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Abstract: The digestive fluid of pitcher plants is a rich source of enzymes and secondary metabolites,
but its impact on higher plant growth and development remains unknown. The aim of the study
was to determine the phytotoxicity of the digestive fluid of the pitcher plant (Nepenthes x ventrata) on
the germination of tomato (Solanum lycopersicum L.) seeds, elongation growth and cell viability of
roots of tomato seedlings. The digestive fluid was collected from pitchers before feeding and four
days after feeding; the pH and electrical conductivity of the fluid were determined. Undiluted and
50% fluids were used in the study. An inhibition of germination of tomato seeds, by around 30% and
55%, was respectively observed in 50% and 100% digestive fluids collected before and after feeding.
Digestive fluid did not affect the root growth of tomato seedlings; a slight (6%) inhibition was only
observed after the application of 100% digestive fluid from an unfed trap. The roots of the tomato
seedlings treated with undiluted fluid were characterized by reduced cell viability. Reactive oxygen
species (H2O2 and O2

•−) were mainly localized in the root apex regardless of the used phytotoxic
cocktail, and did not differ in comparison to control plants.

Keywords: carnivorous plant; ROS; root growth; seed germination; allelopathy

1. Introduction

Nepenthes x ventrata belongs to the Nepenthaceae family and is a natural hybrid of
Nepenthes alata Blanco and Nepenthes ventricosa Blanco. This species is endemic to forests in
the Philippines [1]. N. ventrata forms jug-shaped containers that function as passive pitcher
traps. Pitchers are filled with digestive fluid, being the mixture that enables the release of
nutrients from the bodies of the captured prey [2].

Many enzymes have been found in the digestive fluid of pitcher plants: proteases,
peptidases, phosphatases, esterases, ribonucleases and chitinases [3–6]. The aspartyl
proteinases Nepenthesin-1 and Nepenthesin-2 have also been isolated from the diges-
tive fluid [7]. The digestive fluid also contains a thaumatin-like protein with antibac-
terial and antifungal properties [8]. In addition, pitcher fluid contains compounds of
low molecular weight, e.g., two naphthoquinones: droseron (3,5-dihydroxy-2-methyl-1,4-
naphthoquinone) and its derivative 5-O-methyldroserone (2-methyl-3-hydroxy-5-methoxy-
1,4- naphthoquinone) [9], of antifungal activity against a wide range of human and plant
fungal pathogens [10]. Another low-molecular substance is plumbagin, isolated from
N. alata [11] and characterized by antimalarial, antibacterial, antifungal and anticancer
properties [12–14] and 7-methyl-juglone [11]. The digestive fluid of the Nepenthes species
is rich in mineral nutrient composition (boron, calcium, copper, iron and nickel) and anions
Cl−, Br− and SO4

2− [11]. Prey digestion (feeding process) is accompanied by alteration in
fluid composition, including reactive oxygen species (ROS) and reactive nitrogen species
(RNS) levels [15].

The physicochemical properties of the digestive fluid, such as lower surface tension
against water and high viscoelasticity, play an important role in preventing the escape of
captured insects [16].
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Application of allelopathic cocktails in cultivation can effectively influence weed
populations and insect pests. Allelopathy thus offers an attractive environmentally friendly
alternative to pesticides in agriculture [17]. Volatile organic compounds belonging to the
group of allelochemicals could repel insects or mask the host’s odor to confuse them [18,19].

Digestive fluid as a mixture of many compounds with a possible phytotoxic potential
may prove to be a key element in research on natural herbicides that would replace artificial
and less specific compounds currently used in agriculture. The exact composition of the
digestive fluid is unknown, but the digestive fluid of some species is known to contain
compounds that have phytotoxic potential.

The aim of our study was to characterize some properties of phytotoxic cocktails
and to determine the effect of the digestive fluid from pitchers of N. ventrata, collected
before and after plant feeding, on tomato (Solanum lycopersicum L.) seed germination and
root growth.

Based on the mode of action of many allelochemicals and phytotoxins [20], we hypoth-
esized that pitcher plants’ digestive fluid impacts the seed germination and root growth of
tomato seedlings by the induction of oxidative stress.

2. Results
2.1. Electrical Conductivity

The electrical conductivity and pH of the phytotoxic cocktail depended on the origin
of the fluid (from fed or unfed traps) and the concentration. The highest pH value was
found in distilled water used as a control, and the lowest in heat-treated, 100% fluid from
fed traps (Table 1). The pH of the fluid from fed pitchers was lower than that from unfed
ones, regardless of concentration or heat-treatment (Table 1).

Table 1. Electrical conductivity and pH of digestive fluid solutions used in the experiments as
phytotoxic cocktails.

pH Electrical Conductivity [mS cm−1]

Control 6.29 ± 0.07 c 0.021 ± 0.017 A

Crude fluid

Unfed trap 50% fluid 5.96 ± 0.17 bc 0.786 ± 0.078 B
100% fluid 5.82 ± 0.03 b 1.333 ± 0.012 C

Fed trap 50% fluid 3.78 ± 0.19 a 0.704 ± 0.042 B
100% fluid 3.38 ± 0.08 a 1.247 ± 0.017 C

Heat-treated fluid

Unfed trap 50% fluid 6.09 ± 0.29 bc 0.771 ± 0.026 B
100% fluid 5.54 ± 0.10 b 1.364 ± 0.052 C

Fed trap 50% fluid 3.83 ± 0.31 a 0.630 ± 0.040 B
100% fluid 3.36 ± 0.16 a 1.127 ± 0.039 C

Table includes average values ± SD of three replicated experiments. Homogenous groups (a–c or A–C) were
evaluated using Fisher’s LSD post hoc test with p < 0.5.

The highest electrical conductivity (1.364 mS cm−1) was recorded for heat-treated
undiluted fluid from unfed pitchers, and the lowest (0.0209 mS cm−1) for the distilled water
(control) (Table 1). Digestive fluids (100%) were characterized by higher electrical conductivity
compared to diluted ones, irrespective of the origin of the fluid and heat-treatment.

2.2. Germination Tests

Two-way Anova showed that there were no statistically significant differences between
the germination of tomato seeds in crude fluid and heat-treated fluid (p = 0.73, F = 0.13). Due
to the lack of associations, the dataset for crude and heat-treated fluids was not separated
in the remaining analyses.

Tomato seeds germinated in 100% fluid after three days of imbibition in water
(Figure 1). Undiluted digestion fluids from unfed or fed traps inhibited the germina-
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tion of tomato seeds by 59% or 53%, respectively. In diluted phytotoxic cocktails of fed and
unfed pitchers, tomato seeds germinated in 67% and 75%, respectively (Figure 1).
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Figure 1. Germination of tomato seeds in water (control) or in phytotoxic cocktails of 100% or 50%
digestive fluids from fed and unfed traps of pitcher plants. Due to the lack of significant differences,
we did not separate data obtained after treatment with crude and heat-treaded fluids. Values are
average ± SD of three replications. Homogenous groups (a–c) were evaluated using Fisher’s LSD
post hoc test with p < 0.5.

2.3. Root Growth Biotest

Two-way Anova showed that there were no statistically significant differences between
the growth of tomato seedlings in crude fluid and heat-treated fluid (p = 0.33, F = 0.95). Due
to the lack of associations, the dataset for crude and heat-treated fluids was not separated
in the remaining analyses.

Roots of the control tomato seedlings growing in water for 24 h were about 16 mm
long. Fluids from traps of pitcher plants repressed the growth of tomato roots in only 6%
(Figure 2). The longest roots were observed in seedlings treated with the diluted fluid from
unfed traps. The strongest inhibition of root growth was noted for seedlings treated with
100% fluids from unfed traps. Root lengths measured in seedlings treated with diluted
and undiluted fluid from fed traps differed by 0.25 mm and 0.5 mm from the control,
respectively, but the differences were not statistically significant.

2.4. Test of Root Cell Viability

The viability of the root cells of seedlings treated for 24 h with crude and heat-treated
phytotoxic cocktails slightly differed (Table 2). Excluding the control plants, the highest
viability was estimated for roots of seedlings treated with crude, diluted fluid from fed
traps, and the lowest viability was noticed for the roots of seedlings grown in 100% crude
digestion fluid from unfed pitchers, which was very similar to 100% heat-treated fluid
from fed traps (31,8–31,3% of damages, respectively). The roots of seedlings treated with
50% fluid were characterized by a higher viability than the roots of seedlings treated with
undiluted fluid, irrespective of heat treatment.
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Figure 2. Length of roots of tomato seedlings growing for 24 h in water (control) or in phytotoxic
cocktails of 100% or 50% digestive fluids from fed and unfed traps of pitcher plants. Due to the lack of
significant differences, we did not separate data obtained after treatment, the division into crude and
heat-treaded fluids was not included. Values are average ± SD of three replications. Homogenous
groups (a, b) were evaluated using Fisher’s LSD post hoc test with p < 0.5.

Table 2. Cell viability (Evans blue test) and cell damage of roots of tomato seedlings cultured in water
or treated with digestive fluids from Nepenthes traps (crude, heat-treated, concentrated (100%) or
diluted (50%)) after 24 h of the culture.

Evans Blue Uptake to the Roots
[mg dye g−1 FW]

Cell Damage
[%]

Positive control (heat-treated roots) 0.476 ± 0.011 c 100 E

Control (seedlings grown in water) 0.086 ± 0.021 a 18.1 A

Crude fluid

Unfed trap 50% fluid 0.122 ± 0.064 b 25.7 BC
100% fluid 0.151 ± 0.053 b 31.8 D

Fed trap 50% fluid 0.100 ± 0.048 b 20.9 B
100% fluid 0.140 ± 0.079 b 29.3 BC

Heat-treated fluid

Unfed trap 50% fluid 0.109 ± 0.056 b 22.9 BC
100% fluid 0.113 ± 0.055 b 23.7 D

Fed trap 50% fluid 0.135 ± 0.008 b 28.4 B
100% fluid 0.149 ± 0.084 b 31.3 BC

Table includes average values ± SD of three replicated experiments. Homogenous groups (a–c or A–E) were
evaluated using Fisher’s LSD post hoc test with p < 0.5.

2.5. In Situ H2O2 Localization in Tomato Seedlings Cultured

H2O2 was localized using DAB staining as brown precipitates of polymerized DAB
(Figure 3). For all tested seedlings, the most visible staining was detected in the root tips.
Stronger coloration of the upper part of the roots, on the border with the hypocotyl, was
observed in seedlings treated with heat-treated fluid, regardless of the concentration of the
fluids or the feeding of the traps (from fed or unfed ones).
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Figure 3. In situ H2O2 localization in tomato seedlings cultured for 24 h in water (the control) or
in phytotoxic cocktails of 100% or 50% fed or unfed traps of pitcher plants. Control seedlings (A),
seedlings growing in crude concentrated fluids of unfed traps (B), treated with crude diluted cocktail
of unfed traps (C), cultured in crude concentrated fluids of fed traps (D), exposed to crude diluted
cocktails of unfed traps (E), growing in heat-treated concentrated fluids of unfed traps (F), heat-
treated diluted cocktails of unfed traps (G), heat-treated concentrated fluids of fed traps (H) and
heat-treated diluted cocktails of fed traps (I). Bar = 2 mm.

2.6. In Situ O2
•− Localization

The histochemical localization of O2
•− was carried out using NBT staining. A dark

blue coloration of formazan was observed in the root tips of all the tested seedlings
(Figure 4). Only the outer layers of the roots were colored above the tips. The roots
of seedlings treated with 50% digestive fluid were characterized by a slightly higher color
intensity, regardless of the heating of the phytotoxic cocktails (Figure 4). However, in
general, no differences in NBT staining were noticed between the roots of tomato seedlings
treated with digestive fluids and those growing in water (Figure 4).
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Figure 4. In situ O2
•− localization in tomato seedlings cultured for 24 h in water (control) or in

phytotoxic cocktails of 100% or 50% fed or unfed traps of pitcher plants. Control seedlings (A),
seedlings growing in crude concentrated fluids of unfed traps (B), treated with crude diluted cocktail
of unfed traps (C), cultured in crude concentrated fluids of fed traps (D), exposed to crude diluted
cocktails of unfed traps (E), growing in heat-treated concentrated fluids of unfed traps (F), heat-
treated diluted cocktails of unfed traps (G), heat-treated concentrated fluids of fed traps (H) and
heat-treated diluted cocktails of fed traps (I). Bar = 2 mm.

3. Discussion

Nepenthes is a plant which, by adapting to specific environmental conditions, in the
process of evolution, developed a carnivorous syndrome. Although it is known where the
components of the fluid are produced and how the substances resulting from the digestion
of the prey are absorbed by the plant, knowledge about the composition of the digestive
fluid is limited. The phenomenon of carnivorous syndrome in plants has been described
for over 150 years; the isolation and identification of enzymes involved in digestion is still
only fragmentary. It refers to both the composition of enzymes and other molecules in
the digestive fluid. Their identification, structure and biosynthesis may be an interesting
target for further research [9]. Until now, the digestive fluid of pitcher plants has been
mostly examined in the context of plant nutrition, but its putative toxicity on neighboring
plants should not be omitted. Our study is a unique observation of the impact of the
digestive fluid on the germination and growth of other plants; acceptors, according to
allelopathic terminology.

At the start of this study, we determined the impact of pitcher plant feeding and the
inactivation of the fluid by heating on its phytotoxicity. No influence of the temperature
inactivation on the toxicity of the digestive fluid on the germination of tomato seeds and the
elongation growth of roots suggests temperature-resistant compounds of the fluid, rather
than enzymes of the fluid, are responsible for its negative action. The feeding of the pitcher
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plant resulted in decreased pH of the fluid, which is a typical reaction in the digestion
process [21], although it did not affect tomato seed germination. The germination of seeds
was inhibited by phytotoxic cocktails with no respect to the pH of the fluid. Tomato seeds
similarly germinated in the digestive fluid with a pH range of 3.3–3.8, taken from fed traps
and in the digestive fluid of unfed traps (pH 5.5 to 6.1). The low pH of the digestive fluid
also did not influence the elongation growth of the tomato roots. The pH value also seems
to be correlated with bacterial community composition [22] and feeding. Taking to account
no differences in cocktail phytotoxicity in the tomato seedlings before and after heating,
it can be concluded that microorganisms from the fluid are not toxic to acceptor tissues;
however, perhaps the experiments should be performed longer to observe such effects.
The electrical conductivity of the digestive fluid showed no difference in dependence
on feeding, nor heating; it only decreased as the dilution of the liquid was performed.
Electrical conductivity in a range of 0.8–1.6 mS cm−1, observed in the research, indicates
moderately saline soils, where only plants resistant to salinity can grow [23,24]. This
data confirms the information that the pitcher fluid of Nepenthes plants (N. alata, N. fusca,
N.gracilis, N. mirabilis, N. superba, N. thorelii and N. ventricosa) is a 25 mM KCl solution with
few additional ions [11].

During the germination tests, solutions with a similar pH, but different digestive fluid
concentration, were applied, on which the results of the experiment mainly depended.
Undiluted digestive fluid, taken from a pitcher of N. ventrata fed with the proteins, inhibited
tomato seed germination as compared to the 50% cocktail. Some compounds that may
adversely affect the growth and development of other plants have been isolated from
carnivorous plants. Studies conducted with the use of Portuguese sundew ((Drosophyllum
lusitanicum L. (Link)) extracts have shown that the extracts inhibited the germination of
lettuce (Lactuca sativa L.) and wheat (Triticum aestivum L.) seeds. Plumbagin has been
identified as the main compound responsible for the inhibition of lettuce sprouting [25].
Other compounds, isolated from carnivorous plants, may show a toxic effect; these include
two naphthoquinones, droserone and its derivative 5-O-methyldroserone, which have
beem found in the digestive fluid of N. khasiana [10] or 7-methyl-juglone isolated from
N. alata [11]. Previous reports from our laboratory indicated the presence of phenolic
compounds in the digestive fluid, the total content of which increased in fed traps [15].
Phenolics are regarded as strong allelochemicals of various modes of action in acceptor
plants [26].

Investigating the mode of action of allelopathic compounds is complicated due to
the multitude of potential molecular targets. Biological tests using plants or plant tissues
successfully detect the biological activity of many synthetic and natural compounds [27].
One of the first visible effects of phytotoxin’s action is the reduction of seed germination
and/or seedling growth [28]. Diverse phytotoxins (like cyanamide, citral, coumarin) act as
inhibitors of root tip cell division, influencing root growth [29–31]. Treatment of tomato
seedlings with digestive fluids showed that components of these cocktails had no effect on
the growth and development of the young seedlings. Morphology and length of the roots
of tomato plants exposed to 100% and 50% digestive fluids of N. ventrata traps did not differ
and were similar to those observed in control seedlings. It suggests that the impact of the
phytotoxic cocktails of the digestive fluids on growth of the roots is weaker than on seed
germination. This observation is atypical in allelopathy research, as most allelochemicals
applied as the mixture or extract originated from the tissue of allelopathic plant are more
toxic in growth tests than germination tests [32]. Many allelochemicals affect seed germina-
tion by inhibition of the activity of the enzymes crucial for the process. Extracts from the
leaves and flowers of catnip (Nepeta meyeri Benth.) decreased α-amylase, ß-1,3 glucanase
and protease activities in seeds of field dodder (Cuscuta campestris Yunck) [33]. Allelochem-
icals could disrupt the action of phytohormones in germinating seeds. The inhibition of
germination of lettuce (Lactuca sativa L.) by myrigalone A, C-methylated dihydrochalcone
from sweet gale (Myrica gale L.) was accompanied by alterations in gibberellins metabolism
by inhibiting GA3 oxidase, as well as by interfering with the gibberellin signaling path-
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way [34]. Perturbations in ROS metabolism and the induction of oxidative stress were
identified as the cause of inhibition of seed germination. Sunflower (Helianthus annus L.) ex-
tracts increased H2O2 content in mustard (Sinapsis alba L.) seeds, resulting in the restriction
of their germination [35].

Although evidence for allelopathic interactions and/or the potential of allelochemicals
is based on the evaluation of seed germination and seedling growth of the target species [28],
these tests only provide general information regarding the biological effects of phytotoxins.
They do not indicate a mechanism of their action [36,37]. In many studies, it has been
demonstrated that, for allelopathy stress, as for other stresses, the induction of oxidative
stress is the common response of acceptor plants [20,28,29,38]. Such observations are typical
for both crude extracts of allelopathic plants, as well as for single allelopathic compounds.
An accumulation of ROS, a modification of their localization and a disruption of cellular
antioxidant systems were shown for various plants exposed to different allelochemicals
(for review, see [20,29,38]. In our study, phytotoxic cocktails of digestive fluids did not lead
to increased levels of H2O2 or O2

•−. Moreover, no alteration in the localization of ROS in
roots in response to digestive fluids were shown. It may be proposed that compounds in
the fluids from N. ventrata traps do not impact ROS production. Although investigations
of the activity of enzymes of the antioxidant system are still required, the presence of
ROS and reactive nitrogen species in the digestion liquid of these plants has been recently
revealed [15].

4. Materials and Methods
4.1. Experimental Model

In our experiments, we used tomato (Solanum lycopersicum L. cv Malinowy Ożarowski)
seedlings as the test plant. A digestive fluid from pitchers of Nepenthes was applied in the
tests as a phytotoxic cocktail.

Pitcher plants Nepenthes x ventrata Hort. ex Fleming [=(N. ventricosa Blanco × N. alata
Blanco)] were grown in the greenhouse under conditions of constant high humidity (60%)
and temperature (28 ◦C); light was supplemented with sodium lamps to obtain a 16-/8-h
day/night photoperiod. A mixture of acid peat, perlite and sphagnum moss was used as
a growing medium and plants were watered with distilled water every other day. The
traps of pitcher plants, immediately after opening, were covered with gauze to avoid
contamination by accidental insects. Digestive fluid was collected from fed or unfed mature
pitchers (aerial type, length approximately 9 cm). Traps were fed with 40 µg hen egg white
solution (1 µg µL−1) introduced with a pipette directly into a pitcher. Digestive fluids from
fed traps were collected four days after feeding. The fluids (from fed and unfed pitchers)
were shortly centrifuged (5522× g, 5 min at 4 ◦C), and the supernatants were transferred to
the sterile tubes, frozen and used for biotests.

Before biotesting, digestive fluids from several traps were combined (fluid separately
from fed and unfed traps) to maximize the volume of the phytotoxic cocktail. One portion
of the fluid was boiled at 100 ◦C for 10 min (heat-treated fluid) and the rest was left
untreated (crude fluid). Then, part of each fluid (heat-treated or crude) was diluted twice
to obtain a 50% solution. The electrical conductivity and pH of phytotoxic cocktails were
determined using a pH/conductivity meter (CPC-505 Elmetron, Zabrze, Poland, with
suitable electrodes ECF-60 and EPS-1, respectively).

4.2. Germination Tests

Tomato seeds (Solanum lycopersicum L. cv. Malinowy Ożarowski) (commercially ob-
tained from PNOS Sp. z o.o., Poland) were surface sterilized with 0.5% sodium hypochlo-
ride for 10 min at room temperature. Then, seeds were rinsed three times with distilled
water, and 8 seeds were placed on Petri dishes (ø 3.5 cm) filled with filter paper wetted with
2.5 mL phytotoxic cocktail or 2.5 mL distilled water (control). The culture was carried out
in a growth chamber (Fitotron Versatile Environmental Test Chamber-PAR-10Mn, by Sanyo,
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Osaka, Japan, model MLR-350H), in darkness at 20 ◦C for 3 days. Seeds were considered
germinated when the radicle had emerged through the seed coat.

To investigate the impact of pitcher fluids on the growth of tomato seedlings, biotests
were performed. Tomato seeds were germinated in water in darkness at 20 ◦C for 3–4 days.
Then, 8 seedlings with roots of equal length (0.5 cm) were selected and transferred to Petri
dishes (ø 3.5 cm) filled with filter paper wetted with 2.5 mL phytotoxic cocktails or 2.5 mL
distilled water (control). Control seedlings and seedlings treated with digestive fluid were
cultured in a growth chamber at 23/20 ◦C, 12-/12-h day/night regime, and a light intensity
of 90 µmol PAR m−2 s−1 for 24 h as described by Krasuska et al. [39]. The root length of
seedlings was measured after 24 h of the culture.

4.3. Test of Root Cell Viability

The viability of tomato root cells was determined using Evans blue staining [40]. The
whole control seedlings or seedlings treated with pitcher fluids for 24 h were incubated
in a 0.25% solution of Evans blue for 30 min at room temperature. Then, seedlings were
washed three times in distilled water and roots were isolated, weighed and homogenized
in 1 mL of a 1% solution of sodium dodecylsulphate (SDS). After 10 min centrifugation at
21,000× g at 4 ◦C, the supernatant was collected and absorbance was measured at 600 nm
(Sunrise, Tecan, Männedorf, Switzerland). For the positive control (100% cell damage),
the roots were boiled for 10 min, cooled and then treated as described above. Three roots
were used for one repetition. The concentration of the extracted dye was estimated from
the standard curve prepared with Evans blue in 1% SDS and expressed as mg g−1 FW or
% of cell damage. The data were means of three measurements from each of three sets
of experiments.

4.4. In Situ H2O2 Localization

The histochemical localization of H2O2 was carried out with 3,3′-diaminobenzidine
(DAB) staining [39]. The roots of the control seedlings and seedlings treated with pitcher
fluids for 24 h were washed twice in distilled water and incubated with DAB solution
(1 mg mL−1) with 2 mM DMSO. Staining was carried out for 4 h at room temperature,
in darkness.

4.5. In Situ O2
•− Localization

The histochemical localization of O2
•−was performed according to Beyer and Fridovich [41]

using nitroblue tetrazolium (NBT) staining. Roots isolated from the control seedlings and
seedlings treated with pitcher fluids for 24 h were washed twice in distilled water and
incubated for 20 min in darkness at room temperature in 2 mM NBT (Sigma–Aldrich,
Tokyo, Japan), freshly prepared in 10 mM Tris-HCl buffer pH 7.4 with 2 mM DMSO. After
staining, the roots were cleaned for 24 h in chloral hydrate to avoid artifacts by remov-
ing oxidized phenolics [42]. O2

•− was visualized as a deposit of a dark blue insoluble
formazan compound.

Images of seedlings stained with DAB and NBT were taken with the TAGARNO
FHD TREND digital microscope (magnification x 5.2, F4 diaphragm, enhancement 10.2 dB,
exposure time 1/15 s).

Data were obtained in at least three independent experiments with at least three
repetitions each. The plants for experiments were randomly selected from 25 individuals.
Data were analyzed using Statistica Software. Mean values were calculated and SD was
provided. After Anova, homogenous groups were evaluated using Fisher’s LSD post
hoc test.

5. Conclusions

We demonstrated the negative, dose-dependent effect of the digestive fluid of the
pitcher plant on tomato seed germination; whereas its impact on root elongation was less
evident, but still significant. Application of the digestive fluid decreased cell viability
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but did not alter ROS (H2O2 and O2
•−) distribution in the roots of tomato seedlings. The

explanation of the phytotoxic potential of the digestive fluid requires further study, in which
the compounds of the trap fluid, being mainly secondary metabolites, are determined prior
to their use in phytotoxicity tests. The context of perturbation in ROS levels in acceptor
plants as the target of digestive fluid action needs examination of the activity of the
enzymatic antioxidants in the tissue of the acceptor plants.
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