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Abstract: YTH domain-containing proteins are one kind of RNA-binding protein involved in post-
transcriptional regulation and play multiple roles in regulating the growth, development, and abiotic
stress responses of plants. However, the YTH domain-containing RNA-binding protein family has
not been previously studied in cotton. In this study, a total of 10, 11, 22, and 21 YTH genes were
identified in Gossypium arboreum, Gossypium raimondii, Gossypium barbadense, and Gossypium hirsutum,
respectively. These Gossypium YTH genes were categorized into three subgroups by phylogenetic
analysis. The chromosomal distribution, synteny analysis, structures of Gossypium YTH genes,
and the motifs of YTH proteins were analyzed. Furthermore, the cis-element of GhYTH genes
promoter, miRNA targets of GhYTH genes, and subcellular localization of GhYTH8 and GhYTH16
were characterized. Expression patterns of GhYTH genes in different tissues, organs, and in response
to different stresses were also analyzed. Moreover, functional verifications revealed that silencing
GhYTH8 attenuated the drought tolerance in the upland cotton TM-1 line. These findings provide
useful clues for the functional and evolutionary analysis of YTH genes in cotton.

Keywords: Gossypium; drought stress; YTH domain-containing RNA-binding protein; gene family

1. Introduction

The post-transcriptional regulation of gene expression is of great importance for
various biological processes, such as plant growth and development, and environmental
stress responses. Many processes are involved in post-transcriptional regulation, including
pre-mRNA processing, polyadenylation, mRNA stability, and RNA transport [1,2]. These
processes could be directly mediated by RNA-binding proteins (RBPs) through interacting
with target RNA molecules or indirectly mediated by RBPs by regulating the function of
other regulatory factors [3]. The study of RBPs in plants was slower than other organisms
due to the lack of appropriate plant-derived in vitro systems for the research of post-
transcriptional gene regulation. More than 200 RBPs were identified in Arabidopsis thanliana,
and about 250 RBPs were identified in rice. Most of these identified RBPs are plant-specific
and can act in plant-specific functions, such as the involvement in hormone responses and
various environmental stresses [4,5].

YTH domain-containing proteins are one class of RBPs. In 1998, Imai Y et al. reported
one member of the YTH-containing proteins in rats named YT521 [6]. YT521 was an RNA
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splicing-related protein that could interact with splicing factors in yeast two-hybrid and co-
immunoprecipitation assays [7]. In 2002, Stoilov et al. reported the identification of a novel
YTH domain (for YT521-B homology) in nuclear proteins. They also found that the YTH
domain, containing 100–150 residues, was highly conserved and typical for the eukaryotes
via homology searches. They also showed that the YTH domain was abundant in plants [8].
The first YTH domain-containing RNA-binding protein AtCPSF30 was identified in A.
thanliana. AtCPSF30 is a part of the plant polyadenylation complex that could act as
a processing endonuclease [9]. N6-Methyladenosine (m6A) is the most abundant and
widespread modification in eukaryotic RNAs [10]. In recent years, many studies revealed
that YTH proteins are involved in the regulation of the dynamic RNA N6-Methyladenosine
(m6A) modification, which is essential for gene regulation and the maintenance of genome
stability [11]. Five YTH proteins (YTHDC1–2 and YTHDF1–3) have been identified in
humans. YTHDC1 and YTHDC2 act as m6A readers in the nucleus, while YTHDF1–3 act as
cytoplasmic m6A readers [12]. With the rapid development of next-generation sequencing,
genome-wide identification and evolutionary analysis of the YTH genes have been reported
in some plant species, such as Arabidopsis, rice [13], apple [14], tomato [15], and wheat [16].
Thirteen YTH domain proteins were identified in tomato, including ECT1–11, CPSF30, and
At4g11970 [17]. Arabidopsis ECT2, the homolog of YTHDFs, can bind to m6A-containing
RNAs in vivo, suggesting that the YTH domain is also an m6A reading domain in plant [18].
Tomato SlYTH1, a putative RNA m6A reader, plays important roles in seed germination,
plant growth and development, and fruit morphology [19].

Some studies have shown that the YTH domain-containing RNA-binding proteins
are involved in responses to abiotic stress in plants. Li et al. found that many Arabidopsis
and rice YTH genes might participate in responses to abiotic stresses, such as the cold,
drought, salt, and heat stress, via analyzing the publicly available microarray data [13].
Wang et al. [14] discovered that YTH genes showed various level responses under different
stress treatments in apples. They found that the YTH genes were more sensitive to chilling
and H2O2 conditions than ABA, heat, drought, and salt conditions [14]. Overexpression
of MhYTP1 and MhYTP2 from apples enhanced transgenic Arabidopsis plants resistance to
salinity and drought [20]. The expression levels of some YTH genes in cucumbers were
altered under different kinds of stresses, including salt, drought, and cold treatments [21].

Cotton, one of the most important cash crops, is the main source of natural textile
fiber worldwide. The genome sequence of different cotton species has been released
successively, such as the ancestral diploids, G. arboreum and G. raimondii, and the tetraploids,
G. hirsutum and G. barbadense. Therefore, it becomes possible to explore gene families and
their putative functions in various cotton species. Up to now, YTH domain-containing
RNA-binding protein family members have not been reported in cotton, especially the ones
that participate in the environmental stress tolerance of cotton.

In the present study, we identified the YTH domain-containing RNA-binding proteins
in four cotton species and analyzed their physiochemical properties. We investigated their
phylogenetic relationship, gene structure, and conserved motifs in cotton. Moreover, we
analyzed the expression patterns of YTH genes in different tissues and the response of
YTH genes to different stresses, including the cold, heat, drought, and salt. In addition, we
predicted the miRNA targets of GhYTH genes to reveal the relationship between microRNA
(miRNA) and YTH family genes in G. hirsutum. Furthermore, we carried out subcellular
localization of GhYTH8 and GhYTH16. Additionally, we used VIGS technology to verify
GhYTH8 genes positively regulating drought stress tolerance in cotton. Our results lay the
foundation for functional and evolutionary studies of YTH genes in plants.

2. Results
2.1. YTH Gene Family in Four Gossypium Species

The whole protein sequences of two diploid species, G. arboretum and G. raimondii, and
two tetraploid species, G. barbadense and G. hirsutum, to identify cotton YTH genes. The
identified YTH genes were further confirmed via conserved YTH domain searches. In total,
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we identified 64 YTH genes from the 4 cotton species, including 10 GaYTHs, 11 GrYTHs,
22 GbYTHs, and 21 GhYTHs (Table 1). The amino acid residue length of YTH proteins in
cotton varied from 572 to 677 aa in G. arboreum, 572 to 670 aa in G. raimondii, 559 to 689 aa
in G. barbadense, and 568 to 720 aa in G. hirsutum. The isoelectric points (pI) ranged from
5.32 to 7.22 in G. arboreum, 5.14 to 6.9 in G. raimondii, 5.02 to 8.48 in G. barbadense, and 5.2 to
8.25 in G. hirsutum. The molecular weight was distributed approximately from 63.5 to 74.3
kDa, 63.3 to 74.0 kDa, 62.1 to 76.2 kDa, and 62.3 to 81.1 kDa in G. arboreum, G. raimondii,
G. barbadense, and G. hirsutum, respectively.

Table 1. Characteristics of YTH genes and their encoded proteins in cotton.

Gene ID Gene Name Amino Acid Length P.I. MW (da) Location

Ga01G0324.1 GaYTH1 654 6.19 72224.25 Chr01:2562085–2564534(-)
Ga02G0908.1 GaYTH2 625 6.83 68261.89 Chr02:60033655–60039884(-)
Ga03G0644.1 GaYTH3 654 5.83 72141.35 Chr03:9431937–9434567(-)
Ga03G2762.1 GaYTH4 572 6.08 63500.31 Chr03:135380859–135385216(-)
Ga08G0210.1 GaYTH5 635 7.22 70257.79 Chr08:1723259–1728028(-)
Ga08G2483.1 GaYTH6 577 5.9 63763.03 Chr08:124586293–124589173(+)
Ga10G3082.1 GaYTH7 648 5.32 71361.54 Chr10:129290100–129295676(-)
Ga11G0956.1 GaYTH8 677 5.56 74319.92 Chr11:16221680–16226718(+)
Ga11G0958.1 GaYTH9 605 6.15 66573.51 Chr11:16288205–16291213(+)
Ga13G1351.1 GaYTH10 596 6.2 65509.66 Chr13:83803610–83807221(-)

Gbar_A01G002830.1 GbYTH1 566 8.48 62324.52 A01:2568244–2572387(-)
Gbar_A01G015130.1 GbYTH2 686 6.56 75281.04 A01:91702309–91709506(+)
Gbar_A02G005740.2 GbYTH3 654 5.92 72218.39 A02:8400243–8404612(-)
Gbar_A03G023470.1 GbYTH4 572 5.96 63511.37 A03:105084247–105089973(-)
Gbar_A05G011330.1 GbYTH5 653 5.2 71651.11 A05:10378466–10385178(-)
Gbar_A08G001890.1 GbYTH6 666 6.09 73438.17 A08:1669319–1673433(-)
Gbar_A08G022910.1 GbYTH7 577 6.01 63687.94 A08:115214249–115217627(+)
Gbar_A10G000210.1 GbYTH8 650 5.32 71521.71 A10:226672–232918(+)
Gbar_A11G027540.5 GbYTH9 605 6.15 66528.45 A11:98904170–98908097(-)
Gbar_A11G027580.1 GbYTH10 612 5.96 66900.74 A11:98946062–98949702(-)
Gbar_A13G011910.1 GbYTH11 607 6.08 66295.32 A13:73997171–74001401(-)
Gbar_D01G003000.1 GbYTH12 654 7.22 72240.22 D01:2591629–2595737(-)
Gbar_D01G016180.1 GbYTH13 625 6.72 68475.31 D01:47823428–47830617(+)
Gbar_D02G006470.1 GbYTH14 689 8.27 76200.42 D02:8464041–8470880(-)
Gbar_D02G025310.1 GbYTH15 572 6.21 63284.11 D02:67385264–67390933(-)
Gbar_D05G011770.9 GbYTH16 660 5.04 72234.67 D05:9785369–9791757(-)
Gbar_D08G001930.1 GbYTH17 670 6 73907.66 D08:1553392–1557467(-)
Gbar_D08G023590.1 GbYTH18 559 6.81 62082.17 D08:61689230–61692672(+)
Gbar_D10G000170.2 GbYTH19 650 5.38 71582.77 D10:164189–170278(+)
Gbar_D11G035010.1 GbYTH20 622 5.72 68122.11 Scaffold118:164271–170796(+)
Gbar_D11G035040.1 GbYTH21 605 6.26 66560.48 Scaffold118:211996–217213(+)
Gbar_D13G011640.1 GbYTH22 606 6.08 66234.25 D13:33076872–33081145(-)
Gh_A01G032100.1 GhYTH1 654 6.19 72210.18 A01:2855623–2858072(-)
Gh_A01G173200.1 GhYTH2 625 6.55 68290.89 A01:91578115–91584668(+)
Gh_A02G065800.1 GhYTH3 654 6 72278.51 A02:8801670–8804658(-)
Gh_A03G245900.1 GhYTH4 720 8.25 81093.52 A03:109862488–109870541(-)
Gh_A05G102800.1 GhYTH5 651 5.2 71407.77 A05:10898607–10904838(-)
Gh_A08G019200.1 GhYTH6 666 6.09 73404.17 A08:1725549–1729279(-)
Gh_A08G241100.1 GhYTH7 568 6 62764.8 A08:120898607–120901810(+)
Gh_A11G291200.1 GhYTH8 605 6.15 66501.43 A11:105609984–105613426(-)
Gh_A11G291500.1 GhYTH9 612 5.96 66900.74 A11:105651056–105655185(-)
Gh_A13G121400.1 GhYTH10 607 6.08 66322.34 A13:73017791–73021817(-)
Gh_D01G029500.1 GhYTH11 656 7.22 72458.49 D01:2546081–2549106(-)
Gh_D01G171300.1 GhYTH12 625 6.72 68445.22 D01:49030052–49036273(+)
Gh_D02G069800.1 GhYTH13 654 6.05 71898.2 D02:8345891–8350344(-)
Gh_D02G261200.2 GhYTH14 572 6.21 63400.27 D02:70853189–70858785(-)
Gh_D05G115100.3 GhYTH15 652 5.08 71170.49 D05:9802311–9808568(-)
Gh_D08G018500.1 GhYTH16 583 7.24 64432.55 D08:1638425–1641033(-)
Gh_D08G232400.1 GhYTH17 577 6.41 64071.27 D08:64381471–64384820(+)
Gh_D10G001600.3 GhYTH18 650 5.25 71466.59 D10:196546–202609(+)
Gh_D11G291400.1 GhYTH19 605 6.26 66560.48 D11:60000676–60004152(-)
Gh_D11G291600.1 GhYTH20 613 5.86 67164.03 D11:60044437–60048569(-)
Gh_D13G123000.1 GhYTH21 606 6.12 66218.25 D13:36489013–36493188(-)
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Table 1. Cont.

Gene ID Gene Name Amino Acid Length P.I. MW (da) Location

Gorai.002G031800.1 GrYTH1 654 6.9 72227.26 Chr02:2370851–2374924(-)
Gorai.002G182900.1 GrYTH2 625 6.49 68392.05 Chr02:48153196–48160671(+)
Gorai.004G020600.1 GrYTH3 670 6 73973.81 Chr04:1530886–1534693(-)
Gorai.004G244600.1 GrYTH4 599 6.41 66812.77 Chr04:58179219–58182629(+)
Gorai.005G070500.1 GrYTH5 654 5.96 71958.21 Chr05:7641980–7646032(-)
Gorai.005G265300.1 GrYTH6 572 6.21 63296.12 Chr05:63865504–63871029(-)
Gorai.007G288900.1 GrYTH7 605 6.26 66610.57 Chr07:49501978–49505697(-)
Gorai.007G289200.1 GrYTH8 622 5.69 68135.13 Chr07:49545172–49551745(-)
Gorai.009G120700.1 GrYTH9 654 5.14 71573.99 Chr09:8935247–8942392(-)
Gorai.011G001700.1 GrYTH10 648 5.37 71416.54 Chr11:161861–168102(+)
Gorai.013G123200.1 GrYTH11 606 6.12 66162.19 Chr13:31722245–31726598(-)

2.2. Phylogenetic Analysis of YTH Genes

To study the evolutionary relationships among 64 cotton YTH genes, protein sequences
from the 4 cotton species and Arabidopsis were used to build a phylogenetic tree using the
ML method. The cotton YTH genes were categorized into three subgroups from Group I to
Group III. Genes that were divided into the same group were more closely related. Group I
to Group III contains 30, 18, and 16 cotton YTH genes, respectively. There were 5, 3, and
2 GaYTHs contained in Group I to Group III in G. arboretum, respectively, and 5, 3, and
3 GrYTHs in G. raimondii. While 10, 6, and 6 GbYTHs were classified into Group I to Group
III, respectively, in G. barbadense, and 10, 6, and 5 GhYTHs, in G. hirsutum (Figure 1). The
phylogenetic tree displayed that G. hirsutum and G. barbadense tend to be assigned to the
same branch, suggesting a closer relationship between these two species.
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amino acid sequence with a 1000 bootstrap value with MEGA-X software (version 7.0). YTH genes
were categorized into threegroups from Group I to Group III. Ga, Gossypium arboretum; Gr, Gossypium
raimondii; Gh, Gossypium hirsutum; Gb, Gossypium barbadense; At, Arabidopsis thaliana.
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2.3. Motifs and Gene Structure Analysis

To explore the evolutionary patterns and classification of YTHs in cotton, the unrooted
phylogenetic tree was constructed. The resultant phylogenetic tree of four cotton species
divided the YTH proteins into three main groups (Groups I–III) (Figure 2A). Based on the
phylogenetic result, we analyzed the motifs and the sequence structure of the identified
YTHs. To explore the conserved motif organization in YTH proteins, the MEME program
was used for the conserved motif analysis. A total of 10 motifs were identified in the YTH
proteins. Motifs 1–4 and 6–8 were found in all YTH proteins. Motifs 1–9 were identified in
Group I, and especially Motif 5 was only found in Group I (Figure 2B). Furthermore, in
most of the YTH proteins, the YTH domain is the only recognizable module that is in line
with those of other species [13]. In addition, dnaA superfamily domain and PHA03377
superfamily domain were also found in several YTH proteins. The dnaA superfamily
domain was only found in Group I, while the PHA03377 superfamily domain was only
found in Group III (Supplementary Figure S1).

To reveal the consistency of the exon–intron pattern in the phylogenetic groups,
we performed the gene structure analysis on the cotton YTH genes. Our data revealed
that the number of exons varied from 6~9 in G. arboreum, 6~10 in G. raimondii, 6~11 in
G. barbadense, and 6~12 in G. hirsutum in YTH gene family. The exons and introns arrange-
ment uncovered the evolutionary relationships between different gene family members.
The YTH genes that have a similar exon–intron pattern tend to be clustered into a similar
branch. Particularly, in Group III, most of the exon numbers of the YTH genes were 8,
except for GhYTH18 (Figure 2C, Table S1). Our results showed that the closely associated
genes are more structurally similar and differ in the length of intron and exons.
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Figure 2. Phylogenetic tree, gene structure, and conserved protein motifs of YTH genes in 4 cotton
species. (A) Phylogenetic tree of 4 cotton species. (B) Protein motifs in Gossypium YTHs. Each
colored box indicates a specific motif. (C) The exon–intron structure of cotton YTH genes. The yellow
boxes represent untranslated regions (UTRs), the green boxes indicate exons, and the grey lines
indicate introns.



Plants 2023, 12, 1198 6 of 19

2.4. Chromosome Distribution and Synteny Analysis of YTH Genes

The chromosomal distribution of YTH genes was identified according to the genome
annotation file. YTH genes were distributed on chromosomes 1–5, 9–11, and 13. GaYTH
genes were localized across chromosomes 1–3, 8, 10, 11, and 13. GrYTH genes were
localized across chromosomes 2, 4, 5, 7, 9, 11, and 13. GhYTHs were distributed on At
chromosomes 1–3, 5, 8, 11, 13, and Dt chromosomes 1, 2, 5, 8, 10, 11, and 13 with 10 and
11 genes, respectively. GbYTHs were located on At chromosomes 1–3, 5, 8, 10, 11, 13, and
Dt chromosomes 1, 2, 5, 8, 10, 13 with 11 and 9 genes, respectively. Another two GbYTHs
(GbYPH20 and GbYPH21) were identified on unanchored scaffolds. Results showed that
the chromosome distribution pattern between GbYTHs and GhYTHs was similar (Figure 3).
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To further explore the phylogenetic mechanisms of the cotton YTH gene family, we
performed the synteny analysis of YTH genes between G. hirsutum and the three other
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representative cotton species. A total of 32 GhYTH genes showed syntenic relationship with
those in G. barbadense, followed by G. raimondii (19) and G. arboretum (18). Some GhYTH
genes were found to have at least three syntenic gene pairs, suggesting that these genes
may have played an essential role during evolution (Figure 4).

To better reveal G. hirsutum replication events, we identified all 32 homologous genes
in G. hirsutum and compared them with those in G. barbadense. We calculated the levels of
Ka and differences in Ks (Table S2). Ka/Ks = 1.0 suggested pseudogenes caused by neutral
selection, Ka/Ks < 1 implied purifying selection, and Ka/Ks > 1 denoted positive selection
and accelerated evolution. The Ka/Ks ratios of most duplicate gene pairs were less than
one (Table S2), indicating that YTH gene purification and positive selection existed during
cotton evolution.
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2.5. Cis-Regulatory Element Analysis of YTH Genes

Cis-regulatory elements play important roles in gene expression regulation [22,23].
Understanding the cis-elements involved in the regulation of YTH genes will facilitate the
study of the regulation mechanism and the putative functions of these YTH genes. The
2000 bp region upstream of the start codon of each YTH gene from 4 cotton species was
extracted as the promoter region. The cis-acting elements, including salt responsive element,
ethylene response element, and abscisic acid responsive element, were identified in the
promoters of YTH genes of four cotton species. The number of these cis-acting elements
in different species was basically consistent (Figure 5A). Inducible promoters can respond
immediately to stimulus signals and be involved in the related gene expression regulation
under particular environmental and stimulus conditions. Furthermore, we identified a
total of 15 inducible promoters of YTH genes in cotton (Figure 5B).
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2.6. Prediction of YTH Genes Targeted by MiRNAs in G. Hirsutum

Unlike cis-regulatory elements, the miRNAs were considered transacting factors target-
ing the mRNA. The relationships between the miRNAs and YTHs in cotton were predicted
in the psRNATarget database (Table S3). In total, 18 miRNA targets of GhYTH genes were
identified. Among 21 identified GhYTHs, 17 of them were found to be targeted by miRNAs,
except for GhYTH10, GhYTH16, GhYTH17, and GhYTH21. GhYTH1, GhYTH2, GhYTH3,
GhYTH7, GhYTH13, and GhYTH18 were targeted by three miRNAs, respectively. GhYTH12
and GhYTH19 were targeted by two miRNAs, respectively. Each of the other nine GhYTHs
was only targeted by only one miRNA. Almost all miRNAs targeted a single or two GhYTHs.
ghr-7510R and ghr-7494 targeted five and three GhYTHs, respectively (Figure 6).
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2.7. Tissue Expression Patterns of YTH Genes in G. hirsutum

Gene expression patterns are closely related to their functions. To explore the spatial–
temporal expression variations in YTH genes across various anatomical tissues, we ana-
lyzed the transcriptome data of G. hirsutum during the development of ovule and fiber
(Table S4). In ovules, the expression levels of GhYTH2/5/8/10/15/19/21 were higher from
5 DPA to 20 DPA (Figure 7A). During fiber development, the expression levels of GhYTH5
and GhYTH15 increased substantially from 10 DPA to 25 DPA. The expression levels of
GhYTH2/12/14/16, GhYTH13, and GhYTH3/18 were relatively high at 10 DPA, 15 DPA,
and 20 DPA, respectively. The expression of GhYTH4/6/7/8/10/12/17 was relatively high at
10 DPA and 15 DPA (Figure 7B). The results indicated that each GhYTH gene might have a
specific function at different time points, including the initiation and elongation stages of
cotton fibers.

In addition, the expression profiles of GhYTH genes from ovule, fiber, torus, stem, sepal,
root, pistil, petal, leaf, filament, bract, and anther were also studied. GhYTH genes displayed
dynamic expression profiles in these tissues and organs (Table S4). Briefly, the expression of
GhYTHs was relatively low in leaves, filaments, petals, and bracts. GhYTH2/3/12/13 in an-
ther, GhYTH4/14/18 in root, GhYTH8/19 in sepal, GhYTH16/18 in stem, and GhYTH7/8/17/19
in torus were highly expressed (Figures 7C and 8). The results showed that GhYTH genes
might be involved in the growth and development processes of different organs in cotton.
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Figure 7. Expression patterns of GhYTH genes in different tissues. (A) Expression patterns of GhYTHs
in ovule (−3, 0, 1, 3, 5, 10, 15, 20, and 25 DPA). (B) Expression patterns of GhYTHs in fiber (10, 15, 20,
and 25 DPA). (C) Expression patterns of GhYTHs in different organs (torus, stem, sepal, root, pistil,
petal, leaf, fila-ment, bract, and anther).
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2.8. Expression Patterns of YTH Genes in G. hirsutum under Stress Conditions

We analyzed the transcriptome data of G. hirsutum to uncover the GhYTH participa-
tion in response to cold, hot, salt, drought, and salt stress conditions (Table S5). Under
cold stress, the expression levels of GhYTH11/18 reached a peak at 6 h after treatment
and then decreased, the expression of GhYTH3/5/6/13/14/15/16/19/20 peaked at 12 h after
treatment then decreased, and the expression of GhYTH1/2/4/7/8/9/10/12/17/21 was peaked
at 24 h post-treatment (Figure 9A). Under hot stress, the expression of GhYTH genes peaked
at 1 h and then decreased except for GhYTH6/12/14/16. However, the expression trend
of GhYTH6/14/16 continuously increased and peaked at 24 h post treatment (Figure 9B).
Under drought stress, GhYTH genes exhibited higher expression in the first 6 h after
treatment and then showed decreased expression except for GhYTH1/4/5/11/13/14/15/20.
The expression level of GhYTH2/6/8/9/10/12/16/19 gradually increased post-drought treat-
ment, indicating their possible roles in response to drought stress. (Figure 9C). Under salt
stress, GhYTH6/16/20 were highly expressed at 1 h post-treatment (Figure 9D). In brief,
our data showed that the expression level of most YTH genes was induced in response to
multiple stresses.
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Figure 9. Expression patterns of GhYTH genes under different abiotic stresses. (A) Expression
patterns of GhYTHs under cold stress (0, 1, 3, 6, 12, and 24 h). (B) Expression patterns of
GhYTHs under hot stress (0, 1, 3, 6, 12, and 24 h). (C) Expression patterns of GhYTHs under
drought stress (0, 1, 3, 6, 12, and 24 h). (D) Expression patterns of GhYTHs under salt stress
(0, 1, 3, 6, 12, and 24 h).

2.9. Subcellular Localization of GhYTH8 and GhYTH16

To investigate the subcellular localization of the GhYTH proteins, we fused the coding
sequences of two of the GhYTH proteins (GhYTH8 and GhYTH16) that may be involved in
the drought stress response to the GFP vector and transiently expressed in expanded leaves
of N. benthamiana. Transient expression assays revealed that GFP signals in the GFP-YTH8
and GFP-GhYTH16 expressed in N. benthamiana leaves were observed in the whole cells,
similar to the pattern observed for GFP alone (Figure 10). These results suggested that the
GhYTH8 and GhYTH16 proteins do not localize in specific compartments and are likely
targeted ubiquitously in cells, which indicates their functional diversity and complexity.
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Figure 10. Subcellular analysis of GhYTH8 and GhYTH16 proteins. The GhYTH8::GFP,
GhYTH16::GFP, and GFP alone were transiently expressed via agroinfiltration using N. benthami-
ana leaves. Green fluorescence was observed with confocal laser microscopy (left). The same cells
were also observed by transmission microscopy, and both images were merged (from the middle to
the right).
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2.10. Functional Verification of GhYTH8 in Cotton under Drought Stress

To further explore the role of YTH genes that may be involved in the drought stress
response according to their expression levels under drought stress, we performed a VIGS
assay based on the full-length sequence of GhYTH8 in TM-1. The success of the VIGS
experiment was verified by the albinism of positive control leaves and the detection of
silencing efficiency. When the cotton grew to the three-leaf stage, the cotton infected by
pYL156:00 (TRV:00) was used as the control, and the cotton plants were kept without
water to simulate drought conditions. After 14 days of drought treatment, we can ob-
serve significant differences of the phenotypes of leaves. Compared with the control, the
leaves of pYL156:GhYTH8 (TRV:GhYTH8)-infected plants under drought conditions wilted
obviously (Figure 11A). The expression level of GhYTH8 was significantly lower in the
silenced plants than in the control (TRV:00) (Figure 11B). Our data demonstrated that
GhYTH8-silenced plants were more sensitive to drought stress, suggesting the functional
roles of YTH proteins in the stress response of cotton.
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Figure 11. Functional verification of GhYTH8 under drought stress. (A) Whole plant phenotypes
of gene-silenced plants. The plant with CLA-silencing, the negative control plant, and two plants
with GhYTH-silencing are displayed from left to right. (B) The expression level of GhYTH in empty
control and VIGS plants under drought stress. *** and **** indicate the significant differences between
the TRV::00 and TRV:GhYTH8 lines determined by Student’s t-test.

3. Discussion

The YTH domain-containing RBP has been recognized in eukaryotes for more than
20 years. Nevertheless, polyploidization events increase the complexity and make it harder
to recognize the role of a gene family. Cotton is an important economic crop around
the world, which provides a natural fiber source for the textile industry. Genome and
transcriptome sequencing have facilitated the understanding of gene families in cotton.
However, the identification of YTH genes and their biological functions in cotton remained
elusive. In this present study, a total of 64 YTH genes (10 GaYTHs, 11 GrYTHs, 22 GbYTHs,
and 21 GhYTHs) were identified and characterized in four cotton species at the genome-
wide scale. The genome size of G. arboreum (1746 Mb) is almost twice of G. raimondii (885
Mb) [24]. The genome size of G. barbadense (~2.22 Gb) is almost the same as that of G.
hirsutum (~2.30 Gb) [25]. Previous studies reported that 13, 12, 9, 15, and 5 members of
the YTH gene family were identified in Arabidopsis, rice, tomato, apple, and cucumber,
respectively [21]. Our results showed that the number of YTH genes is not correlated with
the size of the genomes.

The m6A modification is essential for modulating gene expression at the post-transcriptional
level. To perform its regulatory function, the m6A modification complex needs to recruit reader
proteins [26]. YTH family members have been shown to act as m6A reader proteins [27]. In
humans, five YTH proteins, YTHDC1, YTHDC2, YTHDF1, YTHDF2, and YTHDF3, were
identified. [28]. Studies have shown that a conserved mechanism was applied by YTHDFs and
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YTHDCs to identify m6A [29]. In this study, 64 YTH genes were clustered into three groups.
Arabidopsis YTH genes AtYTH7/9/13/5 (also named AtDF1A-AtDF4A), AtYTH10/4/6/1
(also named AtDF1C-AtDF4C), AtYTH8/2/12 (also named AtDF1B-AtDF1B) were clustered
into Groups I-III, respectively. It is worth noting that although AtYTH3 (AtDC1A) and AtYTH11
(AtDC1B) were grouped into Group III, no other cotton YTH genes were in the same branch
with these two Arabidopsis YTHDC genes. Furthermore, YTH1 superfamily domains were
identified in all three common wheat YTHDC proteins [16]. However, no YTH1 superfamily
domains have been found in cotton YTH proteins in this study, suggesting no YTHDC gene
exists in cotton species. G. barbadense and G. hirsutum are allotetraploids that originated from the
hybridization among A-genome-like ancestral African species and D-genome-like American
species [30]. Ancestral diploids, G. arboreum and G. raimondii, contributed to the At and Dt
subgenomes for both G. hirsutum and G. barbadense, respectively, through genome-wide duplica-
tion events [25,31]. YTHs located on At subgenomes in both G. barbadense (GbYTH1- GbYTH11)
and G. hirsutum (GhYTH1- GhYTH10) tend to be clustered with YTHs in G. arboreum (A genome).
Similarly, YTHs located on Dt subgenomes in both G. barbadense (GbYTH12- GbYTH22) and
G. hirsutum (GhYTH11- GhYTH21) tend to be clustered with YTHs in G. raimondii (D genome).
Our findings also confirmed the sources of At subgenomes and Dt subgenomes in two tetraploid
species. YTH genes of G. hirsutum and G. barbadense tend to be clustered in the same branch.
Our results indicated that the genetic relationship between two allotetraploids was closer than
that between allotetraploids and diploids. It might be due to the coevolution of G. hirsutum and
G. barbadense.

GaYTH and GrYTH genes are dispersed across 7 out of 13 chromosomes. More-
over, GbYTH and GhYTH genes are distributed on 7 out of 13 chromosomes across both
subgenomes. YTH genes showed an uneven distribution on cotton chromosomes. This
chromosomal distribution pattern of YTH genes was also found in Arabidopsis, rice,
and cucumber [13,21]. It is worth noting that GbYTH8 anchored on chromosome A10 in
G. barbadense was not identified in G. hirsutum, indicating that duplication and deletion
events may appear during evolution.

Polyploidy is one of the major mechanisms of plant formation and environmental
adaptation [32]. Gene duplications are regarded as one of the key driving forces during
the evolution of genomes and genetic systems. Duplicated genes offer raw material for
the formation of novel genes, which may facilitate the generation of novel functions [33].
Tandem duplication, segmental duplication, and transposition events are three principal
evolutionary patterns, of which tandem duplications and segmental duplications were
found to be the main causes of gene family expansion in plants [34,35]. Furthermore,
segmental duplications have been identified to play important roles in expanding the gene
family members in plants [36,37]. In this study, no tandem duplication was detected in
the YTH gene family, though the genes may have undergone independent evolutionary
processes in two allotetraploids cotton according to the synteny analysis.

Environmental stress responses involve various physiological, cellular, and molecular
adaptations. Plants can produce and accumulate phytohormones, such as abscisic acid
(ABA), Jasmonic acid (JA), ethylene (ET), and salicylic acid (SA), in response to stresses [38].
Under stressed conditions, molecular level changes in plants are principally caused by tran-
scription factors binding to the cis-regulatory elements upstream to the stress-responsive
genes [39]. The pattern of existence of these cis-elements reveals the mechanism of stress-
responsive upregulation of downstream genes [40]. In this study, many inducible elements,
such as ABA, ET, and SA responsive elements were recognized in the promoter region of
YTH genes, suggesting functions of cotton YTH genes in stress responses. Further research
is required to decipher their roles in stress responses by recognizing their gene structures,
protein structures, and target RNAs.

In general, the abundant or increased expression of a gene in a tissue, a developmental
stage, or a stress condition may suggest its roles correlated to developmental and stress
responses. Publicly available transcriptomic data were analyzed to explore the possible
function of the GhYTH genes in development and stress responses [41]. The production
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and quality of cotton are closely related to the development of ovule and fiber. In our
study, a set of GhYTH genes were expressed at higher levels during the development of
the ovule and fiber of cotton. These highly expressed YTH genes in wheat spikes might
function in the development and architecture of spikes [16]. Furthermore, the expressions
of the GhYTH gene among different tissues were different, suggesting that they may play
numerous roles in different cotton tissues. The YTH genes are known to play essential
roles in stress responses in several plant species. In this present study, expressions of some
GhYTH genes were induced after stress treatments. Similar expression patterns were also
observed in Arabidopsis, rice, cucumber, and apple [14,20,21,42].

sRNAs (small RNAs) ranging from 21 to 24 nt have obtained much attention for their
biological roles in plant growth, development, and biotic and abiotic stress responses [43].
MiRNAs are a sort of sRNA, which could suppress the expression of target genes via
binding to the mRNAs [44]. Drought, one of the most severe abiotic stresses, limits crop
growth and yield by changing metabolic activity and biological functions [45]. MiRNAs
have been found to play important roles in the drought stress response in cotton. In this
study, 18 miRNA targets of GhYTH genes were detected. GhYTH3 and GhYTH13 could
be targeted by ghr-miR156a, ghr-miR156b, and ghr-miR156d. One of these targets, ghr-
miR156a was expressed differently between control and drought treatment in a previous
report [46]. In addition, the miR156 family was identified to serve as the main regulator in
response to high-temperature stress during G. hirsutum anther development [47]. These
predicted miRNA targets could provide valuable candidates for the experimental study of
the stress response of GhYTH genes.

In humans, YTH domain-containing RNA-binding proteins were extensively stud-
ied [48]. YTHDF1/2/3 could bind to N6-methyladenosine and thus control the stability
of mRNA [27]. YT521 (YTHDC1) is characterized by alternately spliced isoforms with
regulatory impact on cancer [49]. In contrast, the functional research of the YTH proteins in
plants is very limited. VIGS was widely used to explore the gene functions in cotton for
the difficulties inherent in cotton transformation [50]. The effect of GhYTH silencing by
VIGS was evaluated, and the results showed that the silencing of GhYTH8 decreased the
resistance of the plants to droughts. Our findings verified the GhYTH had a vital function
in the resistance of G. hirsutum to droughts.

4. Materials and Methods
4.1. Identification and Physiochemical Properties Analysis of YTH Gene Family Members in Four
Gossypium Species

The gene annotation and genome files of two diploid species, G. arboreum L. (CRI) and
G. raimondii L. (JGI), and two tetraploid species, G. hirsutum L. (CRI) and G. barbadense L.
(ZJU), were retrieved from the Cotton Functional Genomics Database (https://cottonfgd.
org/(accessed on 11 January 2023)) [41]. The protein sequences of YTH genes in Arabidopsis
were obtained from the TAIR10 database (https://www.arabidopsis.org/ (accessed on
11 January 2023)) [51]. The query sequences of candidate YTH genes against the protein
sequences of four cotton species were aligned by BLASTp. The candidate genes were
analyzed in the NCBI-CDD (https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.
cgi (accessed on 11 January 2023)) database to identify the YTH domain. The identified
YTH genes were further confirmed by HMM search function in HMMER3.0 [52]. The
physiochemical properties, relative molecular mass (MW), and theoretical isoelectric point
(pI) were determined through the ExPASy proteomics server (https://web.expasy.org/
compute_pi/ (accessed on 11 January 2023)) [53]. The genomic locations of YTH genes in
the chromosome were extracted from the annotation files and were visualized by MapChart
(https://www.wur.nl/en/show/Mapchart/ (accessed on 11 January 2023)).

4.2. Evolutionary, Gene Structure, and Conserved Motif Analysis of YTH Genes

All the identified YTH protein sequences from four cotton species and Arabidopsis
were aligned using MUSCLE algorithm program in MEGA-X [54]. The maximum likelihood

https://cottonfgd.org/(accessed
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(ML) method of MEGA-X was exploited to construct the phylogenetic tree with the LG + G
model and 1000 bootstrap replications, followed by embellishing the phylogenetic tree with
Evolview (https://evolgenius.info/ (accessed on 11 January 2023)) [55].

The conserved motifs of cotton YTH protein sequences were analyzed using the MEME
program (http://meme-suite.org/ (accessed on 11 January 2023)) [56]. The gene structure
information of the cotton YTH genes was retrieved from Cotton Functional Genomics
Database, and the gene structures were graphically visualized using TBtools [57].

4.3. Chromosomal Distribution and Synteny Analysis of YTH Genes

CottonFGD genome annotation files were used to determine the chromosomal distri-
bution of YTH genes in 4 cotton species. Duplication events and syntenic blocks of cotton
YTH genes were found by McScanX [58], followed by visualizing the orthologous YTH
genes between four cotton species through CIRCOS. Ka/Ks analysis was performed as
previously described [59].

4.4. Regulatory Elements Analysis of YTH Genes

The 2000 bp upstream region of coding sequence (CDS) of YTH genes extracted
using TBtools was regarded as the promoter region. The cis-acting regulatory elements of
YTH genes were identified using PlantCare (http://bioinformatics.psb.ugent.be/webtools/
plantcare/html/ (accessed on 11 January 2023)) [60] and then visualized by R.

4.5. Subcellular Localization of GhYTH8 and GhYTH16 Proteins

The full-length coding sequences of GhYTH8 and GhYTH16 were amplified using
specific primers GhYTH8-GFP-F (5′ATACACCAAATCGACTCTAGAATGGCCACTCC
TGATCGTAT-3′; an Xba I site underlined)/ GhYTH08-GFP-R (5′- CCCCTGCAGAAGCTT
TCTAGAGCAAGCACTGGCTGCACACA-3′; an Xba I site underlined) and GhYTH16-GFP-
F (5′-ATACACCAAATCGACTCTAGAAAAACCATCATACCCCAGCT -3′, an Xba I site
underlined)/ GhYTH16-GFPR (5′-CCCCTGCAGAAGCTTTCTAGA ACCATGAGCTGT
GCCCATGC-3′, an Xba I site underlined) and cloned into pCAMBIA1300-GFP. The re-
combinant plasmids, p1300 GhYTH8-GFP and p1300 GhYTH16-GFP, were transformed
into Agrobacterium tumefaciens strain GV3101 and infiltrated into fully expanded leaves
of Nicotiana benthamiana plants. GFP-expressing cells were detected with a confocal laser
scanning microscope (Zeiss LSM 510 META; argon laser excitation wavelength, 488 nm).

4.6. Expression Profiles Analysis of YTH Genes

The transcriptional expression profiles of YTH genes in G. hirsutum, including ovule
development (−3, 0, 1, 3, 5, 10, 20, and 25 DPA), fiber development (5, 10, 20, and 25 DPA),
different tissues (torus, stem, sepal, root, pistil, petal, leaf, filament, bract, and anther), and
different stresses (cold, hot, drought, and salt) were downloaded from CottonFGD. The
value of the gene expression levels was processed with log2(FPKM + 1) and visualized
by R.

4.7. MiRNA Prediction of GhYTH Genes

The targeted relationship between miRNA and YTH genes in G. hirsutum was predicted
with psRNATarget (https://www.zhaolab.org/psRNATarget/ (accessed on 11 January
2023)) [61] and then visualized by Cytoscape-3.8.2 [62].

4.8. Virus-induced Gene Silencing (VIGS) Experiment and Drought Treatment

We performed VIGS experiments to further confirm whether YTH genes affect drought
stress tolerance in cotton. Total RNA was extracted from the leaves and then reverse
transcribed to cDNA. A 313 bp fragment of GhYTH8 ORF was amplified and cloned into
the pYL156 to construct the fusion vector pYL156:GhYTH8. The vectors (pYL156:GhYTH8
and pYL156:CLA1) were transformed into A. tumefaciens strain GV3101, followed by
cultivating overnight in L.B. medium with kanamycin 50 mg/L and rifampicin 25 mg/L
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at 30 °C. pYL156:00 (TRV:00), pYL156:CLA1, and pYL156:GhYTH8 were mixed with a
1:1 ratio, followed by agroinfiltrating into fully unfolded cotton cotyledons with a needle-
free syringe. The standard variety TM-1 (G. hirsutum) was used as the experimental plant.
After a night of darkness, the plants were transferred to a greenhouse at 20 ◦C with a 16 h
light/8 h dark photoperiod. When TRV:CLA1 plants showed phenotype, TRV:GhYTH8
and TRV:00 plants were kept without water to simulate drought conditions.

4.9. Quantitative Real-Time PCR (qPCR)

Three sets of samples from different plants were collected as three biological replicates.
The leaves of TRV:00 and TRV:GhYTH8 cotton seedlings were used for total RNA extraction
with an EASYspin Plus Plant RNA Kit (Aidlab, Beijing, China) according to the manu-
facturer’s instructions. The RNA reverse-transcribed used Trans Script One-Step gDNA
Removal and cDNA Synthesis SuperMix (Trans Gen, Beijing, China). Cotton Histon3
(GhHiston3) was used as an endogenous standard control. qPCR assays were performed
on a QuantStudio 6 Flex thermocycler (Applied Biosystems, Foster City, CA, USA) using
Trans Start Top Green qPCR SuperMix (TransGen, Beijing, China) and repeated three times.

5. Conclusions

Above all, our results highlight the potential role of the YTH genes that are involved in
the drought stress response. Our results provide new insights to further study the biological
roles of the YTH genes in stress response.
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under different stress.
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