzed phenolic compounds 393.94 ± 7.63 351.03 ± 5.54 177.99 ± 6.70

Each value represents mean of three replicates ± SD. Different letters in the same row indicate significant difference
(p < 0.05).

When comparing the presence of valuable phenolic acids in AS extracts,
2,3-dihydroxybenzoic acid (also known as pyrocatechuic acid) content was the highest
(14.42–106.48 mg/100 g DW) in all extracts (UE > SE > SFE). The same sequence of the
AS extracts (UE > SE > SFE) can also be detected in the content of 4-hydroxybenzoic
acid, which is also known as p-hydroxybenzoic acid (3.47–15.41 mg/100 g DW), while
benzoic acids were found only in UE extract. All mentioned acids were also identified
in the reviewed literature [5,47,49]. Caffeic acid has only been detected in SFE extract
at a content of 5.92 mg/100 g DW, while chlorogenic acid appeared in all AS extracts
(UE > SE > SFE, 0.73–9.36 mg/100 g DW) as well as cinnamic acid (UE > SFE > SE,
11.33–34.36 mg/100 g DW). The content of caffeic acid (4.18–60.19 mg/100 g), chlorogenic
acid (0.05–2.61 mg/100 g), and cinnamic acid (up to 0.09 mg/100 g) was previously deter-
mined by other researchers [5,19,46,48]. Next, the highest content of p-coumaric acid was de-
tected in the SE extract (6.26 mg/100 g DW), followed by the SFE and UE extracts. The litera-
ture indicates p-coumaric acid content in AS extracts from 0.62 to 10.23 mg/100 g [19,46,48].
Hereafter, ferulic acid was found in SE and UE extracts (up to 6.86 mg/100 g DW), gal-
lic acid in SFE and UE extracts (up to 3.99 mg/100 g DW), and salicylic acid in SE and
SFE extracts (up to 15.15 mg/100 g DW). For comparison, the content values for ferulic
acid in the reviewed literature are between 0.09–82.53 mg/100 g, for gallic acid between
1.21–67.38 mg/100 g, and for salicylic acid between 2.57–5.50 mg/100 g [5,19,46,48]. Finally,
vanillin was also previously determined in AS extracts [47] and is known as an antimicro-
bially active phenolic compound [50,51]. In the presented study, vanillin was identified in
all extracts (UE > SE > SFE) and quantified up to a content of 55.02 mg/100 g DW.

Overall, the highest total content of analyzed phenolic compounds was contained
in UE extract (393.94 mg/100 g DW), followed by SE extract (351.03 mg/100 g DW) and
SFE extract (177.99 mg/100 g DW). In the presented study, compared to the contents of
other authors, the high contents of hesperidin, epicatechin, cinnamic acid, and salicylic acid
stood out. Additionally, 2,3-dihydroxybenzoic acid, 4-hydroxybenzoic acid, benzoic acid,
and vanillin have been identified in already-published research, while their quantification
in AS extracts has not yet been detected. Importantly, many studies have examined the
content of different phenolic compounds in AS extracts obtained by different extraction
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methods and under different conditions and with different solvents. Therefore, it must
be emphasized that there are certain deviations in the results of various studies, as the
chemical profile and the content of biologically active compounds in AS extracts differ due
to the previously mentioned different extraction conditions as well as due to the variety
and maturity of the fruit used in the studies. What gives great importance to the presented
study is the characterization and quantification of selected flavonoids and phenolic acids in
SFE extracts since no similar study could be detected in the reviewed published literature
heretofore. However, the optimization of important variables (operating conditions) in
SFE is also important here, which could further increase the efficiency of the recovery of
phenolic compounds. In any case, for the extraction and potential isolation of an individ-
ual compound, it would be necessary to carefully study the influence of the operating
conditions since the solubility trend changes for certain compounds [23].

2.5. Enzyme Activities of AS Samples

Since plants are a valuable source of enzymes [52], a comparative study of important
enzyme activities in AS extracts was carried out. The obtained results of the study are
delineated in Table 3.

Table 3. Enzyme activities of AS extracts obtained by ultrasonic extraction (UE; solvent H2O), Soxhlet
extraction (SE; solvent EtOH), and supercritical fluid extraction (SFE; solvent scCO2, co-solvent EtOH).

Enzymes
Activity (U/g ± SD)

UE (H2O) SE (EtOH) SFE (scCO2 + EtOH)

Cellulase - - 30.74 ± 0.11
Lipase 56.30 ± 0.49 a - 24.54 ± 0.20 a

Peroxidase 0.01 ± 0.00 a 0.01 ± 0.00 a 0.01 ± 0.00 a

Polyphenol oxidase 4087.50 ± 71.43 a 4250.00 ± 84.01 a 3451.99 ± 47.17 b

Protease 0.10 ± 0.01 a 0.01 ± 0.00 a 0.33 ± 0.03 b

Transglutaminase 0.06 ± 0.01 a 0.05 ± 0.00 a 0.02 ± 0.00 b

Superoxide dismutase 1435.97 ± 21.41 a 3123.97 ± 69.05 b 638.55 ± 15.99 c

Each value represents mean of three replicates ± SD. Different letters in the same row indicate significant difference
(p < 0.05).

The results of the study showed cellulase activity only in the SFE extract. Cellulases
are extremely applicable enzymes in many industries and have recently shown good
potential in the fight against antibiotic-resistant bacteria [53] and in the conversion of
agricultural waste into bioethanol and sugar [54]. Furthermore, the highest lipase activity
was demonstrated in the UE extract (56.30 U/g), followed by the activity in the SFE
extract (24.54 U/g), while lipase activity was not detected in the SE AS extract. Since
lipases catalyze the hydrolysis of ester-carboxylate bonds and release organic alcohols
and fatty acids with high efficiency and stability [55], they are extremely appealing from a
commercial point of view for quite a few industries. Many different seeds have already
been demonstrated as a potential source for possible lipase exploitation [56], and with
this study, AS have also become an attractive alternative. Thereafter, peroxidases are
important antioxidant enzymes that are also applied in medicine, analytics, agriculture,
and other fields [57]. Peroxidase was active in all AS extracts, but compared to other
analyzed enzymes, its activity was the lowest. On the contrary, the polyphenol oxidase
(PPO) activity was generally the highest and was expressed in all extracts (SE > UE > SFE,
up to 4250.00 U/g). The results are not surprising since PPO is the enzyme responsible
for the browning. In the presence of oxygen, PPO changes phenolic compounds into
various quinones through the oxidation process, which further react and form melanin.
Melanin is dark pigment that colors the fruits/seeds brown. When AS are crushed in the
presence of air, they soon develop a red-orange color [58]. Hatzakis et al. [59] discovered
that AS extract contains a pigment called perseorangin, which is a yellow-orange solid
and is the result of a PPO-dependent reaction. All AS extracts also resulted in protease
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(SFE > UE > SE) and transglutaminase activity (UE > SE > SFE). Plant proteases are also
actively used in medicine, as they exhibit a wide spectrum of therapeutic actions. Moreover,
antimicrobial, antioxidant, anti-inflammatory, and antidiabetic properties of bioactive
peptides obtained from plant proteases have also been proven [60]. Transglutaminase, in
addition to other applications (e.g., food additives), may be considered as an innovative
category of wound-healing mediators [61,62]. Next, superoxide dismutase (SOD) activity
has been evaluated in AS extracts. Specifically, SE and UE AS extracts demonstrated high
SOD activity (up to 3123.97 U/g), while the activity in SFE extract was slightly lower. Due to
their antioxidant effects, SODs have enormous potential for applications in many industries,
including medicine, as an abundant number of studies have reported their physiological
importance and therapeutic potential [63]. Importantly, to the best of our knowledge, only
studies containing enzyme-inhibitory potential against specific enzymes [64,65] are found
in the reviewed literature, while no similar comparative study covering the activity of
selected enzymes in any AS extracts has been published so far. Accordingly, the presented
results greatly contribute to the identification of valuable enzymes in AS, which could
potentially be a source for their exploitation and further applications in divergent branches
and industries. However, it is important to point out that only the SFE extract contains
all the tested enzymes in their active form; therefore, the SFE extract is the most suitable
source of active enzymes from AS of all tested extracts.

2.6. Antioxidant Activity of AS Samples

Plants contain a large number of bioactive compounds with high antioxidant activity.
Studies of the antioxidant activity of various plant species contribute to revealing the value
of these species as a source of new antioxidant compounds. Therefore, the antioxidant
potential of AS extracts was examined. The results are depicted in Figure 3.
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Soxhlet extraction (SE; solvent EtOH), and supercritical fluid extraction (SFE; solvent scCO2, co-
solvent EtOH).

Using the DPPH method, the extracts showed inhibition in the range of 58.50–67.49%.
The highest antioxidant activity was detected in SE extract, followed by SFE and UE extract.
Health-promoting biologically active compounds (e.g., phenolic compounds) definitely con-
tribute to the antioxidant potential of the extracts. Various studies indicate that some phenolic
compounds (epicatechin, quercetin, benzoic acid, caffeic acid, chlorogenic acid, ferulic acid,
4-hydrohibenzoic acid, and p-coumaric acid) also quantified in the presented study have already
been proven to be associated with the antioxidant activity of AS extracts [66].

Nonetheless, the before-mentioned high enzyme activity of the SOD enzyme in AS extracts,
which is well known for its antioxidative effects, should be emphasized. Kruskal–Wallis H
test showed that there was a statistically significant difference in the antioxidant activity of
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AS extracts prepared by different extraction methods. For comparison, Weremfo et al. [19]
detected 73.61% inhibition of AS EtOH extract obtained by microwave-assisted extraction
(MAE) and 60.56% inhibition of extract obtained by conventional solvent extraction (CSE).
In the present study, 67.49% inhibition was achieved with the same EtOH solvent, but the
extraction method was different (SE). In comparison, the extraction method has an effect on the
antioxidant potential of the extracts, as SE in the present study resulted in a higher I than CSE,
while it demonstrated lower I than MAE. Furthermore, Zaki et al. [46] determined up to 97.84%
inhibition (MeOH extracts), while Al-Juhaimi et al. [48] determined up to 83.70% inhibition
using UE (hexane, MeOH/H2O extracts). The importance of the solvent used with the same
extraction method can also be detected here, as with other solvents (MeOH, hexane, etc.) AS
extracts showed a higher antioxidant potential than the presented UE H2O extract (58.50%).
Recently, Kautsar et al. [67] studied the effect of AS extract storage on antioxidant activity, which
decreased from 91.58 to 84.05% after 4 weeks. Differences between studies also arise as a result
of the influence of many factors such as the variety, origin, and maturity of the fruit, and as
mentioned, additional discrepancy is caused by the use of different methods and solvents for
the extraction of biologically active compounds.

2.7. Antimicrobial Activity of AS Samples

The increase in antimicrobial resistance, the decrease in the effectiveness of synthetic
drugs, and, at the same time, their increased toxicity has led to an ever-increasing search
for alternative biologically active substances. As AS are a by-product of the avocado
industry, they have already been investigated as a potential source of antimicrobial com-
pounds. Data in previously published studies indicate that diverse AS extracts inhibit the
growth of Candida spp., Cryptococcus neoformans, Malassezia pachydermatis [4], Corynebac-
terium ulcerans, Escherichia coli, Staphylococcus aureus, Streptococcus pyogenes, Salmonella
typhi [30], Entamoeba histolytica, Giardia lamblia, Trichomoniasis vaginalis, Mycobacterium tuber-
culosis [68], Clostridium sporogenes [69], Proteus mirabilis, Pseudomonas aeruginosa, Aspergillus
niger [70], Porphyromonas gingivalis [71], Bacillus cereus, Listeria monocytogenes, Pseudomonas
spp., Yarrowia lipolytica [72], Klebsiella pneumoniae [3], Staphylococcus epidermidis, Enterococcus
faecalis, Salmonella enteritidis, Citrobacter freundii, Enterobacter aerogenes, Zygosaccharomyces
bailii, Aspergillus flavus, and Penicillium spp. [73]. Many studies have investigated the an-
timicrobial effect of AS extracts obtained by well-known conventional methods on plenty
of microorganisms. On the other hand, it should be point out that so far, it is possible to
find more than one a recent study, which is by David et al. [74], that tested the antimicrobial
effect of AS extracts obtained with greener SFE. The susceptibility of L. monocytogenes,
S. typhimurium, and E. coli to AS extracts obtained by scCO2 at different operating tempera-
tures and pressures was studied. Extracts obtained at 40 ◦C and 30 MPa and at 50 ◦C and
20 MPa showed only inhibition of L. monocytogenes growth. Hence, the presented study is a
major contribution to this field, as it includes a comprehensive and comparative study of
the qualitative and quantitative antimicrobial efficacy of UE, SE, and SFE AS extracts on 15
different microorganisms.

Initially, the antimicrobial activity was tested qualitatively using the disc diffusion
method. The results are shown in Table 4.

Promisingly, all AS extracts inhibited the growth of all selected Gram-negative bacteria.
The inhibition zone with the addition of AS extracts obtained with different methods on
P. aeruginosa was the same, while the addition of SE extract to E. coli and P. fluorescens
resulted in the largest inhibition zone. Furthermore, SE extract inhibited the growth of all
Gram-positive bacteria, while B. cereus was not susceptible to the addition of UE extract and
S. pyogenes to the addition of UE and SFE extracts. The sensitivity of fungi to AS extracts
was also examined. The SE extract showed the lowest antifungal performance, as it only
inhibited the growth of P. cyclopium. UE extract only inhibited the growth of A. fumigatus
and P. cyclopium. On the contrary, the SFE AS extract was very effective as an antifungal
agent, as it inhibited the growth of six out of eight selected fungi; only S. cerevisiae and
T. viride were not susceptible to its addition. Overall, using the disc diffusion method, SFE
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AS extract proved to be the most antimicrobially effective, inhibiting the growth of 11 out
of 15 microorganisms, followed by SE (8/15) and UE extract (7/15).

Table 4. Qualitatively determined antibacterial activity of AS extracts obtained by ultrasonic extraction
(UE), Soxhlet extraction (SE), and supercritical fluid extraction (SFE) on selected bacteria and fungi.

Microorganism
Inhibition Zone (mm ± SD)

UE (H2O) SE (EtOH) SFE (scCO2 + EtOH)

Gram-negative
bacteria

E. coli 14 ± 2 17 ± 2 11 ± 1
P. aeruginosa 11 ± 1 11 ± 1 11 ± 1
P. fluorescens 15 ± 1 18 ± 2 15 ± 1

Gram-positive
bacteria

B. cereus - 15 ± 1 17 ± 1
S. aureus 11 ± 1 13 ± 1 12 ± 1

S. platensis 12 ± 1 11 ± 1 -
S. pyogenes - 11 ± 1 -

Fungi

A. brasiliensis - - 18 ± 3
A. flavus - - 14 ± 1

A. fumigatus 12 ± 1 - 22 ± 2
A. niger - - 13 ± 2

C. albicans - - 17 ± 2
P. cyclopium 10 ± 1 13 ± 1 11 ± 1
S. cerevisiae - - -

T. viride - - -

Given the promising results of the qualitative study, the antimicrobial effectiveness
of AS extracts was quantified using broth microdilution method. The MGIRs were deter-
mined for selected Gram-negative and Gram-positive bacteria and fungi at five different
concentrations of AS extracts. A comparison of MGIRs after 8 and 24 h was also carried out,
which enables a more comprehensive insight of the antimicrobial activity of AS extracts for
possible applications in various industries. According to all the reviewed literature, similar
studies containing a certain percentage level of growth inhibition for selected microorgan-
isms with any AS extracts have not yet been published. Therefore, Figure 4 shows the
results of a quantitative study of the antimicrobial efficacy of AS extracts against selected
Gram-negative bacteria, which was carried out by broth microdilution method.

After 24 h of incubation with the highest added concentration of inhibitors, all AS
extracts completely inhibited growth of Gram-negative E. coli (with 100% MGIR). More
specifically, UE extract at the concentration of 2780 µg/mL inhibited MGIR by 82% after
8 h of incubation, while E. coli was then not susceptible to lower concentrations. After 24 h,
the addition of the lowest UE extract concentration (70 µg/mL) resulted in 71% MGIR
and addition of 210 µg/mL in as much as 98% MGIR. Furthermore, the addition of SE
extract at a concentration of 210 µg/mL showed 72% MGIR after 8 h, and after 24 h, more
than 50% inhibition of E. coli growth was achieved with 140 µg/mL. At both times, almost
complete inhibition (99 and 98% MGIR) was achieved with the addition of 280 µg/mL SE
extract as an inhibitor. The SFE extract also proved to be a good inhibitor of the growth
of E. coli, which already showed 33% MGIR after 8 h with the concentration of 70 µg/mL
as the lowest concentration and as much as 83% MGIR with 140 µg/mL. After 24 h, the
concentration of 210 µg/mL SFE extract reached as much as 98% MGIR.

Gram-negative P. aeruginosa was the least susceptible to the addition of UE extract, as
only the highest added concentration of the extract achieved its complete growth inhibition.
Lower concentrations of UE extract, however, resulted in MGIRs of up to 65%. On the contrary,
SE and SFE extracts even with the addition of the lowest concentration, 70 µg/mL, showed
MGIRs between 46–64% after 8 and 24 h. In the case of the addition of SE extract as an inhibitor,
higher-than-90% MGIRs were achieved with a concentration of 280 µg/mL. However, the SFE
extract proved to be exceptionally effective as a growth inhibitor of P. aeruginosa, as it reached



Plants 2023, 12, 1201 12 of 25

95% MGIR after 8 h of incubation with 140 µg/mL of the added extract and 97% MGIR after
24 h of incubation with 280 µg of SFE extract per mL of suspension.
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Exceptional results of antibacterial efficiency were achieved with the addition of
UE and SFE extracts as inhibitors on the growth of Gram-negative P. fluorescens. After
8 h of incubation, the addition of 70 µg/mL UE extract resulted in 77% MGIR, while
140 µg/mL and higher concentrations showed complete inhibition of P. aeruginosa growth.
After 24 h of incubation, the lowest concentration inhibited its growth with 50% MGIR,
and further concentrations resulted in more than 85% MGIRs. After 8 h of incubation of P.
aeruginosa with 210 µg/mL SE extract, the result was 50% MGIR and 96% with the addition
of 280 µg/mL. The mentioned bacterium was less susceptible to lower concentrations
of SE extract after 24 h of incubation, but the highest concentration of 2780 µg/mL still
completely inhibited its growth. Importantly, even the lowest added concentrations of SFE
extract significantly affected the growth of P. aeruginosa (42 and 49% MGIR after 8 and 24 h),
while the addition of 140 µg/mL SFE extract completely inhibited its growth in both
time periods.

Figure 5 shows the results of a quantitative study of the antimicrobial efficacy of AS
extracts against selected Gram-positive bacteria, which was carried out by BMM.

Regarding Gram-positive B. cereus, generally higher antibacterial efficiency of AS
extracts was observed after 8 h of incubation, while after 24 h, the efficiency decreased
except at the highest added concentration. The UE extract has a remarkable impact on the B.
cereus, as it completely inhibited (100% MGIR) its growth even at the lowest concentration
after 8 h of incubation. The results were similar regarding SFE extract, starting with 91%
MGIR at 70 µg/mL. B. cereus was least susceptible to the addition of SE extract. After 8 h of
incubation, concentrations of SE extract in the range of 70–280 µg/mL resulted in 37–41%
MGIRs, while 2780 µg/mL completely inhibited the growth of B. cereus.

AS extracts were shown to be good growth inhibitors of Gram-positive S. aureus.
Similar to B. cereus, generally, after 8 h of incubation even the lowest added concentrations,
AS extracts greatly inhibited the growth of S. aureus (79–100% MGIRs). Again, all tested
concentrations of UE extract completely inhibited the growth of the mentioned Gram-
positive bacteria after 8 h, and after 24 h, the MGIRs increased from 64 to 91%. Moreover,
70 µg/mL of SE extract resulted in 86% MGIR after 8 h, and further concentrations inhibited
the growth of S. aureus with 90 and 99% MGIRs. After 24 h, 210 µg/mL of SE extract
completely inhibited its growth. Finally, SFE extract inhibited S. aureus growth with 79%
MGIR (8 h) when added at 70 µg/mL, and MGIRs increased with a concentration up to
100%. S. aureus was not susceptible to the three lowest concentrations of SFE extract after
24 h of incubation, although 280 and 2780 µg/mL completely inhibited its growth.

The effect of the addition of AS extracts as inhibitors on Gram-positive S. pyogenes was
also investigated. In contrast to B. cereus and S. aureus, the greatest antibacterial potential
was shown by SE extract, where even lower concentrations resulted in higher MGIRs
compared to UE and SFE extracts. After 8 h, 140 µg/mL of SE extract inhibited the growth
of S. pyogenes by 90% and after 24 h by 73%, while higher concentrations resulted in MGIRs
ranging between 83 and 99%. UE extract showed a higher level of inhibition after 24 h
(47–95% MGIRs). In contrast, SFE extract showed a certain level of inhibition (39–72%
MGIRs) after 8 h of incubation, while S. pyogenes was not susceptible to the addition of
SFE extract after 24 h of incubation, which is in agreement with the findings of the disc
diffusion method.

Using the broth microdilution method, it could be estimated that, in general, when
lower concentrations of AS extracts were added, Gram-positive bacteria were more sensitive
and susceptible to the addition of AS extracts, which is in line with the claims of other
authors [72]. This can be explained by the fact that Gram-negative bacteria are more
resistant to the addition of inhibitors due to the presence of an additional protective outer
membrane, which Gram-positive bacteria lack [75].
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Furthermore, the antifungal activity of AS extracts was also investigated. Since most
fungi form spores, which makes them incompatible with the broth microdilution method,
the quantitative antifungal efficacy of UE, SE, and SFE extracts was tested against C. albicans.
The results are shown in Figure 6.
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solvent H2O), Soxhlet extraction (SE; solvent EtOH), and supercritical fluid extraction (SFE; solvent scCO2,
co-solvent EtOH) using 70, 140, 210, 280, and 2780 µg sample per mL of C. albicans suspension.

The results are in accordance with the disc diffusion method because even when
using BMM, only the SFE extract showed good antifungal efficiency. UE extract resulted in
12–43% MGIRs after 8 h of incubation, but after 24 h, the fungus was not sensitive to the
addition of the extract at all. In the case of the addition of SE extract as an inhibitor, lower
concentrations did not affect the growth of C. albicans, and the two highest concentrations
(2780 and 280 µg/mL) reached 32–65% MGIRs. On the other hand, the SFE extract was
more effective against C. albicans. A higher degree of growth inhibition was achieved after
24 h of incubation, when even 70 µg/mL of SFE extract showed 65% MGIR, and complete
inhibition was achieved with the addition of 210 µg/mL.

Antimicrobial activity is attributed to many phytochemicals or biologically active
compounds. Other authors [76–78] mainly cite the antimicrobial effect of phenolic com-
pounds, which change the function of bacterial cell membranes and thereby slow down
growth and inhibit bacterial reproduction. Furthermore, the antimicrobial effect of fatty
acids (e.g., palmitic acid) and their derivatives acetogenins (e.g., avocadene, persin, perse-
diene, and persenone A, B, and C) obtained from AS is also reported [79,80]. The fluidity,
disorganization, and also the disintegration of the cell membranes occur due to disordering
of the phospholipid chain, which is the cause of the leakage of intracellular content and,
consequently, cell death [81]. However, the correlation between the identified phenolic
compounds in the obtained AS extracts and their antimicrobial effectiveness is important.
The antibacterial/antifungal activity of hesperidin [82], quercetin [83], benzoic acid [84],
2,3-dihydroxybenzoic acid [85], 4-hydroxybenzoic acid [86], caffeic acid [87], chlorogenic
acid [88], cinnamic acid [89], p-coumaric acid [90], ferulic and gallic acid [91], salicylic
acid [92], and o-vanillin [50] has already been demonstrated. It is possible to conclude
that the high content of the mentioned phenolic compounds synergistically affects the
antimicrobial efficiency of the obtained AS extracts.

For ease of review, MIC90 values were also determined from the BMM results as the
concentrations at which AS extracts inhibited the growth of a particular bacterium/fungus
by at least 90% of the MGIR. The results are shown in Table 5.
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Table 5. Minimum inhibitory concentrations (MIC90) for AS extracts obtained by ultrasonic extraction
(UE; solvent H2O), Soxhlet extraction (SE; solvent EtOH), and supercritical fluid extraction (SFE;
solvent scCO2, co-solvent EtOH) on various microorganisms.

Microorganisms Incubation Period
MIC90 (µg/mL)

UE (H2O) SE (EtOH) SFE (scCO2 + EtOH)

Gram-negative
bacteria

E. coli
8 h - 280 280
24 h 210 280 210

P. aeruginosa 8 h 2780 280 140
24 h 2780 280 280

P. fluorescens 8 h 140 280 140
24 h 280 2780 140

Gram-positive
bacteria

B. cereus
8 h 70 2780 70
24 h 280 2780 210

S. aureus
8 h 280 140 140
24 h 2780 210 280

S. pyogenes 8 h - 140 -
24 h 2780 280 -

Fungi C. albicans
8 h - - 2780
24 h - - 2780

Only a small number of studies covering MIC values for AS extracts can be de-
tected in the literature. Nwaoguikpe and colleagues [3] determined MIC values for E. coli,
P. aeruginosa, and S. aureus in the range of 40,000–50,000 µg/mL for aqueous, methanolic,
and ethanolic AS extracts. Furthermore, a study by Idris et al. [30] resulted in MIC values
for petroleum ether, chloroform, ethyl acetate, and methanol SE AS extracts in the range of
10,000–50,000 µg/mL for E. coli, P. aeruginosa, S. aureus, S. pyogenes, and C. albicans. Ray-
mond et al. [73] determined MIC values for P. aeruginosa of 250.0 ± 216.5 µg/mL and for
E. coli and S. aureus of greater than 500 µg/mL with ethanolic AS extract (Hass variety). MIC
values for Gram-negative P. fluorescens and Gram-positive B. cereus have not been studied
in the literature so far. In the presented research, the lowest MIC value was determined for
B. cereus after 8 h of incubation in the case of UE and SFE extracts (70 µg/mL) compared to
all tested microorganisms. MIC values were also determined for P. fluorescens and were
especially promising for SFE extract (140 µg/mL) after 8 and 24 h of incubation. Compared
to the previously listed research, our extracts showed incomparably lower MIC values for
the remaining microorganisms, which greatly contributes to the current information on the
antimicrobial activity of AS extracts.

For further applications in which it is necessary to consider, for example, the release
of AS extract as a potential antimicrobial agent and the MIC for microorganisms after a
certain incubation, contact time is extremely important. In the presented study, it was
demonstrated that microorganisms are differently susceptible to the addition of diverse
AS extracts and are variously sensitive to the addition of inhibitors after certain periods
of time. For example, S. aureus is more susceptible to the addition of all three studied AS
extracts after 8 h (lower MIC90 values) than after 24 h incubation time. In general, SFE
extract compared to UE and SE extract resulted in lower MIC90 values, which is a great
contribution to research in the field of the antimicrobial action of SFE AS extracts.

3. Materials and Methods
3.1. Chemicals, Reagents, and Microorganisms

Chemicals including malt extract, potato dextrose broth, Triton X-100, tryptic soy
broth, and tryptone were obtained from Fluka, Buchs, Switzerland. Mueller–Hinton
broth (MHB) and potato dextrose agar (PDA) were purchased from Biolife, Milano, Italy.
4-Aminoantipyrine (4-APP), Coomassie Blue G-250, ethanol (EtOH, ≥99.5%), ferric chlo-
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ride (FeCl3), hydrochloric acid (HCl, 37.0%), iodine (I2), meat extract, meat peptone, n-
butanol (≥99.5%), 1-napthol (≥99.0%), phosphoric acid (85.0%), potassium dihydrogen
phosphate (KH2PO4), potassium iodide (KI), sodium chloride (NaCl), sodium dihydrogen
phosphate monohydrate (NaH2PO4·H2O), and sodium hydrogen phosphate (Na2HPO4)
were from Merck, Darmstadt, Germany. Calcium chloride (CaCl2), D-(+)-glucose anhy-
drous, and ferrous sulfate heptahydrate (Fe(SO4)·7H2O) were purchased from Kemika,
Zagreb, Croatia. Carbobenzoxy-L-Glutaminylglycine (CBZ-Gln-Gly) was obtained from
Zedira GmbH, Darmstadt, Germany. Acetic acid (glacial, ≥99.7%), acetonitrile (≥99.9%),
agar, ammonium hydroxide solution (NH4OH), ascorbic acid, benzoic acid (≥99.5%),
bovine serum albumin (BSA), caffeic acid (98.0%), casein, chloroform (CHCl3, ≥99.0%),
chlorogenic acid (≥95.0%), cinnamic acid (≥99.0%), 2,3-dihydroxybenzoic acid (99.0%),
L-3,4-dihydroxyphenylalanine (L-DOPA, ≥98.0%), 3,5-dinitrosalicylic acid (DNS), 2,2-
diphenyl-1-picrylhydrazyl (DPPH, ≥97.0%), ellagic acid (≥95.0%), (-)-epicatechin (≥90.0%),
ethylenediaminetetraacetic acid (EDTA, 98.5–101.5%) ferulic acid (99.0%), Folin–Ciocalteu’s
phenol reagent (FC), gallic acid (GA, ≥97.5%), glucose assay, hesperidin (≥97.0%), hy-
drogen peroxide (H2O2), hydroxylamine hydrochloride (HONH2·HCl), L-glutamic acid
(99.0%), L-glutathione reduced (≥98.0%), maltose, methanol (MeOH, ≥99.9%), o-vanillin
(99.0%), yeast extract, peptone from soybean, phenol (C6H5OH), p-coumaric acid (98.0%),
p-hydroxy benzoic acid (99.0%), p-nitrophenyl butyrate (p-NPB, ≥98.0%), potassium
sodium tartrate tetrahydrate (KNaC4H4O6·4H2O, 99.0%), 2-propanol (99.9%), pyrogal-
lol (≥99.0%), quercetin (≥95.0%), salicylic acid (≥99.0%), Sigmacell cellulose, sodium
acetate (CH3COONa, ≥99.0%), sodium carbonate (Na2CO3, ≥99.5%), sodium hydroxide
(NaOH, ≥95.0%), starch, sulfuric acid (concentrated, H2SO4) trichloroacetic acid (TCA,
≥99.0%), and Trizma Base (NH2C(CH2OH)3, ≥99.7%) were purchased from Sigma-Aldrich,
St. Louis, USA. Carbon dioxide (CO2, purity 2.5) was obtained from Messer, Ruše, Slovenia.

Selected microorganisms including bacteria (B. cereus (DSM 345), E. coli (DSM 498),
P. aeruginosa (DSM 1128), P. fluorescens (DSM 289), S. aureus (DSM 346), S. platensis (DSM
40041), and S. pyogenes (DSM 11728)) and fungi (A. brasiliensis (DSM 1988), A. flavus (DSM
818), A. fumigatus (DSM 819), A. niger (DSM 821), C. albicans (DSM 1386), and S. cerevisiae
(DSM 1848)) were purchased from DSMZ-German Collection of Microorganisms and Cell
Cultures GmbH from Berlin, Germany. The fungi P. cyclopium and T. viride were gifted from
the Department of Agricultural Chemical Technology, Budapest University of Technology
and Economics, Hungary.

3.2. Plant Material and Preparation of Samples

Avocado fruits (Hass variety) were stored at room temperature until full ripeness. Complete
avocado seeds were then manually separated from the ripe avocado fruits and washed under
the continuous flow of tap water. Obtained avocado seeds (AS) were then chopped into
small pieces in order to accelerate the drying process. The final drying process took place
at room temperature to avoid any effect of higher temperature on the content of bioactive
compounds. Sliced, dried seeds (including seed coats) were then evenly ground and stored at
room temperature and protected from light until their extraction and further analysis.

Extractions of dried AS were performed using different extraction methods in order to
compare the content of various phytochemicals and bioactive compounds and to evaluate
their bioactivity. First, under UE, the mixture of 20 g of dried AS and 150 mL of water
(H2O) as solvent was exposed to ultrasonic irradiation at 40 kHz for 3 h at 20 ◦C using
an ultrasonic bath (Iskra PIO-Sonis 4, Iskra, Šentjernej, Slovenia). After extraction, the
mixture was filtered using Büchner funnel and flask to remove solid particles. Furthermore,
for SE, about 25 g of dried AS was added into porous cellulose thimble and placed in
Soxhlet extractor. A volume of 150 mL EtOH as a solvent was added into flask, attached
to extractor and condenser, and heated to reflux. Extractions were conducted for 6 h. SFE
of dried AS was performed using a semi-continuous apparatus [93]. To achieve better
extraction of phenolic compound, EtOH was added as a co-solvent. Approximately 20 g
of dried AS was placed into the extractor (60 mL), which was placed into a water bath
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preheated to operating temperature (40 ◦C). SFEs were performed at an operating pressure
of 200 bar. The flow rate of CO2 was maintained at a constant of 2 mL/min while EtOH
was pumped continuously using a high-pressure pump with a flow rate of 0.5–0.8 mL/min.
The extractions took place for 2 h. Samples were collected in the previously weighted glass
tubes at ambient conditions. After the conducted extractions, the solvents (H2O and EtOH)
and co-solvents (EtOH) were evaporated under reduced pressure at 40 ◦C using the rotary
evaporator (Büchi Rotavapor R-114, Flawil, Switzerland). The final extracts were stored
and kept in a freezer at −20 ◦C until further use.

3.3. Process Efficiency Evaluation

The extraction yields (η) are presented as mean values of two conducted extractions
and were calculated as recently described by Kupnik et al. [23] using the equation below.

η [%] =

(
mextract

mdry material

)
× 100

where η is extraction yield (%), mextract is mass of extract (g), and mdry material is mass of
dry AS (g).

3.4. Qualitative Determination of Phytochemicals

Phytochemical screening of extracts was conducted in order to qualitatively determine
the presence of various phytochemicals and bioactive compounds. Prior to analysis, the
extracts were prepared at a concentration of 1 mg/mL. Phytochemicals were determined
using standard qualitative tests previously described in the literature [94–96], with slight
modifications. The procedures and observations indicating a positive test are presented in
Table 6. All experiments were carried out in triplicates, and results are presented based on
visual observations.

Table 6. Qualitative methods for phytochemical screening [94–96].

Phytochemicals (Test) Procedure Observation

Alkaloids (Wagner’s reagent test) 1 mL of extract + 3–4 drops of
Wagner’s reagent along the sides of test tube A reddish-brown coloration

Anthocyanins (NaOH test) 2 mL of extract + 1 mL of 2 N NaOH, heat
for 5 min at 100 ◦C A bluish-green color

Anthraquinones (Borntrager’s test) 1 mL of extract + few drops of 10%
(w/v) ammonia solution Pink-colored solution

Carbohydrates
(Molish’s test) 2 mL of extracts + few drops of

alcoholic α–naphthol + 1 mL conc. H2SO4 along the
sides of test tube

Violet ring at the interface of the two
liquids

Cardiac glycosides
(Keller–Killiani test) 1 mL of extract + 1.5 mL glacial
acetic acid + 1 drop of 5% (w/v) FeCl3 solution + few

drops of conc. H2SO4 along the side of test tube
A greenish-blue-colored solution

Coumarins (NaOH test) 1 mL of 10% (w/v) NaOH + 1 mL of
extract A yellow color

Emodins 1 mL of extract + 2 mL NH4OH + 3 mL benzene A red color

Flavonoids (Alkaline reagent test) 1 mL of extract + 2 mL of 2%
(w/v) NaOH + few drops of diluted HCl

A yellow color; solution then becomes
colorless on addition of diluted acid

Phenolic compounds (Ferric chloride test) 1 mL of extract + 2 mL of distilled
H2O + few drops of 5% (w/v) FeCl3 solution A blue/green/black color

Phlobatannins (HCl test) 1 mL of extract + 2 mL of 1% (v/v) HCl A red precipitate
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Table 6. Cont.

Phytochemicals (Test) Procedure Observation

Saponins (Foam test) 2 mL of extract + 5 mL distilled H2O;
vigorously shake for 15 min Persistent foam after 10 min

Steroids (Salkowski test) 2 mL of extract + 2 mL of CHCl3 + 2
mL of conc. H2SO4

A reddish-brown ring at the junction

Tannins (Braymer’s test) 1 mL of extract + few drops of 10%
(w/v) FeCl3 solution A dark blue or greenish-black color

Terpenoids 1 mL of extract + 2 mL of CHCl3 + few drops (max. of
0.5 mL) of conc. H2SO4 along the side of test tube A reddish-brown color at the interface

Quinones (Sulfuric acid test) 1 mL of H2SO4 + 1 mL of extract;
shake well for 5 min A red color

3.5. Total Phenolic Content (TPC) Determination

The colorimetric method with Folin–Ciocalteu’s phenol reagent, accurately described
by Leitgeb et al. [97], was used for determination of TPC. The results are reported as mg of
gallic acid equivalents (GAE) per g of extract. Experiments were carried out in triplicates,
and results are presented as mean value ± standard deviation (SD).

3.6. Total Proanthocyanidins Content (PAC) Determination

The calorimetric method, where acid hydrolysis occurs using Fe(SO4)·7H2O in a
mixture of HCl and n-butanol, accurately described by Leitgeb et al. [97], was availed for
determination of PAC. The results are reported as mg of PAC per g of extract. Experiments
were carried out in triplicates, and results are presented as mean value ± SD.

3.7. Total Protein Content (PC) Determination

PC was determined by Bradford method [98] using BSA as a standard. The results are
reported as mg of total proteins per g of extract. Experiments were carried out in triplicates,
and results are presented as mean value ± SD.

3.8. Identification and Quantification of the Phenolic Compounds

Prior to analysis, the extracts were prepared at a concentration of 10 mg/mL and
filtered using 0.2 µm pore-size cellulose syringe filters. Extracts of dried AS were analyzed
using an Agilent 1200 Series HPLC System equipped with a quaternary HPLC high-
pressure pump, automatic sampler, column compartment, and variable wavelength detector
(VWD). The chromatographic separation was performed with a Zorbax SB-C18 column
(4.6 × 150 mm i.d., 5.0 µm particle size) at a flow rate of 2.0 mL/min using an injection
volume of 10 µL. The column temperature was maintained at 25 ± 1 ◦C. The elution
gradient consisted of acidified water (0.1% acetic acid, v/v) and acidified acetonitrile (0.1%
acetic acid, v/v) as mobile phases A and B, respectively. To achieve efficient separation,
the following multistep gradient program was used: 5% B (5 min), 10% B (10 min), 11%
B (12 min), 18% B (18 min), 42% B (19 min), 50% B (24 min), 60% B (25 min), 70% B
(28 min), and 5% B (30 min). Each standard and sample were analyzed in triplicate. The
peaks were detected at 280 nm. In order to identify phenolic compounds in the extracts,
their retention times were compared with corresponding standards. Additionally, all
identified phenolic compounds were quantified using calibration curves. The results are
reported as mg of certain phenolic compound per 100 g of DW. All experiments were
carried out in triplicates, and results are presented as mean value ± SD.

3.9. Determination of Enzymatic Activity

Specific spectrometric assays (Varian—CARY® 50 UV–VIS Spectrophotometer, Varian
Inc., The Netherlands) were availed for determination of activities of selected enzymes.
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Exact procedures for the determination of α-amylase, cellulase, lipase, peroxidase, protease,
and transglutaminase activities are precisely described by Leitgeb et al. [97]. Polyphenol
oxidase activity was determined using Creative Enzymes® protocol [99], where the con-
centration of o-benzoquinone formed from L-DOPA by polyphenol oxidase was measured
at 265 nm. Superoxide dismutase activity was determined using a reaction of pyrogallol
autoxidation at 325 nm, described by the Creative Enzymes® protocol [100]. The results are
reported as units (U) per g of extract. All experiments were carried out in triplicates, and
results are presented as mean value ± SD.

3.10. Determination of Antioxidant Activity

DPPH free radical method, based on electronic transfer that produces a purple-colored
solution in EtOH and accurately described by Leitgeb et al. [97], was used for determination
of antioxidant activity. The results are reported as a percentage of inhibition (I) relative to
reference solution. Experiments were carried out in triplicates, and results are presented as
mean value ± SD.

3.11. Determination of Antimicrobial Activity

First, the disc diffusion method, previously described by Kupnik et al. [101,102], was
used to qualitatively assess the antimicrobial activity of the analyzed extracts. Tests were
carried out at selected concentrations of microorganisms (1–5 × 106 CFU/mL). Deionized
H2O and 5% DMSO were used as negative controls, while 30 µg of amoxicillin, nystatin,
or vancomycin per disc was used as positive control. The results are reported as mm of
inhibition zone. All experiments were carried out in triplicates, and results are presented
as mean value ± SD.

Furthermore, the broth microdilution method [101,102] was used to quantitatively assess
the antimicrobial activity of the analyzed extracts. Tests were carried out at selected concentra-
tions of microorganisms (1–5 × 106 CFU/mL) using MHB as a universal nutrient medium for
all microbial strains. As a negative control, 5% DMSO was used. MGIRs were determined after
8 and 24 h of incubation under optimal conditions for the growth of each microbial strain for
five concentrations of added extract (2780, 280, 210, 140, and 70 µg extract/mL of suspension).
Additionally, the concentration at which the extract inhibited the growth of the microorganism
with at least 90% MGIR was defined as MIC90. All experiments were carried out in triplicates,
and results are presented as mean value ± SD.

3.12. Statistical Analysis

All statistical data analyses were performed using IBM® SPSS® Statistics. Statistical
data analysis was performed to study differences between extraction methods. The nor-
mality of the distribution of data was tested using Shapiro–Wilk’s test. The homogeneity
of variances was determine using Levene’s test. Differences between extractions were de-
termined with one-way analysis of variances (ANOVA) followed by Tukey’s post hoc test
(for normally distributed data) and with nonparametric Kruskal–Wallis H test, followed
by pairwise comparison using the Dunn–Bonferroni post hoc method (for abnormally
distributed data).

4. Conclusions

Humanity is increasingly striving for a broader strategy for the shift and transition
from a linear to a circular economy, including through a number of initiatives to reduce the
inexhaustible waste generated annually. Food wastes present a renewable resource that can
be collected and subsequently converted into value-added products, while reducing the
volume of waste gathered in landfills and at the same time expanding the economic market
share of new sustainable products. With this aim, avocado seeds were investigated as a
potential source of biologically active compounds in extracts obtained by different methods.
It was found that different solvents and extraction techniques affect both the extraction yield
itself and the content of the selected biologically active compounds. Due to the different
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content of biologically active compounds, the enzymatic, antioxidant, and antimicrobial
activities of AS extracts also differ. Importantly, compared to already known data, an
extremely high content of hesperidin was found in SE (226.78 mg/100 g DW) and UE
(118.10 mg/100 g DW) extracts. For the first time, the high content of 2,3-dihydroxybenzoic
acid in the UE extract (106.48 mg/100 g DW) and vanillin (up to 55.02 mg/100 g DW) in
all AS extracts was quantified. All three phenolic compounds are well known for their
antimicrobial effects, so they most likely contributed to the good antimicrobial potential
of the tested AS extracts. Furthermore, the high activity of the well-known antioxidant
enzyme superoxide dismutase (up to 3123.97 U/g extract) most likely contributed to the
antioxidant potential of AS extracts. However, AS extracts had a significant effect on
various microorganisms, as they inhibited as many as 13 out of 15 tested fungi and bacteria.
Only the fungi S. cerevisiae and T. viride were not susceptible to the addition of any of
the AS extracts. Additionally, compared to the literature, extremely low MIC90 values
were determined, starting with the lowest of 70 µg/mL for UE and SFE extract against
the Gram-positive bacterium B. cereus. For this reason, the obtained AS extracts could be
good alternative to synthetic antimicrobial agents. Overall, it is necessary to accentuate
the AS extract obtained with a sustainable, greener, and modern SFE. The comprehensive
study of the SFE extract in the presented research, which offers a comparison with the more
well-known and conventional UE and SE, provides a great deal of new information. The
SFE extract resulted in the highest content of total phenols and total proteins. It contained
12 of the 14 selected phenolic compounds and was the only one to show the activity of
all the studied enzymes. It also emerged as the most promising antimicrobial agent, as
it preliminarily inhibited as many as 11 out of 15 selected microorganisms and generally
showed the lowest MIC90 values for 6 out of 7 investigated microorganisms.

Despite many published studies involving the phytochemistry and bioactivity of avocado
seed extracts, the presented study provides additional knowledge and the contribution of
important new information. The significant results of SFE provide additional insight into
the extraction of bioactive ingredients from AS, while the results in the field of enzymatic
activity and antimicrobial efficiency of AS extracts prove their extraordinary potential for further
applications. Therefore, it would definitely make sense to exploit AS as a food waste for the
recovery and production of value-added biologically active compounds, which could be further
utilized in biomedicine, pharmacy, cosmetics, or other industries.

Author Contributions: Conceptualization, M.L. and M.P.; methodology, M.L., M.P. and K.K.; formal
analysis, K.K.; data curation, K.K.; writing—original draft preparation, K.K.; writing—review, M.L., M.P.
and V.K.; writing—editing, K.K.; visualization, K.K.; supervision, M.L., M.P. and V.K.; funding acquisition,
M.L., V.K. and Ž.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Slovenian Research Agency (ARRS) within the
frame of program P2-0046 (Separation Processes and Production Design), P2-0424 (Design of novel
nano/material properties & applications), project No. J2-3037 (Bionanotechnology as a tool for
stabilization and applications of bioactive substances from natural sources), L2-4430 (Production,
Isolation and Formulation of Health Beneficial Substances from Helichrysum italicum for Applications
in Cosmetic Industry), and young researcher ARRS fellowship Contract No. 2187/FS-2019.

Data Availability Statement: The data presented in this study are available in article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Food and Agriculture Organization of the United Nations. Major Tropical Fruits: Market Review 2020; Food and Agriculture

Organization of the United Nations: Rome, Italy, 2021; p. 22.
2. Domínguez, M.P.; Araus, K.; Bonert, P.; Sánchez, F.; San Miguel, G.; Toledo, M. The Avocado and Its Waste: An Approach of

Fuel Potential/Application. In Environment, Energy and Climate Change II: Energies from New Resources and the Climate Change;
The Handbook of Environmental Chemistry; Lefebvre, G., Jiménez, E., Cabañas, B., Eds.; Springer International Publishing:
Cham, Switzerland, 2016; pp. 199–223. ISBN 978-3-319-17100-5.



Plants 2023, 12, 1201 22 of 25

3. Nwaoguikpe, R.; Braide, W.; Ujowundu, C. Biochemical Composition and Antimicrobial Activities of Seed Extracts of Avocado
(Persea Americana). J. Microbiol. Antimicrob. 2011, 3, 184–190. [CrossRef]

4. Leite, J.J.G.; Brito, É.H.S.; Cordeiro, R.A.; Brilhante, R.S.N.; Sidrim, J.J.C.; Bertini, L.M.; de Morais, S.M.; Rocha, M.F.G. Chemical
Composition, Toxicity and Larvicidal and Antifungal Activities of Persea Americana (Avocado) Seed Extracts. Rev. Da Soc. Bras.
De Med. Trop. 2009, 42, 110–113. [CrossRef]

5. Jimenez, P.; Garcia, P.; Quitral, V.; Vasquez, K.; Parra-Ruiz, C.; Reyes-Farias, M.; Garcia-Diaz, D.F.; Robert, P.; Encina, C.; Soto-
Covasich, J. Pulp, Leaf, Peel and Seed of Avocado Fruit: A Review of Bioactive Compounds and Healthy Benefits. Food Rev. Int.
2021, 37, 619–655. [CrossRef]

6. Imafidon, K.; Fabian, A. Effects of Aqueous Seed Extract of Persea Americana Mill. (Avocado) on Blood Pressure and Lipid
Profile in Hypertensive Rats. Adv. Biol. Res. 2010, 4, 116–121.

7. Alarcon-Aguilara, F.J.; Roman-Ramos, R.; Perez-Gutierrez, S.; Aguilar-Contreras, A.; Contreras-Weber, C.C.; Flores-Saenz, J.L.
Study of the Anti-Hyperglycemic Effect of Plants Used as Antidiabetics. J. Ethnopharmacol. 1998, 61, 101–110. [CrossRef] [PubMed]

8. Ezejiofor, A.N.; Okorie, A.; Orisakwe, O.E. Hypoglycaemic and Tissue-Protective Effects of the Aqueous Extract of Persea
Americana Seeds on Alloxan-Induced Albino Rats. Malays. J. Med. Sci. 2013, 20, 31–39. [PubMed]

9. Oboh, G.; Isaac, A.T.; Akinyemi, A.J.; Ajani, R.A. Inhibition of Key Enzymes Linked to Type 2 Diabetes and Sodium Nitroprusside
Induced Lipid Peroxidation in Rats’ Pancreas by Phenolic Extracts of Avocado Pear Leaves and Fruit. Int. J. Biomed. Sci. 2014, 10,
208–216.

10. Oboh, G.; Odubanjo, V.O.; Bello, F.; Ademosun, A.O.; Oyeleye, S.I.; Nwanna, E.E.; Ademiluyi, A.O. Aqueous Extracts of Avocado
Pear (Persea Americana Mill.) Leaves and Seeds Exhibit Anti-Cholinesterases and Antioxidant Activities in Vitro. J. Basic Clin.
Physiol. Pharmacol. 2016, 27, 131–140. [CrossRef]

11. Dabas, D.; Elias, R.J.; Ziegler, G.R.; Lambert, J.D. In Vitro Antioxidant and Cancer Inhibitory Activity of a Colored Avocado Seed
Extract. Int. J. Food Sci. 2019, 2019, e6509421. [CrossRef] [PubMed]

12. Bonilla-Porras, A.R.; Salazar-Ospina, A.; Jimenez-Del-Rio, M.; Pereañez-Jimenez, A.; Velez-Pardo, C. Pro-Apoptotic Effect of
Persea Americana Var. Hass (Avocado) on Jurkat Lymphoblastic Leukemia Cells. Pharm. Biol. 2014, 52, 458–465. [CrossRef]

13. Ding, H.; Han, C.; Guo, D.; Chin, Y.-W.; Ding, Y.; Kinghorn, A.D.; D’Ambrosio, S.M. Selective Induction of Apoptosis of Human
Oral Cancer Cell Lines by Avocado Extracts via a ROS-Mediated Mechanism. Nutr. Cancer 2009, 61, 348–356. [CrossRef]

14. Bhuyan, D.J.; Alsherbiny, M.A.; Perera, S.; Low, M.; Basu, A.; Devi, O.A.; Barooah, M.S.; Li, C.G.; Papoutsis, K. The Odyssey of
Bioactive Compounds in Avocado (Persea Americana) and Their Health Benefits. Antioxidants 2019, 8, 426. [CrossRef] [PubMed]

15. Khaw, K.-Y.; Parat, M.-O.; Shaw, P.N.; Falconer, J.R. Solvent Supercritical Fluid Technologies to Extract Bioactive Compounds
from Natural Sources: A Review. Molecules 2017, 22, 1186. [CrossRef] [PubMed]

16. Tremocoldi, M.A.; Rosalen, P.L.; Franchin, M.; Massarioli, A.P.; Denny, C.; Daiuto, É.R.; Paschoal, J.A.R.; Melo, P.S.; de Alencar,
S.M. Exploration of Avocado By-Products as Natural Sources of Bioactive Compounds. PLoS ONE 2018, 13, e0192577. [CrossRef]

17. Hefzalrahman, T.; Morsi, M.K.S.; Morsy, N.F.S.; Hammad, K.S.M. Application of Enzyme and Ultrasound Assisted Extraction
of Polyphenols from Avocado (Persea Americana Mill.) Peel as Natural Antioxidants. Acta Sci. Pol. Technol. Aliment. 2022, 21,
129–138. [CrossRef]

18. Costagli, G.; Betti, M. Avocado Oil Extraction Processes: Method for Cold-Pressed High-Quality Edible Oil Production versus
Traditional Production. J. Agric. Eng. 2015, 46, 115–122. [CrossRef]

19. Weremfo, A.; Adulley, F.; Adarkwah-Yiadom, M. Simultaneous Optimization of Microwave-Assisted Extraction of Phenolic
Compounds and Antioxidant Activity of Avocado (Persea Americana Mill.) Seeds Using Response Surface Methodology. J. Anal.
Methods Chem. 2020, 2020, e7541927. [CrossRef] [PubMed]

20. Paramos, P.; Corazza, M.L.; Matos, H.A. Studies on Extraction from Avocado’s Waste Biomass to Generate Process Design
Alternatives of Valuable Products. Bulg. Chem. Commun. 2019, 51, 47–51. [CrossRef]

21. Páramos, P.R.S.; Granjo, J.F.O.; Corazza, M.L.; Matos, H.A. Extraction of High Value Products from Avocado Waste Biomass. J.
Supercrit. Fluids 2020, 165, 104988. [CrossRef]

22. Alexandre, E.M.C.; Moreira, S.A.; Castro, L.M.G.; Pintado, M.; Saraiva, J.A. Emerging Technologies to Extract High Added Value
Compounds from Fruit Residues: Sub/Supercritical, Ultrasound-, and Enzyme-Assisted Extractions. Food Rev. Int. 2018, 34,
581–612. [CrossRef]
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