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Abstract: Recently, environmentally friendly crop improvements using next-generation plant bios-
timulants (PBs) come to the forefront in agriculture, regardless of whether they are used by scientists,
farmers, or industries. Various organic and inorganic solutions have been investigated by researchers
and producers, focusing on tolerance to abiotic and biotic stresses, crop quality, or nutritional defi-
ciency. Garlic has been considered a universal remedy ever since antiquity. A supercritical carbon
dioxide garlic extract encapsulated in nanoscale liposomes composed of plant-derived lipids was
examined as a possible PB agent. The present study focused on the characterization of the genes
associated with the pathways involved in defense response triggered by the liposome nanoparticles
that were loaded with supercritical garlic extracts. This material was applied to Triticum aestivum in
greenhouse experiments using foliar spraying. The effects were examined in a large-scale genome-
wide transcriptional profiling experiment by collecting the samples four times (0 min, used as a
control, and 15 min, 24 h, and 48 h after spraying). Based on a time-course expression analysis, the
dynamics of the cellular response were determined by examining differentially expressed genes and
applying a cluster analysis. The results suggested an enhanced expression of abscisic acid (ABA)
pathway and pathogenesis-related (PR) genes, of which positive regulation was found for the AP2-,
C2H2-, HD-ZIP-, and MYB-related transcription factor families.

Keywords: Illumina sequencing; Allium sativum; genome-wide transcriptional profiling; biostimulant;
garlic; abscisic acid; pathogenesis-related genes

1. Introduction

Garlic (Allium sativum L., Amaryllidaceae) is a well-known medicinal herb with a
remarkable therapeutic repute of providing many beneficial bioactive compounds [1–3].
Among the phyto-components of garlic, there is a high level of fructans [4], flavonoids [5],
phenols, and polyphenol content [6–8]. The antimicrobial effect of garlic was reported
in in vitro experiments that showed an effective response against many plant-pathogenic
fungi and bacteria [9–13]. Plant-based extracts have several advantages for crops, such as
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increased resistance to abiotic and biotic stress and the possibility of reduced application of
pesticides and mineral fertilizers [14,15]. Plant biostimulants (PBs) could be effective for
achieving these aims by using diverse natural substances that generate physiological and
molecular processes in plants to enhance nutritional efficiency, abiotic stress tolerance, and
crop quality attributes [16,17]. There are several studies using biostimulants with different
chemical and biological ingredients, but there is llimited literature about the use of extracts
from garlic as PBs. Hayat et al. used aqueous garlic extracts (AGEs) as a biostimulant
for foliar spray and fertilizationto improve crop quality and to promote the physiological
potential of cucumber, tomato, eggplant, and pepper seedlings. Moreover, the AGEs
exerted priming effects and defense responses against pathogenic fungal infections. This
defense mechanism probably activated reactive oxygen species and antioxidant enzymes,
such as superoxide dismutase (SOD), and peroxidase (POD) [18–21]. The application of
AGEs has improved the growth and physiological efficiency of fava bean [22] and snap
bean plants, and the level of endogenous phytohormones, particularly auxins, gibberellins,
and salicylates [23].

Hormonal balance is another factor that has large effects on dormancy release, organ
formation, and development. The role of hormones in the dormancy release and sprouting
of garlic cloves has already been demonstrated [24,25]. These studies suggested that
abscisic acid (ABA) played a major role in the whole differentiation/growth process of
garlic plants. Garlic contains large amounts of the compounds described above; therefore,
we hypothesize that garlic may have on significant effect when applied to wheat plants and
stimulate the physiological processes associated with these compounds. This assumption
was examined in this study, which aimed to analyze these relevant processes.

Extraction techniques using supercritical fluids may create greener processes and
end products than conventional alternatives [26], leading to efficient solvents with better
transport properties (diffusivity, mass transfer coefficient, and penetration ability) than
many liquid organic solvents [27]. Supercritical extracts of algae as biostimulants were com-
prehensively investigated in winter wheat, rapeseed, and mustard [28,29]. Hincapié et al.
(2008) [30] reported that using supercritical carbon dioxide (SC-CO2) as a solvent produced
garlic extracts, which were tested on Tetranychus urticae. The SC-CO2 garlic extracts do not
contain any toxic extraction solvents and preserve oxidation-prone substances because they
are not exposed to oxygen or high temperatures during the extraction process [31]. To date,
the use of SC-CO2 garlic extracts as PBs in wheat has not been reported.

The nanoscale drug delivery system is a technology used extensively in medicine
to increase drug efficiency and to reach target tissues. These modern nanotechnological
solutions are considered in agronomy as well [32–34]. Karny et al. (2018) [35] reported
the use of liposomes composed of plant-derived lipids that penetrated the leaves and
translocated to other leaves and to the roots of tomato plants, where active compounds
were released. The efficiency of penetration of the applied nanoparticles was up to 33
percent, compared to 0.1 percent of crop-protection agents in a similar treatment. Moreover,
airborne nanoparticles disintegrated into safe molecular building blocks (phospholipids)
over longer airborne distances to reduce the environmental toll. An example is the liposome-
encapsulated plant conditioner product, Elice16indures® of RIMPH Ltd., Budakalász,
Hungary (containing 11 herbal CO2 extracts involving garlic), and in both phytotron and
earlier field experiments, it was found that this agent triggered the plant defense system
through hormonal pathways in Hordeum vulgare [36] and Glycine max [37,38].

In this study, the effect of SC-CO2 garlic extract encapsulated in nanoscale liposomes
(preliminarily named as ‘Garlic-lipo’) as a PB was examined. The mechanism of action was
investigated by using genome-wide transcriptional profiling of genes associated with the
defense response triggered by the ‘Garlic-lipo’. The results presented here are based on the
QuantSeq 3′ mRNA sequencing experiments, which data have been previously reported by
Kutasy et al. (2022) [39].
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2. Materials and Methods
2.1. Garlic-Lipo Stability and Particle Size Measurements of Liposomes

We tested the ‘Garlic lipo’ agent as an active component of ELICE Vakcina®, a mem-
ber of the Elice16 product line developed in the Research Institute for Medicinal Plants
and Herbs (RIMPH) Ltd., Hungary (https://gynki.hu/en/rimph-botanicals/products/
accessed on 1 January 2023), and which formulation and biological effect have already been
characterized [36,38]. According to the formulation technology of ELICE Vakcina, the su-
percritical fluid extraction of fine-grated fresh garlic with natural carbon dioxide (FLAVEX
Naturextrakte GmbH, Rehlingen-Siersburg, Germany) was encapsulated in sunflower
lecithin-based liposomes.

The electrostatic stabilization, dispersion properties, and nanoparticle size distribution
were measured by dynamic light scattering using the Zetasizer Ultra instrument at room
temperature (Malvern Panalytica, Malvern, UK). The polydispersity index (PI) and Zeta
potential were measured in four technical repeats. The dilution of the samples was 10−1

each time using Milli-Q water. The diluted suspension was placed in a disposable, low-
volume cuvette with a path length of 10 mm (Malvern Instruments, Malvern, UK). The
size distribution of each liposome sample and the particle size mode were measured using
detectors at 3 different angles to account for the front (13◦), side (90◦), and back (173◦)
scatter of light at room temperature. Each sample was measured at each angle in triplicate,
with adaptive correlation applied to each, to improve overall data quality. The data were
processed using the ZS Xplorer Software V.2.3.1 The particle size of the liposomes is given
from the cumulative analysis of four measurements of the average Z-diameter and PI.

2.2. Plant Materials and Treatment with ‘Garlic-Lipo’

The seeds of T. aestivum cultivar ‘Cellule’ (France, 2012) were germinated in Petri
dishes at 30 ◦C/20 ◦C with a 16 h photoperiod, and they were planted in pots and grown
under controlled greenhouse conditions. The plants were sprayed with ‘Garlic-lipo’ in
a dosage of 240 g·ha−1 using a Euro Pulvé plot sprayer at the BBCH12 stage [40]. Fresh
leaves were collected before the treatment as control (0) and at 15 min, 24 h, and 48 h after
treatment (Figure 1). The samples were stored in a RNA Shield (Zymo Research, Irvine,
CA, USA) at −25 ◦C until RNA analysis. Three biological repeats were used for further
analyses.
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Figure 1. Sample collection at three timepoints of the nanoscale liposome-encapsulated SC-CO2 garlic
extract (‘Garlic-lipo’) on Triticum aestivum in greenhouse experiments. The effects were examined
in a large-scale genome-wide transcriptional profiling experiment collecting samples at various
timepoints (0 min is the control, and 15 min, 24 h, and 48 h after spaying) and were evaluated by
using DEG and time-course expression analysis.

2.3. Sequencing, Data Processing, Gene-Level Quantification, and DEG Determination

The Illumina Gene Expression Profiling (GEx) library preparation, RNA sequenc-
ing, sequence read pre-processing, gene-level quantification, and differentially expressed
gene (DEG) analysis were performed as described in our previous papers [39,41]. The
RNA libraries were sequenced with a final output single-end, with 14–26 M x 85 bp long
reads. The raw reads were deposited in the National Center for Biotechnology Informa-
tion (NCBI) database (as the BioProject PRJNA808851) and the Sequence Read Archive
(SRA) database (SRR18107544, SRR18107543, SRR18107542, and SRR18107541). A de novo

https://gynki.hu/en/rimph-botanicals/products/
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reference transcript was created using these SRA datasets to reconstruct transcripts that
represent the experimental samples. This transcript dataset was deposited in the Tran-
scriptome Shotgun Assembly (TSA) database at DBJ/EMBL/GenBank under the accession
GJUY00000000.1. To estimate transcript abundances, CountTable was created [39], which
is accessible in Mendeley Data (https://data.mendeley.com/datasets/p66v4yxbtp/1, ac-
cessed on 17 March 2022). DEGs were calculated based on the CountTable by applying a
pairwise differential expression analysis as described by Hegedűs et al. (2022) [41].

2.4. Time-Course Expression Analysis

A time-course expression analysis of the count data arising from the RNA-seq was
performed to detect genomic features with significant temporal expression changes and
with significant differences between the experimental groups [39]. The genes with sig-
nificantly different expression levels were divided into nine clusters. The TimeCourse
Table is accessible in Mendeley Data (https://data.mendeley.com/datasets/xvvscxpz6w/1,
accessed on 18 March 2022). According to the expression dynamics of the changes of the
clustered genes, these nine clusters were classified into four groups: (1) expression level
gradually increased; (2) expression level gradually decreased; (3) expression level initially
increased and then reduced; and (4) expression level initially decreased and then returned
to its original level. The clusters were annotated with Gene Ontology (GO) terms and
visualized [39]. Group 1 genes with gradually increased expression levels were further
examined and discussed in this study.

2.5. Functional Annotation

The methods of functional annotation and GO analysis were described in a previous
publication [37]. The annotation of the entire transcriptome is presented in the Annota-
tionTable that is accessible in Mendeley Data (https://data.mendeley.com/datasets/p66v4
yxbtp/1, accessed on 17 March 2022) and described in Kutasy et al. (2022) [39].

2.6. Real-Time PCR Analysis

Total RNA was quantified using a Nanodrop 2000c spectrophotometer and a Qubit 2.0
fluorometer (Thermo Fischer Scientific, Waltham, MA, USA). Five hundred nanograms (ng)
of total RNA was reverse transcribed using the M-MuLV RT (Maxima First Strand cDNA
Synthesis Kit, Thermo Fischer Scientific, Waltham, MA, USA). A total of 50 ng of cDNA was
used in 10 µL reactions for real-time PCR using the Xceed qPCR SG 2×Mix (Institute of
Applied Biotechnologies, Praha-Strašnice, Czech Republic) and a CFX384 Touch Real-Time
PCR Detection System (Bio-Rad, Hercules, CA, USA). The data (Tables S3 and S4) were
analyzed using the ∆∆Ct method [42]. Tubulin and ubiquitin expressions were used as a
reference for gene expression.

3. Results

To date, the effect of garlic extract was investigated in vegetable plants in studies that
focused on yield quality and physiological function, as well as stress responses. However,
it has not yet been examined in monocotyledonous plants. Moreover, the effect of garlic
extract on changes in gene expression levels has not been studied.

High levels of flavonoids, phenolics, fructans, and abscisic acid hormone (ABA) were
found in garlic. Therefore, in this study, the processes related to these compounds were
examined, which might be stimulated by garlic extract.

This study presents the effects of garlic SC-CO2 extract on wheat plants by investi-
gating ‘Garlic-lipo’. The formulation of this agent was carried out with a focus on better
uptake by plants after treatment, with a strict analytical control measuring the size of
the nanoparticle and the Zeta potential. The mechanism of this effect was investigated
using transcriptome analysis, such as mRNA-sequencing, determination of DEGs, and
time-course expression analysis, showing high expression changes in response to the treat-

https://data.mendeley.com/datasets/p66v4yxbtp/1
https://data.mendeley.com/datasets/xvvscxpz6w/1
https://data.mendeley.com/datasets/p66v4yxbtp/1
https://data.mendeley.com/datasets/p66v4yxbtp/1
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ment. The in silico analysis of mRNA sequencing and gene expression was validated using
RT-qPCR methods.

3.1. Dynamic Light Scattering

The size determination parameters are summarized in Table 1, and representative fig-
ures of the measurements are shown in Figure 2. The Zeta potential analysis is summarized
in Table 2 and Figure 3. The liposome properties of the investigated samples indicated
that either the particle size or the polydispersity index (p > 0.05, Pearson) was relatively
constant (149.2 nm in size, polydispersity index = 0.13035, and n = 4) in the four measured
samples.

Table 1. Particle size distribution (PSD) by intensity statistics.

Name Mean Minimum Maximum
Z-Average (nm) 149.2 134.2 164.2

Polydispersity Index (PI) 0.13035 0.1303 0.1304
Intercept 0.951 0.949 0.953

Peak One Mean by Intensity (nm) 160.6 129.6 191.6
Peak One Area by Intensity (%) 100 100 100

Derived Mean Count Rate (kcps) 171,300 1.71 × 105 1.71 × 105

Plants 2023, 12, x FOR PEER REVIEW 5 of 19 
 

 

This study presents the effects of garlic SC-CO2 extract on wheat plants by investi-

gating ‘Garlic-lipo’. The formulation of this agent was carried out with a focus on better 

uptake by plants after treatment, with a strict analytical control measuring the size of the 

nanoparticle and the Zeta potential. The mechanism of this effect was investigated using 

transcriptome analysis, such as mRNA-sequencing, determination of DEGs, and time-

course expression analysis, showing high expression changes in response to the treatment. 

The in silico analysis of mRNA sequencing and gene expression was validated using RT-

qPCR methods. 

3.1. Dynamic Light Scattering 

The size determination parameters are summarized in Table 1, and representative 

figures of the measurements are shown in Figure 2. The Zeta potential analysis is summa-

rized in Table 2 and Figure 3. The liposome properties of the investigated samples indi-

cated that either the particle size or the polydispersity index (p > 0.05, Pearson) was rela-

tively constant (149.2 nm in size, polydispersity index = 0.13035, and n = 4) in the four 

measured samples. 

Table 1. Particle size distribution (PSD) by intensity statistics. 

Name Mean Minimum Maximum 

Z-Average (nm) 149.2 134.2 164.2 

Polydispersity Index (PI) 0.13035 0.1303 0.1304 

Intercept 0.951 0.949 0.953 

Peak One Mean by Intensity (nm) 160.6 129.6 191.6 

Peak One Area by Intensity (%) 100 100 100 

Derived Mean Count Rate (kcps) 171,300 1.71 × 105 1.71 × 105 

 

Figure 2. Size determination diagram of liposomes from the ’Garlic-lipo’ colloid. Liposome sizes are 

in the range between 134.2 and 164.2 nm. 

Table 2. Measurement of Zeta potential and quality of individual liposomes of the ’Garlic-lipo’ sam-

ples. 

Name Mean Minimum Maximum 

Derived Mean Count Rate (kcps) 171,300 1.71 × 105 1.71 × 105 

Zeta Potential (mV) −40.595 −40.66 −40.53 

Zeta Peak One Mean −41.18 −41.43 −40.93 

Zeta Peak Two Mean −9.2 −9.25 −9.15 

Conductivity (mS/cm) 0.007439 0.007399 0.007479 

Wall Zeta Potential (mV) −66.28 −66.33 −66.23 

Zeta Deviation (mV) 8.632 8.607 8.657 

Figure 2. Size determination diagram of liposomes from the ’Garlic-lipo’ colloid. Liposome sizes are
in the range between 134.2 and 164.2 nm.

Table 2. Measurement of Zeta potential and quality of individual liposomes of the ’Garlic-lipo’
samples.

Name Mean Minimum Maximum
Derived Mean Count Rate (kcps) 171,300 1.71 × 105 1.71 × 105

Zeta Potential (mV) −40.595 −40.66 −40.53
Zeta Peak One Mean −41.18 −41.43 −40.93
Zeta Peak Two Mean −9.2 −9.25 −9.15

Conductivity (mS/cm) 0.007439 0.007399 0.007479
Wall Zeta Potential (mV) −66.28 −66.33 −66.23

Zeta Deviation (mV) 8.632 8.607 8.657
Derived Mean Count Rate (kcps) 85,150 8.52 × 104 8.52 × 104

Reference Beam Count Rate (kcps) 3671.5 3645 3698
Quality Factor 4.509 4.508 4.51
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Phase difference is proportional to the electrophoretic mobility of the nanomaterial and, thus to the
Zeta potential of the aqueous medium.

3.2. Pairwise Expression Analysis and Determination of Top 50 DEGs

The expression levels of DEGs measured at three sampling times (15 min/24 h/48 h) after
the ‘Garlic-lipo’ treatment were compared to the control (0 min) for the largest difference in
the top 50 genes presented in the heatmaps (Figure 4, Figures S1 and S2). Many differentially
expressed (DE) features were detected in the 15 min sample [(probability > 0.9): 1712; up-
regulated (M > 0): 919; down-regulated (M < 0): 793]; in the 24 h sample [(probability > 0.9):
2485; up-regulated (M > 0): 1279; down-regulated (M < 0): 1206]; and in the 48 h sample
[(probability > 0.9): 2578; up-regulated (M > 0): 865; down-regulated (M < 0): 1713].

Proteins involved in stress response and the ABA pathway showed up-regulated
levels in the 15 min sample (Figure S1), such as ABA-responsive protein HVA22, late
embryogenesis abundant protein (LEA), 9-cis-epoxycarotenoid dioxygenase (NCED3), and
U-box domain-containing protein 19 (PUB19). The down-regulated genes were found to be
associated with photosynthesis, as well as ribosomal RNA genes.

The top 50 DEGs were mostly down-regulated in the 24 h sample (Figure S2), except
for pathogenesis-related protein 1 (PR1) and aldehyde dehydrogenase family 7 member
A1 (ALDH7). Photosynthesis-related and ribosome-related genes were shown to be down-
regulated. The largest difference was found in the 48 h sample, which is presented in
Figure 4.

While there were several ABA-related genes determined in the 15 min sample and
the 24 h sample, only one was found in the 48 h sample. As for up-regulated genes, the
expression level of flavanone 3-hydroxylase (F3H) gene associated with the ABA pathway
was increased. Moreover, PR1-5 genes and other stress-induced genes were proven to be
up-regulated. The up-regulated PR genes, such as PR1, endo-beta-1,3-glucanase (PR2),
chitinas (PR3), wheatwin-2 protein (PR4), and thaumatin protein (PR5), were significantly
different in their expressions. One of the PRs, the Bowman–Birk-type trypsin inhibitor
(PR6), showed a down-regulated expression level.

Biotic and abiotic stress response genes, such as alpha-amylase/trypsin inhibitor (ATI),
caseinolytic protease B1 (ClpB1), wheat-induced resistance 1B (WIR1B), and heavy metal-
associated isoprenylated plant protein 27 (HIPP27), were up-regulated in the sample of 48 h.
Different transferases, such as UDP-glucose flavonoid 3-O-glucosyltransferase 7 (GT7),
tricetin 3′,4′,5′-O-trimethyltransferase (OMT2), and acetylserotonin O-methyltransferase 1
(ASMT), were shown to be up-regulated level in the same sample.
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Figure 4. Heat map of the top 50 differentially expressed genes (DEGs) based on the comparison of
the 48 h vs. control samples. The heatmap color range is from red for positive Z-score values to green
for Z-score negative values. The number of differentially expressed (DE) features (Probability > 0.9):
2578. Up-regulated (M > 0): 865. Down-regulated (M < 0): 1713. For the annotation of the transcript
IDs, see the Annotation Table (DOI: 10.17632/p66v4yxbtp.1).

Moreover, biotic and abiotic stress-responding transcription factors (TFs) that consist
of HD-ZIP, C2H2, and AP2 families, such as zinc finger protein 12 (ZAT12—C2H2 family),
homeobox-leucine zipper transcription factors 22 and 24 (HOX22 and HOX24—HD-ZIP
family), dehydration-responsive element-binding protein 1G (DREB1G—AP2 family), and
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MYBS1—MYB-related family, were observed in each sample evaluated at all of the three
timepoints of this study.

The determination of the top 50 DEGs demonstrated the changes in the expression
levels of ABA pathway-related genes, PRs, and TF genes (Figure 5). To obtain more
information about the physiological processes in wheat after the biostimulation treatment
applied here, the samples were examined using a time-course expression analysis.
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sented in three sampling times. The numerical analysis of DEGs in a pairwise comparison of two Figure 5. The determination of the top 50 differentially expressed genes (DEGs) in silico is represented
in three sampling times. The numerical analysis of DEGs in a pairwise comparison of two times
was examined using OmixBox.BioBam based on the RSEM and edgeR programs. These quantitative
statistical methods to evaluate the significance of individual genes were implemented to examine the
changes in the expression levels of (a) PR genes (control vs. 48 h); (b) ABA pathway-related genes
(control vs. 15 min); and (c) TF genes (control vs. 15 min).

3.3. Time-Course Expression Analysis

A time-course expression analysis was an appropriate tool for evaluating the data
arising from the RNA-seq technology to represent genes with significant changes in their
temporal expressions and with significant differences between the experimental groups.
Using TSA and CountTable data, 5287 contigs were tested and filtered, which resulted in
nine clusters. The clusters were classified into four groups according to their dynamics
of changes: those of which the expression level (i) gradually increased, (ii) gradually
decreased, (iii) initially increased and then reduced, or (iv) initially decreased and then
returned to its original level. The annotated genes were examined by using the GO terms
and biological processes that were already presented in a previous paper (Kutasy 2022).
The group of genes with expression levels that gradually increased ((i) cluster 1) was shown
mainly to be associated with defense response processes, while the groups of genes with
expression levels that gradually decreased ((ii) clusters 3, 4, 6, and 7) were shown to have
down-regulated cellular biosynthetic and metabolic processes. Moreover, the groups of
genes with expression levels that initially increased and then reduced ((iii) clusters 2, 8,
and 9) were mostly shown to be involved in different transport and translation processes.
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The group of genes with expression levels that initially decreased and then returned to
their original levels ((iv) cluster5) was associated with RNA-related (transcription) and
metabolic processes (Kutasy 2022). The genes of the nine clusters were also classified
using the Kyoto Encyclopedia for Genes and Genomes (KEGG) analysis (Table S1). In this
study, the genes with expression levels that gradually increased showed defense response
associations (Figure 6).
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Figure 6. KEGG analysis of cluster 1 at the three investigated times, relative to the control (0 min).
The expression levels of these genes gradually increase. The graph shows the numbers of transcripts
that are annotated (DOI:10.17632/p66v4yxbtp.1) and can be placed into the KEGG pathway (Tables
S1 and S2) using the TimeCourseTable (DOI: 10.17632/xvvscxpz6w.1).

The time-course analysis identified 24 pathways, with a total of 201 sequences (Ta-
bles S1 and S2) in (i) cluster 1, and enzymes that may be involved in primary defense
reactions. Regarding defense response, plant–pathogen interaction; mitogen-activated
protein kinase (MAPK) signaling pathway; plant hormone signal transduction; flavonoid,
terpenoid, and phenylpropanoid biosynthesis; glutathione metabolism; and metabolism
by cytochrome P450 were found to be the most important pathways (Figure 6). The
disease-resistance protein PR1 was involved in the pathways of plant–pathogen inter-
action (map04626), plant hormone signal transduction (map04075), and MAPK signal-
ing (map04016), while the RPM1 protein was found to be associated with the plant–
pathogen interaction (map04626) pathway. The mono- and diterpenoid biosynthesis
(map00902, 00904) pathways were identified in all of the samples, involving the proteins
of 7-deoxyloganetin glucosyltransferase (UGT85A23-24), ent-kaurene oxidase (CYP701A),
and ent-sandaracopimaradiene 3-hydroxylase (CYP701A8). In the phenylpropanoid biosyn-
thesis (map00940) pathway, the proteins of shikimate O-hydroxycinnamoyl-transferase
(HST), caffeic acid 3-O-methyltransferase/acetylserotonin O-methyltransferase (COMT),
and peroxidase were found. The cytochrome P450 and glutathione metabolic (map00980,
00480) pathways were also identified, involving the proteins of glutathione S-transferases
(GST23 and GSTU6) and L-ascorbate peroxidase (APX).

Based on the time-course expression analyses of (ii) clusters 3, 4, 6, and 7, the down-
regulated cellular biosynthetic and metabolic processes may be involved in photosynthesis-
associated processes; the processes of peroxisome, glyoxylate, and dicarboxylate metabolisms;
linoleic acid metabolism; oxidative phosphorylation; and ribosomal processes. Regarding
the plant–pathogen interaction pathway, heat shock proteins were observed.
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The time-course analysis of (iii) clusters 2, 8, and 9 showed enzymes that may be
involved in process of endocytosis; MAPK signaling pathway; and cysteine and methionine
metabolisms. These clusters are also associated with ribosomal processes in the cytosol.

Moreover, the time-course analysis of (iv) cluster 5 was associated with mRNA pro-
cessing, RNA phosphodiester-bound hydrolysis, and nucleic acid metabolic processes. The
KEGG analysis of cluster 5 gave no results.

3.4. Real-Time PCR Analysis

The most important defense response-relevant genes of the top 50 DEGs were exam-
ined using real-time PCR. PR1-5 showed an increased expression level during the whole
experimental period as it was the highest in the 48 h sample—as it was observed in the
transcriptome analysis. The genes associated with the ABA pathway (NCED3, HVA22,
PUB19, and LEA31) and TFs (HOX24, ZAT12, and MYBS1) also showed similar changes
in their expression levels as revealed in the transcriptome analysis. Typically, these genes
showed maximal expression levels in the 15 min sample and the 24 h sample. Moreover, a TF
(DREB1G) was prognosticated to have the highest expression level in the 48 h sample in the
DEG analysis, and this was confirmed by the real-time PCR (Figure 7 and Tables S3 and S4).
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Figure 7. Results of the real-time PCR reactions performed at three sampling timepoints compared to
control. The changes in the expression levels of (a) PR genes; (b) ABA pathway-related genes; and
(c) TF genes. The values are represented as mean ± SEM (n = 4). p < 0.05 vs. Control, p < 0.05 vs.
treated group. One asterisk indicates statistically significant difference between the means of a treated
sample set compared to the mean of the control sample set to 5%; two asterisks indicate statistically
significant difference to 1%; three asterisks indicate statistically significant difference to 0.1%.

4. Discussion

Worldwide, the scientific community and commercial enterprises have focused on
the development of environmentally safe methods that facilitate plant growth and crop
protection. PBs could be effective chievinging these aims as they are diverse natural sub-
stances that generate physiological and molecular processes in plants to enhance nutritional
efficiency, abiotic and biotic stress tolerances, and crop quality attributes [16,17,43]. Using
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plant-based extracts has several advantages, such as enhanced yields and quality of crops,
low toxicity to humans and the environment, increased resistance of crops to abiotic and
biotic stresses, and reduction in the application of pesticides and mineral fertilizers [14,15].
Aqueous garlic extract as a plant biostimulant was recently reported as a promising agent
to trigger plant immunity [18]. Focusing on low-input sustainable agriculture, we aimed to
reinforce the efficacy of garlic extract using SC-CO2 extraction and liposome nanotechnol-
ogy for better uptake in and delivery to plants. A novel ‘Garlic-lipo’ production and its
treatment on wheat plants were designed. The time-course effect of ‘Garlic-lipo’ was tested
by using whole-genome transcriptional profiling and enzyme activity measurements. The
up-regulated genes were validated by using RT-qPCR experiments.

The liposome size determination and the monitoring of colloid characteristics during
the ‘Garlic-lipo’ production were controlled using dynamic light scattering. The liposome
sizes were in the range between 134.2 and 164.2 nm, and the colloid stability proved to be
high, showing a Zeta potential between −40.66 and −40.53 mV. These physicochemical
properties of the nanoliposomes provide the product a high stability and great bioactiv-
ity [44]. However, there are only a few reports on the application of such a product in
agricultural practice.

This product was tested using time-course experiments. The QuantSeq 3′ mRNA se-
quencing for RNA quantification in the samples had been performed earlier (data reported
in Kutasy 2022 [39]). The determination of DEGs showed an increase in the expression
levels of genes associated with the ABA pathway, which was observed especially 15 min
after treatment. A parallel can be drawn with the remarkable amounts of endogenous
phytohormones described in garlic clove extracts, among which a high level of ABA was
found by Arguello (1991) [24]. The cultivar, photoperiod, and temperature affected the
hormone levels when ABA showed up to 10–25-fold higher levels than cytokinins, auxins,
and jasmonic acid [45]. A treatment with a high ABA-content garlic extract, therefore,
may stimulate plant responses to biotic or abiotic stresses and increase yield levels, as was
shown by previous exogenous ABA treatments [46–48]. Based on this information, it was
hypothesized that a garlic extract with a high ABA content might stimulate ABA pathway-
related genes. This theory was proven here in these experiments. In these experiments, we
observed a rapid up-regulation of these genes at 15 min after the ‘Garlic-lipo’ treatment, but
their expressions gradually decreased when the samples were taken 24 h after the treatment.
Among the top 50 DEGs (15 vs. 0 min), the homologous protein of stress-and ABA-induced
HVA22, LEA, and NCED3 is the key rate-limiting enzyme in the ABA biosynthetic pathway
regulating multi-abiotic stress tolerance, as was found in [49–53]. The regulators of salt-
tolerant [54] and negative regulators of drought stress-response protein [55] and PUB19 [56]
were also up-regulated, which were also known to be sensitive to ABA in Arabidopsis
thaliana [57]. The down-regulated genes were associated with photosynthesis, as well as
ribosomal RNA genes. A down-regulation of photosynthetic genes by ABA signaling was
observed by Staneloni et al. (2008) [58] and Gao et al. (2016) [59], and this phenomenon
might be associated with ABA-mediated chlorophyll degradation and leaf senescence.

The regulation of ABA-signaling genes was associated with the overexpression of
TFs, with their highest values observed at 15 min. TFs are members of the HD-ZIP, bZIP,
C2H2, and AP2 families, such as ZAT12 (C2H2 family), that participate in the induction
and repression of cold-responsive and oxidative stress genes [60]; HOX22 (HD-ZIP family)
is involved in the defense mechanism of pathogen-related stress response of fungi [61],
and drought- [62] and heat-stress-tolerance-induced HOX24 [63] and MYBS1 [64] are
the essential components of the sugar signaling pathway regulating the α-amylase gene
promoter [65]. A high expression level was found for DREB1G (AP2 family), which is a
typical C-repeat-binding factor (CBF/DREB1) whose specific functions was found to be
related to cold stress response [66,67]. Interestingly, this TF was the only one present when
the sample was taken 48 h after the treatment. A microarray analysis using Arabidopsis
cultured cells revealed that several ABA-inducible genes and the TF ZAT12 are induced
by oxidative stresses, which might be a regulator in the reactive oxygen species (ROS)
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scavenging mechanism that is involved in multiple stresses, such as wounding, pathogen
infection, and abiotic stresses [68].

The CBF cold-responsive pathway includes the three key TFs of CBF1, CBF2, and CBF3,
and this pathway also plays a significant role in the cold acclimation of Arabidopsis [69]. The
CBF proteins as transcriptional activators recognize both the C-repeat (CRT) and the DREB.
It was shown that the overexpression of CBF2 and CBF3 can induce several cold-responsive
(COR) genes [70,71].

Vogel et al. (2005) [60] reported that ZAT12 was also induced with CBFs, which
regulated the expression of 24 cold-responsive genes, indicating that ZAT12 might be
involved in cold acclimation via a novel cold-response pathway [72,73].

The up-regulated PR genes were found both in the 24 h sample and in the 48 h sample
after the ‘Garlic-lipo’ treatment, of which they showed a higher expression level in the 48 h
sample. The top 50 DEGs of 48 vs. 0 h indicated significantly higher expressions of PR
genes, such as PR1, which are known as the hallmarks of defense pathways in wheat [74,75].
PR2 is involved in the resistance response of wheat to stripe rust (Puccinia striiformis f. sp.
tritici) [76,77]; PR3 constitutes the second largest group of antifungal proteins [78]; PR4
has antifungal activity against several pathogenic fungi (Fusarium sp., Botrytis sp.) [79,80];
and PR5 is mostly associated with responses to biotic stresses, especially drought and
osmotic stresses [81]. Additionally, F3H, which is an ABA-induced abiotic stress gene that
catalyzes the third step of the central flavonoid biosynthetic pathway [82,83], was found
to be up-regulated in this sample. One of the PRs, the PR6, showed a down-regulated
expression level [84,85].

To summarize, the majority of the top 50 DEGs might be grouped into (i) ABA-pathway
and (ii) PR genes; however, their induction was strongly associated with time. A rapid
response to the drug was observed in ABA signaling, but PR induction was detected after
24–48 h of the treatment. It was presumed that the regulation of these genes was under
the control of (iii) TFs, which were not under strict time control, such as ABA and PR. The
observed time-shift effect of PR genes is characteristic of priming inducers that might be
triggered by fungus or chemical treatments [85,86]. The expression dynamics of PR1, PR3,
PR4, PR5, PR6, NCED3, HVA22, PUB19, LEA 31, HOX24, DREB1G, MYBS1, and ZAT12
were validated by the RT-qPCR as well.

Additionally, biotic and abiotic stress-response genes were up-regulated in the 48 h
sample, such as ATI, which has a defense mechanism against insect attack [87]; ClpB1,
which is a high-molecular-weight chaperon protein that is part of the heat shock protein
100 (HSP 100) family [88]; WIR1B, which is a small glycine- and proline-rich protein having
a key role in defense reactions against fusarium head blight (FHB) infection caused by
the fungus Fusarium graminearum [89] and in the plant–pathogen interactions of Blumeria
graminis [90]; and HIPP27, which is a metallochaperone that has been reported to play an
important role in cadmium detoxification [91] and in response to nematode infection [92].
Different transferases showed up-regulated levels in the 48 h sample, such as GT7, which
primarily transports sugar molecules to aglycones to enhance solubility and stability during
flavonol biosynthesis [93]; OMT, which catalyzes three sequential methylations of flavone
tricetin; and ASMT1, which is responsible for the syntheses of N-acetylserotonin and mela-
tonin. Melatonin is synthesized from tryptophan and plays an important role in enhancing
the resistance of plants against biotic and abiotic stresses [94]. Melatonin treatment sig-
nificantly enhanced the drought tolerance of wheat seedlings by decreasing membrane
damage [95]. The down-regulated genes were genes associated with photosynthesis and
ribosomal RNA genes.

Since the effects of ‘Garlic-lipo’ showed a strong time factor relation, a time-course
gene expression analysis was performed to determine other gene clusters induced by the
treatment effects. This investigation resulted in nine clusters, in which the genes were
annotated by determining their GO terms and using a KEGG analysis (Table S1). Both the
GO and KEGG analyses showed an increase in the expression levels of genes associated
with defense response processes. During the experimental period, the genes involved in the
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biosynthesis of PR1-5 genes, terpenoids, and phenylpropanoids operated at a consistently
high level. PRs have been found to be activated in response to different biotic and abiotic
stresses, so PR1-5 proteins have a wide range of functions, such as protease inhibitor,
glucanase, chitinase, and thaumatin protein [96]. Furthermore, the CYP450 and glutathione
transferase genes involved in stress response showed a high level of expression. The GST
genes are highly inducible by a wide range of stress conditions, including biotic stress [97].

A down-regulation of genes involved in photosynthesis was observed based on a
heat map and KEGG analysis. For the entire period, the down-expression of the processes
involved in photosynthesis was detected using time-course GO analysis, but it was not
one of the most prominent processes (Figure 2 in Kutasy et al. (2022) [39]). Moreover, the
KEGG analysis showed that the process of restoring photosynthesis had already begun. In
the porphyrin and chlorophyll metabolism pathway (map00860) and the carbon fixation
pathway in photosynthetic organisms (map00710), the expression of chlorophyllase (CLH)
and malate dehydrogenase (MDH) were found to be up-regulated.

To summarize, the main part of the top 50 up-regulated DEGs affecting plant develop-
ment and pathogen defense mechanism was found after the ‘Garlic-lipo’ treatment. These
genes suggest a strong regulation of the ABA pathway and resistance mechanism. This
phenomenon indicates physiological relations, with the synthesis of the plant hormone
ABA having a key role in plant development, control of organ size, stomal closure, and
signaling under different plant stresses. The ‘Garlic-lipo’ may rapidly affect the ABA
signaling pathway in plants in response to nanoparticle exposure, leading to enhanced
ABA-related gene activity and defense system. The assumed phytopathogen activity of this
agent was also demonstrated to trigger PR genes involving systemic acquired resistance
(PR1, PR2, and PR5) and local acquired resistance (PR3, PR4). Additionally, the common
upregulated DEGs of the investigated samples found in the KEGG pathway analysis were
involved in monoterpenoid, phenylpropanoid, diterpenoid, and stilbenoid biosynthesis,
and glutathione and phenylalanine metabolism. These pathways have a key role in plant
development, cell cycle, stem growth regulation, induced germination, defense mecha-
nisms, and disease resistance (Figure 8). Based on all of these results, it can be concluded
that the transcriptomic changes, which were examined using several approaches, unani-
mously indicate that the use of ‘Garlic-lipo’ may improve the health and development of
plants by strengthening their response to biotic and abiotic stresses involving an emerging
pathogen attack.
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5. Conclusions

These results highlight the significant effects of the SC-CO2 garlic extract as the up-
regulations of several defense-response genes were demonstrated. The increase in the
expressions of the ABA pathway and PR genes was shown to be associated mainly with
defense mechanisms. In conclusion, the plant’s innate immunity and defense response
mechanisms might be triggered systemically by this agent, suggesting a potential priming
active substance. Due to its extraction process and nanotechnological formulation, ‘Garlic-
lipo’ may be a promising PB that can support sustainable agriculture. To substantiate
the effects described here, we are planning to conduct further infection tests and field
experiments.
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