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Abstract: Oryza sativa L. cv. Pieisu 1 CMU (PES1CMU) has a high anthocyanin content in the
colored bran and high phenolic content in the husk. Biologically active compounds in plants are
available as dietary supplements and cosmetics. To expand the utilization of natural resources,
PES1CMU will be a natural remedy for skin hyperpigmentation and aging. Cell-free tyrosinase
inhibition and scavenging assays were used to screen all extracts, including PESICMU-rice bran oil
(RBO), PES1CMU-defatted rice bran (DFRB), and PESICMU-husk (H). PESICMU extracts were first
examined in IBMX-stimulated B16 cells and H,O;-induced fibroblasts. The results exhibited that
PES1CMU-DFRB was the most effective inhibitor of mushroom tyrosinase, intracellular melanin
production (fold change of 1.11 £ 0.01), and tyrosinase activity (fold change of 1.22 £ 0.10) in
IBMX-stimulated B16 cells. Particularly, PESICMU-DFRB showed a comparable whitening effect
to the standard arbutin with no significant difference (p > 0.05). Moreover, PESICMU-DFRB and
PES1CMU-H demonstrated strong scavenging activities. After accelerated cell aging caused by H,O,
exposure in fibroblasts, the levels of malondialdehyde production in all PESICMU-treated fibroblasts
were comparable with those of standard L-ascorbic acid (p > 0.05). Besides, PESICMU-DFRB and
PES1CMU-H treatment significantly inhibited collagen degradation against MMP-2 compared to
L-ascorbic acid-treated cells (p > 0.05). PESICMU rice-processing wastes (DFRB and H) could become
potential natural sources for dermatocosmetic constituents in skin anti-aging and whitening products.

Keywords: anthocyanin; antioxidant; collagen stimulator; matrix metalloproteinase 2 inhibition;
melanogenesis inhibitor; Oryza sativa; rice bran; rice husk; skin whitening

1. Introduction

Asia is a well-known rice-growing region with high rice consumption. Additionally,
Thailand’s rice production dominates the global rice supply chain [1]. According to sustain-
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able development goals (SDGs), the concept of ‘Responsible Consumption and Production’
focuses on the management of food loss and wasted food [2]. Normally, rice husks are used
as animal feed and construction materials [3]. Rice bran is the main source of y-oryzanol
and tocopherols. Rice bran oil has medicinal and health benefits such as cancer prevention,
anti-inflammation, and lowering of blood pressure [4]. In line with the results of our
previous study, rice bran and husk extracts could be applied as an anti-androgen agent for
baldness [5,6].

Pieisu 1 CMU (PES1CMU) is one of the inbred rice cultivars that originated in the north
of Thailand. PESICMU has already received legislative protection as of November 2020.
Our previous research found that the rice bran of PESICMU, purple glutinous rice, was the
source of anthocyanins, including cyanidin-3,5-diglucoside and peonidin-3-glucoside [7],
which play a vital role in skin whitening effects and anti-aging properties [8,9]. Although,
the efficacy of PESICMU against aesthetic problems has not been evaluated.

In 2027, the global market for skin-whitening and anti-aging products is expected
to reach 12.3 [10] and 83.2 billion USD [11], consecutively. In addition, plant resources
provide impressive anti-melanogenesis activities and antioxidant properties [9]. Skin aging
is associated with a lack of moisture, reduced skin elasticity, age spots, and wrinkle forma-
tion. Both intrinsic factors and external stressors remarkably influence skin function. The
accumulation of damage from the environment (e.g., pollutants or sunlight) can contribute
to the dysfunction of skin epidermal and dermal cells [12]. As a consequence, melanocytes
overproduce melanin pigments, and fibroblasts diminish the ability to synthesize collagen
due to the increased levels of matrix metalloproteinases (MMPs) [13]. Melanin overpro-
duction in human skin explicitly influences skin dullness, melasma, freckles, and solar
lentigines [14]. Likewise, wrinkles are apparently recognized as signs of skin aging. Reac-
tive oxygen species (ROS) impact telomere shortening, cell membrane deconstruction, and
mitochondrial impairment in fibroblasts, leading to cell aging. In addition, MMP activation
can cause collagen depletion, resulting in skin wrinkling [15].

Considering all of the above, this study aimed to determine the cosmetic potential
of the Thai rice cultivar, PESICMU, in addition to exploring natural resources for skin
whitening and anti-aging agents. The PESICMU was prepared as three distinct extracts
(including rice bran oil, defatted rice bran, and rice husk extracts) and examined for their
inhibitory effects on melanin production using cell-free mushroom tyrosinase activity and
3-isobutyl-1-methylxanthine (IBMX)-stimulated B16 cells. The antioxidant capacity of
PES1CMU was assessed through scavenging assays, metal chelation, and the production of
malondialdehyde (MDA) in fibroblasts exposed to hydrogen peroxide (H,O;). Then, the
supernatant of treated fibroblasts was evaluated for collagen-stimulating effect via MMP-2
inhibition.

2. Results
2.1. Extract Preparations

The extraction yields of rice bran oil (RBO) from the screw press and dichloromethane
extraction based on dry weight were 8.82% and 6.11%, respectively. The physical appear-
ance of RBO extract was a homogenous brown-black oil. The crude extract of defatted
rice bran was a greasy, dark purple paste. In the case of rice husk, the sample was a dark
brown, sticky, and coarse paste. The yields obtained from the maceration of defatted rice
bran (DFRB) and rice husk (H) were 9.36% and 2.44% based on dry weight, respectively.

2.2. Cytotoxicity Effect

The cytotoxicity effects of PESICMU extracts on B16 melanoma and fibroblast cells
were performed by the sulforhodamine B (SRB) assay to obtain the optimal concentration
of extracts. The SRB colorimetric method is used for cytotoxic screening based on protein
content in cell lines. The maximum concentration of each extract with low cytotoxicity
(>80% cell viability) was used in the following experiments [16]. Melanoma and fibroblast
cells were treated for 48 h with the indicated concentrations of PESICMU-RBO, PES1CMU-
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DFRB, and PESICMU-H (0.01, 0.1, and 1 mg/mL). The cell viability of extracts in each
cell line was illustrated in Figure 1. All PESICMU extracts reduced the cell viability of
all cell lines in a concentration-dependent manner. After exposure to 0.01 mg/mL of
all PESICMU extracts, no significant cytotoxic effect was observed on B16 melanoma
cells. However, the viability of B16 cells was decreased to approximately 78, 78 and
79% of the control after exposure to PESICMU-RBO, PESICMU-DFRB, and PESICMU-H
at a concentration of 0.1 mg/mL, respectively (Figure 1a). At the same concentration,
PES1CMU-RBO, PES1ICMU-DFRB, and PESICMU-H showed less cytotoxicity on fibroblast
cells with the cell viability of 100, 106 and 101% of control, approximately (Figure 1b). Our
findings exhibited a concentration-dependent reduction in cell viability after exposure to
all PESICMU extracts, indicating that the higher concentrations of all extracts provoked
more cell toxicity. The appropriate concentration of extracts should be considered. Thus,
PES1CMU extracts at concentrations up to 0.01 and 0.1 mg/mL were used for subsequent
cell-based tests on B16 melanoma and fibroblast cells, respectively.
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Figure 1. Effects of rice bran oil (PESICMU—RBO), defatted rice bran extract (PESICMU—DEFRB),
and husk extract (PESICMU—H) of Oryza sativa L. cv. PESICMU on the viability of (a) melanoma
and (b) fibroblast cells exposed to 0.01, 0.1, and 1 mg/mL of extracts after 48 h of incubation. The
results were expressed as a percentage of cell viability relative to the untreated control. Data were

analyzed using one-way analysis of variance (ANOVA), followed by LSD’s post hoc test. Different
letters within each cell treatment indicate a significant difference (p < 0.05).

2.3. Whitening Effects
2.3.1. Mushroom Tyrosinase Activity

The preliminary observation of the whitening effect was determined using the mush-
room tyrosinase enzyme. The inhibition of mushroom tyrosinase-catalyzed oxidation of
monophenolase substrate (L-tyrosine) and diphenolase substrate (L-dihydroxyphenylalanine:
L-DOPA) was exhibited in Table 1. PESICMU-DFRB possessed the most potent inhibitory
effect on mushroom tyrosinase activity among all fractions. The ICsj values of PESICMU-
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DFRB were 0.99 £ 0.30 mg/mL for monophenolase activity and 1.92 £ 0.71 mg/mL for
diphenolase activity, which were comparable to the standard arbutin with no significant
difference (p > 0.05). These were consistent with previous studies on the melanogenesis in-
hibition of Andropogon virginicus and Dendrobium tosaense, which demonstrated ICsg values
of 2.58 mg/mL [17] and 6.40 £ 0.30 mg/mL [18] on the monophenolase and diphenolase
activities of mushroom tyrosinase, respectively.

Table 1. Inhibitory effects of Oryza sativa L. cv. PESICMU extracts on cell-free mushroom tyrosinase

activity.
IC50 (mg/mL) IC50 (mg/mL)
Samples Monophenolase Activity Diphenolase Activity
PES1ICMU—RBO 12.54 +0.484 23.14 +£3.602
PESICMU—-DERB 0.99 +0.30b 1.92 £0.71°
PESICMU—H 290+ 0.04¢ 3.46 +0.00P
Standard arbutin 051 +0.03b 344 +0.04b

PES1ICMU—RBO: rice bran oil of Oryza sativa L. cv. PESICMU; PESICMU—DEFRB: defatted rice bran extract of
Oryza sativa L. cv. PESICMU; PESICMU—H: husk extract of Oryza sativa L. cv. PESICMU; ICs: the 50% tyrosinase
inhibitory concentration. Data were analyzed using one—way analysis of variance (ANOVA), followed by LSD’s
post hoc test. Different letters within each experiment indicate a significant difference (p < 0.05).

2.3.2. Intracellular Melanin Content

In this study, the whitening effect of PESICMU extracts was further determined
through intracellular melanin production and cell-based tyrosinase assay. B16 melanoma
cells were stimulated with the cyclic adenosine monophosphate (cAMP) elevator, 50 uM
IBMX. IBMX is known to considerably up-regulate melanin production through the cAMP
cascade [19]. Theophylline, arbutin, or PESICMU extracts at 0.01 mg/mL were selected
to compare anti-melanogenesis effects on cell-based models. After 48 h of treatment,
intracellular melanin was dissolved in an alkaline solution and then measured using the
spectrophotometric method, as shown in Figure 2. The results were expressed as a fold
change in melanin content compared to the untreated control. IBMX and theophylline
treatments can induce melanin production with no significant difference (p > 0.05). The
intracellular melanin content assay revealed a significant reduction in melanin content in
the PESICMU-DFRB-treated group (fold change of 1.11 £ 0.01) compared to the IBMX-
induced group (fold change of 1.36 £ 0.01) and negative control, theophylline-treated group
(fold change of 1.44 & 0.01), respectively. Furthermore, the level of intracellular melanin
in PESICMU-DFRB-treated cells was lower than in the theophylline-treated group at
0.33 & 0.01-fold change. Melanin content in B16 cells after PESICMU-DFRB treatment was
nearly 1.09 times higher than the arbutin treatment. Interestingly, the effect of PESICMU-
DFRB on melanin production was not significantly different from that of the whitening
positive control, arbutin (fold change of 1.01 = 0.03).
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Figure 2. Effects of rice bran oil (PESICMU—RBO), defatted rice bran extract (PESICMU—DEFRB),
and husk extract (PESICMU—H) of Oryza sativa L. cv. PESICMU on intracellular melanin content in
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B16 melanoma cells induced with 50 uM IBMX for 48 h. Cells were treated with theophylline, arbutin,
or PES1ICMU extracts at a concentration of 0.01 mg/mL. Data were analyzed using one—way analysis
of variance (ANOVA), followed by LSD’s post hoc test. Different letters within each treatment indicate
a significant difference (p < 0.05).

2.3.3. Intracellular Tyrosinase Activity

Tyrosinase, a copper-containing metalloenzyme, is an attractive target for melanogene-
sis inhibitors. The results of the cell-based tyrosinase assay further supported the inhibitory
effect on tyrosinase activity (Figure 3). The results were expressed as a fold change in intra-
cellular tyrosinase activity compared to the untreated control. In this study, the tyrosinase
activity of B16 cells exposed to IBMX alone (fold change of 1.40 & 0.03) was significantly
elevated compared to untreated cells. In particular, tyrosinase activity was increased to a
fold change of 1.75 % 0.03 in B16 cells treated with standard theophylline. PES1ICMU-DFRB
showed higher tyrosinase inhibition than the negative control, theophylline-treated group
by about 1.43 times. Conversely, the standard arbutin (positive control) suppressed the
tyrosinase activity of B16 cells (fold change of 1.14 £ 0.08) at a similar level to PESICMU-
DFRB (fold change of 1.22 £ 0.10) with no significant difference (p > 0.05). Intracellular
tyrosinase activity after PESICMU-DFRB treatment was about 1.07 times higher than that
of standard arbutin.
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Figure 3. Effects of rice bran oil (PESICMU—RBO), defatted rice bran extract (PESICMU—-DEFRB),
and husk extract (PESICMU—H) of Oryza sativa L. cv. PESICMU extracts on intracellular tyrosinase
activity in B16 melanoma cells induced with 50 uM IBMX for 48 h. Cells were treated with theo-
phylline, arbutin, or PESICMU extracts at a concentration of 0.01 mg/mL. Data were analyzed using
one—way analysis of variance (ANOVA), followed by LSD’s post hoc test. Different letters within
each treatment indicate a significant difference (p < 0.05).

2.4. Antioxidant Properties
2.4.1. Screening of Antioxidant Activities

Both the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis (3-ethylbenzthiazoline-
6-sulfonic acid) (ABTS) methods are regularly adopted for the free radical scavenging
assays of plant extracts. The antioxidant capacity of DPPH radicals was recognized by
the reduction of violet color. Due to pigments in plant extracts, the absorbance reading
of DPPH could be affected and variable [20]. The application of the ABTS assay was
widely evaluated for hydrophilic and lipophilic antioxidants. Although, ABTS cations may
not even be represented as biological free radicals [21]. For the metal chelating assay, the
complex formation between the metal and its substrate, such as ferrozine, is measured using
the spectroscopic method. Excess free irons and radicals in biological systems implicate the
induction of oxidation at lipid components of the plasma membrane [22]. Thus, all three
approaches are used concurrently to confirm the antioxidant activities.
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In this study, PESICMU-DFRB showed the highest in vitro antioxidant capacity by the
DPPH and ABTS methods (648.39 &+ 8.99 and 377.49 £ 19.43 mg TEAC/g extract, respec-
tively), as shown in Table 2. The strongest value for iron chelation was 131.55 &= 19.43 mg
EECC/g extract in PESICMU-H. All extracts were further investigated in a cell-based assay
to ensure their antioxidant effects.

Table 2. DPPH radical scavenging assay, ABTS radical scavenging assay, and iron chelation assay of
Oryza sativa L. cv. PESICMU extracts.

Iron
Samples DPPH-TEAC (mg/g)  ABTS-TEAC (mg/g) Chelation-EECC
(mg/g)
PES1ICMU—-RBO 11298 £1.572 11.36 £ 0.58 2 90.56 + 17.70 2P
PES1CMU-DFRB 648.39 +8.99 P 377.49 4+ 19.43 P 65.61 +12.822
PESICMU—-H 214.13 £2.97°¢ 192.20 £9.89 ¢ 131.55 + 25.71P

PESICMU—RBO: rice bran oil of Oryza sativa L. cv. PESICMU; PESICMU—DEFRB: defatted rice bran ex-
tract of Oryza sativa L. cv. PESICMU; PESICMU—H: husk extract of Oryza sativa L. cv. PESICMU; DPPH:
2,2—diphenyl—1—picrylhydrazyl; ABTS: 2,2’ —azino—bis (3—ethylbenzthiazoline—6—sulfonic acid); TEAC:
Trolox Equivalent Antioxidant Capacity; EECC: EDTA Equivalent iron Chelation Capacity. Data were ana-
lyzed using one—way analysis of variance (ANOVA), followed by LSD’s post hoc test. Different letters within
each treatment indicate a significant difference (p < 0.05).

2.4.2. Malondialdehyde Production

MDA is one of the secondary metabolites from the lipid peroxidation process [23].
The coupling of MDA in biological samples with thiobarbituric acid-reactive substances
(TBARS) generates MDA-TBA adducts, which can be detected using spectrophotometry.
As shown in Figure 4, MDA levels in fibroblasts increased significantly after H,O, ex-
posure to 133.47 &+ 13.51% of control (p < 0.05), which may cause fibroblast cell necrosis,
apoptosis, and skin aging. On the contrary, the MDA content after the pretreatment with
the standard antioxidant, L-ascorbic acid (107.80 £ 1.40% of control) was nearly equal
to that of untreated cells (100.92 £ 2.43% of control). All PESICMU extracts, including
PES1CMU-RBO, PES1ICMU-DERB, and PESICMU-H, slightly decreased MDA production
after H,O, stimulation. On the other hand, the effects of all PESICMU extracts against lipid
peroxidation via MDA production showed no significant difference compared to L-ascorbic
acid treatment (p > 0.05).
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Figure 4. Effects of rice bran oil (PESICMU—-RBO), defatted rice bran extract (PESICMU—-DEFRB),
and husk extract (PESICMU—H) of Oryza sativa L. cv. PESICMU extracts on MDA content in
fibroblast cells stimulated with 250 uM H,O, for 48 h. Cells were treated with L—ascorbic acid or
PES1CMU extracts at a concentration of 0.1 mg/mL. The results were expressed as a percentage
of MDA content relative to the untreated control. Data were analyzed using one—way analysis of
variance (ANOVA), followed by LSD’s post hoc test. Different letters within each treatment indicate
a significant difference (p < 0.05).
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2.5. Collagen-Stimulating Effect via MMP-2 Inhibition

Gelatinase A, or MMP-2, is one mediator of type IV collagen degradation which is
largely expressed in fibroblast cells. MMP-2 activity can be detected using gelatin zy-
mography. The molecular size of the MMP-2 protein is approximately 63 kDa, which
corresponds to active MMP-2 [24,25]. A better collagen stimulator contributes to higher
MMP-2 inhibitory capacity. As shown in Figure 5, all PESICMU extracts illustrated a
significant decrease in MMP-2 activity after induction with HyO, (p < 0.05). The effects of
PES1CMU-RBO, PES1ICMU-DFRB, PESICMU-H, and L-ascorbic acid resulted in the reduc-
tion of MMP-2 activity to 104.47 £ 13.30, 85.80 & 10.40, 73.78 £ 3.07, and 70.84 £ 6.81% of
control, respectively. Interestingly, there was no significant influence on MMP-2 activity
between PES1ICMU-DFRB, PESICMU-H, and L-ascorbic acid. Hence, PESICMU-DFRB and
PES1CMU-H showed comparable collagen-stimulating effects to the standard L-ascorbic
acid.
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Figure 5. Effects of rice bran oil (PESICMU—RBO), defatted rice bran extract (PESICMU—DEFRB),
and husk extract (PESICMU—H) of Oryza sativa L. cv. PESICMU extracts on MMP—2 expression in
fibroblast cells stimulated with 250 uM H,O, for 48 h. Cells were treated with L—ascorbic acid or
PESICMU extracts at a concentration of 0.1 mg/mL. The results were expressed as a percentage of
MMP -2 activity relative to the untreated control. Data were analyzed using one—way analysis of
variance (ANOVA), followed by LSD’s post hoc test. Different letters within each treatment indicate
a significant difference (p < 0.05).

3. Discussion

In our previous study, the phenolic contents of PESICMU bran and husk extracts
were found to be high. Particularly, the dominant constituent of PESICMU bran was an-
thocyanins, namely cyanidin-3,5-diglucoside and peonidin-3-glucoside [7]. Anthocyanins
are mainly found in plant pigments, especially in berry species. The hydroxyl groups
in the molecules can contribute to the antioxidant activity against ROS and possess skin
protective effects together with a UV-filtering role, skin whitening effect, and anti-aging
properties [8,9]. The fatty acid profiles revealed that rice bran was rich in saturated and un-
saturated fatty acids [26,27]. In addition, quercetin, phytic acid, and chlorogenic acid were
major phenolic compounds in the rice bran portion [7]. In our recent research, the phenolic
profiles of rice husk from PESICMU were abundant in phytic acid, catechin, o-coumaric
acid, epigallocatechin gallate, ferulic acid, and quercetin, respectively. Surprisingly, the
high quercetin content of PESICMU husk may have the greatest antioxidant effect among
other local rice cultivars [28]. In addition, PESICMU also had the highest 6-tocopherol
content of eleven local rice cultivars in rice bran oil [7]. Therefore, PESICMU extracts were
first tested using cell-free experiments, including a mushroom tyrosinase inhibition assay
and antioxidant screening methods. After that, the cytotoxic effects of all extracts were
established before a subsequent confirmation by IBMX-induced B16 and HyO,-stimulated
fibroblasts.
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As mentioned, effective whitening agents should have promising mushroom tyrosi-
nase inhibition, reducing intracellular melanin production and tyrosinase activity in B16
cells. The unpigmented precursor cells, namely melanoblasts, which colonize hair folli-
cles and the skin epidermis, can differentiate into mature melanocytes [29]. The initial
substrate in the melanin synthesis, L-tyrosine, is converted by tyrosinase into L-DOPA
and L-dopaquinone, respectively. The tyrosinase enzyme is recognized as responsible for
melanin synthesis. This enzyme is the main target of promising skin-whitening agents.
Commercial skin-whitening agents act as tyrosinase inhibitors, such as hydroquinone,
kojic acid, arbutin, and L-ascorbic acid. The first stage-mediated tyrosinase enzyme is
the rate-limiting step in the biosynthesis of melanin. Subsequently, L-dopaquinone is
further oxidized to L-dopachrome and then produced melanin pigments [30]. Two catalytic
stages of tyrosinase involve monophenolase and diphenolase reactions. L-tyrosine and
L-DOPA are substrates for monophenolase and diphenolase activities, respectively. The
molecular docking analysis reported that tyrosinase interacts with the hydroxyl group
of the L-tyrosine substrate towards copper (Cu?*) B atom (distance 1.97 A) and histidine
residue (His208) using a 7—m stacking interaction. The phenol group of L-DOPA is po-
sitioned towards a Cu?*B atom (distance 2.87 A) for the L-DOPA substrate [31]. In the
present study, PESICMU-DFRB possessed impressive tyrosinase inhibition against the
mushroom tyrosinase enzyme, with ICsy values of 0.99 &+ 0.30 and 1.92 £ 0.71 mg/mL
for monophenolase and diphenolase activities, respectively. Nonetheless, the inhibition of
mushroom tyrosinase might not correlate with the effect on mammalian tyrosinase [32].
To illustrate, the ICsy values a-arbutin and B-arbutin were 6499 + 137 and 1687 + 181
uM, respectively, for monophenolase activity. Conversely, «-arbutin and {3-arbutin at
a concentration of 43.8-700 uM showed significant inhibitory effects against B16 tyrosi-
nase activity [33]. Thus, the mammalian cell-based model, such as B16 melanoma, was
selected for screening melanogenesis. In this study, PESICMU-DFRB significantly down-
regulated the melanin content and tyrosinase activity in IBMX-induced B16 cells. These
findings confirmed that the whitening effect of PESICMU-DFRB may be due to the pres-
ence of cyanidin-3,5-diglucoside (650.55 & 1.65 mg/100 g rice bran) [7]. Whitening effects
were found in other natural plants with anthocyanins, such as Vitis vinifera [34], Hibiscus
syriacus [35], and Pistacia vera [36]. In consequence, kinetic studies revealed that cyanidin-3-
O-glucoside acts as a competitive inhibitor for tyrosinase, with an inhibition constant of
40.31 & 3.61 uM. In addition, molecular simulations demonstrated that the oxygen atom at
ring A of cyanidin-3-O-glucoside can interact with the central Cu?* of the human tyrosi-
nase enzyme with the lowest binding energy of —10.8 kcal/mol [37]. Although Lee et al.
reported that cyanidin-3-O-glucoside slightly reduced the activity of murine tyrosinase
enzyme by comparison to arbutin as a positive control [38]. In this study, biologically
active compounds that enrich PESICMU-DFRB can decrease the tyrosinase activity and
melanin production in B16 cells compared with the standard arbutin. Moreover, the metal
ion chelating activity of PESICMU-DFRB could synergize the Cu?* binding effect of the
tyrosinase enzyme. However, the deep mechanism via gene, protein expression and molec-
ular verification methods, such as qPCR and Western blot, should be investigated further
to confirm our speculation.

Natural bioactive compounds with strong scavenging abilities and the ability to pre-
vent lipid peroxidation are suitable as anti-aging agents for cosmetics. The mechanisms
of antioxidant defense and redox balance markedly regulate cell homeostasis. In the mi-
tochondria, the main ROS are formed as H,O,. An excess of H>,O, can influence either
necrosis or apoptosis of epidermal skin cells [39]. The hydroxyl radicals from H,O, can
bind to membrane lipids, leading to the excessive production of reactive lipid species (RLS)
and an imbalance in a redox system, respectively. Lipid peroxidation is a consequence of
the oxidative stress response in the biological system [40]. Polyunsaturated fatty acids,
part of the lipid membrane, are the target site of hydroxyl radical-derived oxidative stress.
During the autoxidation of phospholipid bilayers, reduced forms of iron atoms are used to
generate reactive radicals via the Fenton reaction [41]. The end products of lipid peroxida-
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tion include 4-hydroxy-2-nonenal (HNE), malondialdehyde (MDA), and acrolein, which
have been linked to aging disorders, cell apoptosis, and pro-inflammatory response [42].
Additionally, impaired membrane homeostasis leads to cell death, or ferroptosis [43]. In
this study, PESICMU-DFRB enhanced scavenging capacity against DPPH and ABTS rad-
icals. Moreover, all PES1ICMU extracts showed a reduction of MDA levels in fibroblasts
after HyO, exposure at a comparable level to L-ascorbic acid-treated cells (p > 0.05). Due
to the unsaturated free fatty acids of PESICMU rice bran, the contents of oleic acid and
linoleic acid were about 40 g and 36 g per 100 g of crude fat, respectively [7]. Scientific
evidence reported that oleic acid had a protective effect on antioxidant enzymes [44] as
well as inhibitory effects on heavy ion-induced cell damage and ferroptosis through lipid
peroxidation [45]. Previous experiments supported that oleic acid could decline the amount
of ROS through the protection of the active sites of antioxidant enzymes and free radical
quenching after cadmium-stimulated cell injury [46]. Similarly, plant extracts, including
Cannabis sativa [47] and Olea europaea [48], had antioxidant properties due to the presence
of oleic acid. Each 100 g of PESICMU bran contained 1.44 + 0.00 mg of quercetin, 1.19 &
0.00 mg of phytic acid, and 0.93 & 0.02 mg of chlorogenic acid, respectively [7], resulting in
a decreasing MDA level. Previous research suggested that the administration of quercetin
to mice can protect against oxidative stress that results from ferrous sulfate-induced organ
injury [49]. Additionally, other studies confirmed that quercetin, a biologically active
phenolic compound, can also alleviate the production of intracellular H,O, and the lipid
peroxidation process in fibroblasts after UV radiation [50]. This was consistent with other
quercetin-enriched plants such as Prunus pseudocerasus [51] and Moringa oleifera [52], which
provide antioxidant properties against H,O, induction. Thus, the antioxidant effect of
PES1CMU-DFRB might be from the contents of oleic acid and quercetin in the rice barn of
PES1CMU.

Collagen in the skin acts as a major supportive structure. The degradation of collagen
in the skin, particularly on the face, is an important factor in skin aging that begins around
the age of 30 [53]. As known, collagen is composed of triple helices of different amino acid
compositions. Alterations in the metabolism of collagen affect the physiology of the skin
and also lead to skin aging. Type IV collagen plays an essential role in controlling cutaneous
transepidermal water loss [54] and reducing skin roughness and wrinkles [55]. Fibroblast
cells maintain the extracellular matrix (ECM) networks by producing collagen, elastin, and
glycosaminoglycans [56]. MMPs, a group of zinc-binding enzymes, play a vital role in the
breakdown of ECM. Particularly, gelatinases, including MMP-2 and MMP-9, can cleave
the structure of collagens and proteoglycans, which influence skin strength. Therefore,
the biosynthesis of ECM or the reduction of MMP enzymes in fibroblasts is the primary
target for anti-aging agents. For instance, L-ascorbic acid is an essential physiological
cofactor for the hydroxylation of procollagen proline and lysine [57]. Furthermore, oral
administration of collagen peptides can decrease the degradation of collagen and support
skin health characteristics such as moisture and elasticity [58]. Rabelo et al. indicated that
ascorbic acid used to be the standard compound against the MMP-2 enzyme [59]. In the
present study, PESICMU-DFRB could downregulate the expression of the MMP-2 enzyme
in HyO,-stimulated fibroblasts at the comparable level to the standard collagen stimulator,
L-ascorbic acid, with no significant difference (p > 0.05). In addition, published studies
revealed the inhibitory effect of quercetin on radical production and the expression of
MMP [60]. Along with previous works, quercetin could reduce the expression of MMP-2
based on the suppression of nuclear factor-kB (NF-kB) [61] or modulation of superoxide
dismutase (SOD) activity [62]. Several studies demonstrated that the quercetin compound
found in plant extracts like Oenothera biennis [63] and Magnolia officinalis [64] can inhibit
MMP-2 secretion and be used as an anti-aging agent. The inhibition of MMP-2 activity
influences a decrease in the destruction of collagen in the skin. Therefore, the source of
quercetin in PESICMU-DFRB could inhibit the destruction of collagen against MMP-2.
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4. Materials and Methods
4.1. Extraction Method

The Thai rice variety ‘Pieisu 1 CMU’ was collected by the Lanna Rice Research Center,
Chiang Mai University, Chiang Mai, Thailand in October 2021. The extraction process
(Figure 6) was performed by the Pharmaceutical and Natural Products Research and
Development Unit (PNPRDU), Chiang Mai University, Chiang Mai, Thailand. Firstly, the
rice husk (100 g) was separated and soaked in a 95% ethanol solution (6 L). After 48 h of
maceration, the rice husk extract was concentrated by a rotary evaporator. Secondly, rice
bran (1000 g) was removed from the rice grain and compressed using the screw extruder
to obtain the rice bran oil. The residue oil content (100 g) was further extracted with
dichloromethane (2 L) for 72 h to obtain the rice bran oil. Finally, the ethanol extraction of
the de-oiled rice bran (100 g) was carried out to obtain the defatted rice bran extract. The
different extracts from Pieisu 1 CMU were labeled as PESICMU-RBO for the essential oil
from the rice bran, PESICMU-DFRB for the extract from the defatted residue of the rice
bran, and PES1ICMU-H for the extract from the rice husk.

Rice Husk
Ethanol Rice Husk Extract
extraction q (PES1CMU-H)

& Rlce Bran
Screw Press
l P Rice Bran Oil

Dichloromethane (PES1CMU-RBO)
Extraction

!

Defatted residue
of rlce bran

Oryza sativaL. cv.

Pieisu 1 CMU (PES1CMU) -
Ethanol q
extraction

Figure 6. An overview of the extraction process of Oryza sativa L. cv. Pieisu 1 CMU.

4.2. Cytotoxicity Assay
4.2.1. Cell Culture

The mouse skin melanoma cell line (B16 melanoma; JCRB0202) and immortalized
human fibroblast cell line (OUMS-36T-4F; JCRB1006.4F) were obtained from the JCRB
Cell Bank (Osaka, Japan). B16 melanoma cells were cultured in Eagle’s minimal essen-
tial medium (MEM) (Gibco Life Technologies, Grand Island, NY, USA) containing 10%
fetal bovine serum (HyCloneTM, GE Healthcare Life Sciences Laboratories, South Logan,
UT, USA) and 1% penicillin/streptomycin (Capricorn Scientific GmbH, Ebsdorfergrund,
Germany). Human fibroblast cells were cultured in Dulbecco’s Modified Eagle Medium
(DMEM) (Gibco Life Technologies, Grand Island, NY, USA) containing 10% fetal bovine
serum and 1% penicillin/streptomycin. All cells were maintained in a humidified incubator
at 37 °C with 5% CO,. All experiments were performed with the cells between passages 3
and 10.

4.2.2. SRB Assay

Cell viability was measured by the protein-specific dye sulforhodamine B (SRB) (Sigma
Chemical, St. Louis, MO, USA) as previously described [16]. B16 and fibroblast cells were
seeded separately into 96-well plates (10* cells/well) and incubated for 24 h. Cells were
treated with 0.01-1 mg/mL extracts for an additional 48 h. The extract-containing super-
natant was discarded and replaced with 50% trichloroacetic acid (PanReac AppliChem,
Barcelona, Spain) to fix cells on plates at 4 °C for 1 h. The 0.04% SRB solution was added to
stain the bounded cells at room temperature for 30 min. The unbound dye in each well
was removed using a 1% acetic acid solution and allowed to dry overnight. A tris solution
(Vivantis, Selangor, Malaysia) was added to solubilize the attached dye in the cells. The
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absorbance was measured at 515 nm using a microplate reader (EZ2000 Biochrome Ltd.,
Cambridge, UK). The results were expressed as the percentage of cell viability compared to
untreated cells.

4.3. Determination of Whitening Effects
4.3.1. Cell-Free Tyrosinase Inhibition

The measurement of mushroom tyrosinase activity was modified from the published
method [65,66]. L-Tyrosine (Bio Basic, Ontario, Canada) or L-DOPA (Sigma Chemical, St.
Louis, MO, USA) were used as substrates for monophenolase and diphenolase activity,
respectively. Each sample was diluted to a series of concentrations (0.039, 0.078, 0.156,
0.3125, 0.625, 1.25, 2.5, and 5 mg/mL). Mushroom tyrosinase (Sigma Chemical, St. Louis,
MO, USA) was dissolved in 0.1 M phosphate buffer (pH = 6.8) to obtain the final concen-
tration of 100 units/mL. The reaction was started by adding 40 pL of sample solution,
80 uL of phosphate buffer, 40 pL of mushroom tyrosinase, and 40 uL of substrates (1.5 mM
L-tyrosine or 2.5mM L-DOPA solution). After incubation at room temperature for 15 min,
the L-dopachrome formation was measured at 475 nm. The percentage of mushroom
tyrosinase inhibition was calculated using the following equation:

The inhibition of mushroom tyrosinase activity = [(A — B) - (C — D)]/(A — B) x 100,
@
where A = vehicle control, B: = vehicle control without mushroom tyrosinase, C = sample
mixed with mushroom tyrosinase, and D = sample without mushroom tyrosinase. The
results were expressed as ICsy values (the concentration that caused 50% mushroom
tyrosinase inhibition).

4.3.2. Cellular Melanin Content Assay

The intracellular melanin levels were determined as previously described [19,67]
with some modifications. B16 cells were seeded in 6-well plates at a concentration of
2.5 x 10° cells/well and allowed to attach for 24 h. This assay was divided into 7 groups
as follows: control, non-treatment; IBMX: 50 uM IBMX (PanReac AppliChem, Barcelona,
Spain); theophylline: IBMX + 0.01 mg/mL theophylline (Sigma Chemical, St. Louis, MO,
USA); arbutin: IBMX + 0.01 mg/mL arbutin (Sigma Chemical, St. Louis, MO, USA);
PES1CMU-RBO: IBMX + 0.01 mg/mL rice bran oil; PESICMU-DFRB: IBMX + 0.01 mg/mL
de-oiled rice bran extract; and PESICMU-H: IBMX + 0.01 mg/mL husk extract. After
48 h of incubation, cell pellets were collected and lysed with 1 N NaOH containing 10%
DMSO at 80 °C for 30 min. The intracellular melanin release was measured at 405 nm
using a microplate reader. The results were expressed as a fold change in melanin content
compared to the control.

4.3.3. Cellular Tyrosinase Assay

Cellular tyrosinase activity was conducted according to the previous method [19,67]
with a slight modification. Briefly, B16 cells were incubated with samples and co-treated
with 50 uM IBMX for 48 h. Cells were harvested and lysed with a PBS solution containing
1% Triton X-100 (VWR Life Science, Solon, OH, USA) at —20 °C for 30 min. Then, cell
lysates were ruptured using the vortex mixer and further clarified by centrifugation at
11,000 g for 10 min. The supernatant was obtained to react with 5 mM L-DOPA at 37 °C
for 1 h. The L-dopachrome formation was measured at 475 nm using a microplate reader.
The results were expressed as a fold change in tyrosinase activity compared to the control.

4.4. Determination of Antioxidant Properties
4.4.1. DPPH Scavenging Assay
The scavenging methods were performed on DPPH assay, ABTS assay, and metal

chelation as previously described [6]. Briefly, 100 puL of each sample was allowed to mix
with 50 pL of DPPH solution (Sigma Chemical, St. Louis, MO, USA) in a 96-well plate and
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incubated in the dark at room temperature. After 30 min of incubation, the DPPH radicals
were detected spectrophotometrically at 515 nm. The percentage of scavenging activity
against DPPH radicals was calculated using the following equation:

DPPH radical scavenging activity = [(A — B) — (C — D)]/(A — B) x 100, 2)

where A = DPPH radicals, B: = vehicle control, C = sample mixed with DPPH radicals,
and D = sample without DPPH radicals. The results were expressed as TEAC values (mg
Trolox/g extract).

4.4.2. ABTS Scavenging Assay

The sample solution (25 pL) and ABTS working solution (200 pL) (Sigma Chemical,
St. Louis, MO, USA) were reacted at room temperature for around 10 min. The optimal
densities of ABTS radicals were determined at 734 nm. The percentage of scavenging
activity against ABTS radicals was calculated using the following equation:

ABTS radical scavenging activity = [(A — B) — (C — D)]/(A — B) x 100, 3)

where A = ABTS radicals, B: = vehicle control, C = sample mixed with ABTS radicals,
D = sample without ABTS radicals. The results were expressed as TEAC values (mg
Trolox/g extract).

4.4.3. Iron Chelating Assay

The reagents were prepared from 3-(2-yyridyl)-5,6-diphenyl-1,2,4-triazine-4’ 4"-disulfonic
acid sodium salt (ferrozine) and iron (II) chloride tetrahydrate (FeCl, - 4H,0) (Sigma Chem-
ical, St. Louis, MO, USA). The sample (100 pL) was mixed with 50 pL of 5 mM Ferrozine.
Afterward, 2 mM FeCl, was added into each well and incubated for 30 min. The absorbance
of the ferrous-ferrozine complex was measured at 562 nm. The percentage of iron chelating
activity was calculated using the following equation:

Iron chelating activity = [(A — B) — (C — D)]/(A — B) x 100, (4)

where A = ferrous-ferrozine complex, B: = vehicle control, C = sample mixed with ferrous
and ferrozine, and D = sample without ferrozine. The results were expressed as EECC
values (mg EDTA /g extract).

4.4.4. Thiobarbituric Acid Reactive Substances (TBARS) Method

The measurement of MDA content was adapted from previous works [68,69]. Fi-
broblast cells were placed into 6-well plates at a concentration of 2.5 x 10° cells/well and
incubated for 24 h. The medium was replaced with samples. After 24 h, cells were induced
with 0.2 mM H,O; for an additional 24 h. The cell lysates were harvested to react with 0.6%
TBA solution (BDH Chem. Ltd., Poole, UK) at 100 °C for 10 min. The reaction mixture
was then cooled at —20 °C for 5 min to stop the reaction. The chromogen MDA-TBA
was measured at 532 nm. The results were expressed as the percentage of MDA content
compared to untreated fibroblasts.

4.5. MMP-2 Inhibitory Activity by Gelatin Zymography

The expression of MMP-2 in fibroblast cells was performed by the gelatin zymogram
as previously published [70]. The supernatant was cleared by centrifugation at 3000x g for
3 min and loaded onto 10% acrylamide-sodium dodecyl sulfate (SDS) gels containing 0.1%
gelatin. After electrophoresis, gels were washed in 2.5% Triton X-100 solution for 20 min
and incubated with the developing buffer (50 mM Tris pH = 7.5, 5 mM calcium chloride,
and 0.01% sodium azide) at 37 °C for 24 h. Gels were subsequently stained with 0.5%
Coomassie brilliant blue R-250 solution (Bio Basic, Ontario, Canada) for 60 min and washed
three times in the destaining solution with gentle shaking. The gel images and protein
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band intensities were detected using the Gel Doc™ EZ System (Version 3.0; Bio-Rad). The
percentage of MMP-2 activity was compared to the control.

4.6. Statistical Analysis

All experiments were performed in triplicate. Data were represented as the
mean =+ standard error. Statistical analysis was conducted by SPSS 23.0 software (SPSS Inc.,
Chicago, IL, USA). The data were subjected to a one-way analysis of variance (ANOVA)
with LSD’s post hoc test. Statistical significance was considered as p < 0.05.

5. Conclusions

In this study, three different extracts from PESICMU were selected to determine the
whitening activity via mushroom tyrosinase and cell-based assays. Furthermore, the an-
tioxidant properties of PESICMU extracts were performed based on DPPH, ABTS radicals,
iron ions, and malondialdehyde production in fibroblasts. The fibroblast supernatant was
further examined. MMP-2 inhibitory activity in skin fibroblasts, which is related to collagen
production capability, was conducted. Results showed that anthocyanin-rich PESICMU-
DERB could diminish the activity of the tyrosinase enzyme responsible for a melanogenesis
inhibitor as a skin-whitening agent. Moreover, PESICMU-DEFRB illustrated impressive
antioxidant capacities against DPPH, ABTS radicals, and malondialdehyde production.
Particularly, PESICMU-DERB also presented a significant reduction in the gene expression
of MMP-2 enzyme protein production. It was strongly suggested that PESICMU-DFRB
could reduce melanin production, protect the lipid membrane of fibroblasts, and decrease
the destruction of collagen. These actions were achieved due to the high fatty acid and
phenolic contents in the rice bran portion of PESICMU. PESICMU-DERB could be consid-
ered a new active ingredient for cosmetic application with potential for skin whitening,
antioxidants, and collagen stimulation in a single extract.
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