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Abstract: Alpinia galanga have been widely used as spice or traditional medicine in East Asia,
commonly known as Thai ginger. In the present study, seven major phenylpropanoids, (±)-1′-
hydoxychavicol acetate (1; HCA), (1′S)-1′-acetoxychavicol acetate (2; ACA), (1′S)-1′-acetoxyeugenol
acetate (3; AEA), eugenyl acetate (4), trans-p-coumaraldehyde (5), trans-p-acetoxycinnamyl alcohol
(6), and trans-p-coumaryl diacetate (7), were isolated from the 95% EtOH and hot water extracts
of the rhizomes of A. galanga by chromatographic method. Phenylpropanoids 1–7 were evaluated
for glucose-stimulated insulin secretion (GSIS) effect and α-glucosidase inhibitory activity. Phenyl-
propanoids 1–4 increase GSIS effect without cytotoxicity in rat INS-1 pancreatic β-cells. In addition,
INS-1 cells were treated with AEA (3) to determine a plausible mechanism of β-cell function and
insulin secretion through determining the activation of insulin receptor substrate-2 (IRS-2), phos-
phatidylinositol 3-kinase (PI3K), Akt, and pancreatic and duodenal homeobox-1 (PDX-1). Upon
treatment with AEA (3), INS-1 cells showed an increase in these protein expressions. Meanwhile,
AEA (3) exhibited α-glucosidase inhibitory activity. On the basis of the above findings, we suggest
AEA (3) as a potential antidiabetic agent.

Keywords: Alpinia galanga; (1′S)-1′-acetoxyeugenol acetate; Insulin; α-glucosidase; PDX-1

1. Introduction

Diabetes is one of the world’s fastest-growing chronic metabolic disorders, character-
ized by hyperglycemia and impaired glucose metabolism. The impaired insulin action in
the liver, muscle, and adipose tissue, or insufficient secretion of insulin from the pancreatic
β-cells, or both, contribute to the onset and progression of diabetes [1]. Type 2 diabetes
(T2D) makes up about 90% of patients with diabetes. Maintaining a balance between
insulin secretion and absorption of blood sugar is necessary to prevent or delay T2D [2].

The major classes of pharmacological agents for diabetes are largely divided into
three types: insulin secretagogues, insulin sensitizers, and carbohydrate digesting enzyme
inhibitors [3]. Insulin secretagogues decrease blood glucose by stimulating the insulin
secretion, and include sulfonylureas (glibenclamide, gliclazide, etc.), glinides (repaglinide,
nateglinide, mitiglinide, etc.), and incretin-related drugs (dipeptidyl peptidase-4 inhibitors
and glucagon-like peptide-1 receptor agonists) [4]. Insulin sensitizers enhance insulin
sensitivity in peripheral tissues and include thiazolidinediones (pioglitazone, rosiglitazone,
etc.) and biguanides (metformin, phenformin, etc.) [5]. A carbohydrate digesting enzyme
inhibitor, such as acarbose, inhibits intestinal α-glucosidase activity responsible for the
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metabolism of carbohydrates [6]. These drugs have been reported to be related to serious
side effects. For example, gliclazide induces dizziness and abdominal pain, while acarbose
causes abdominal pain and diarrhea [7]. In traditional medicines for diabetes, natural
products such as Panax ginseng, Opuntia ficus-indica, and Momordica charantia have long
been used in patients to lower blood glucose [8]. A biguanide, metformin, comes from a
guanidine-rich plant, Galega officinalis [9]. These natural products have played an important
role in diabetes management, but there is still a need for research to discover more effective
natural products with decreased side effects.

Alpinia galanga (L.) Willd. (family Zingiberaceae) have been widely used as a spice
or traditional medicine in East Asia, commonly known as Thai ginger. Recently, scientific
research has demonstrated that A. galanga is a source of compounds with strong pharmaco-
logical activity, including anti-cancer, anti-obesity, neuroprotection, anti-allergy, anti-fungal,
and anti-inflammatory [10–15]. 1′-Acetoxychaviol acetate (ACA) is a major constituent
in A. galanga with significant pharmacological properties in multiple disease models [16].
ACA has a potent anti-cancer effect by stimulating the apoptotic signaling pathway or
generating reactive oxygen species (ROS) in diverse cancer cell lines, including human
colorectal cancer, leukemia, lung adenocarcinoma, and breast cancer cell lines [17]. In
addition to its anti-cancer properties, ACA is also active in anti-obesity, anti-microbial, and
gastroprotective models [17]. However, few studies have been conducted on other main
phenylpropanoids than ACA, and the structure-activity relationship of phenylpropanoids
in A. galanga has received relatively little attention. In order to explore other pharmacologi-
cal effects of phenylpropanoids in A. galanga, seven major phenylpropanoids (1–7) were
isolated from the hot water extract of A. galanga rhizomes by chromatographic method.
A. galanga has been reported to have antidiabetic effects by regulating pancreatic β-cell
regeneration and blood sugar levels in diabetic rats [18]. However, there are few reports
on A. galanga responsible for increasing insulin secretion and inhibiting α-glucosidase
activity [18,19], which can ultimately prevent or delay diabetes. Thus, the objective of
the present study was to evaluate the insulin secretion effects of phenylpropanoids (1–7)
isolated from the hot water extract of A. galanga, and their α-glucosidase inhibitory effects
in rat INS-1 pancreatic β-cells. Furthermore, a plausible mechanism of β-cell function
and insulin secretion was evaluated. Pancreatic and duodenal homeobox-1 (PDX-1), a
transcription factor, is related the to function and survival of pancreatic β cells [20]. PDX-1
is regulated by a wide-range of upstream signaling, including insulin receptor substrate-2
(IRS-2) [21], phosphatidylinositol 3-kinase (PI3K) [22], and Akt [23]. To determine the
expressions of PDX-1, IRS-2, PI3K, and Akt, a Western blot was performed.

2. Results
2.1. Isolation and Identification of Phenylpropanoids 1–7 from the Rhizomes of A. galanga

In our previous work, we isolated three major phenylpropanoids (compounds 2–4)
from the 95% EtOH extract of A. galanga rhizomes [24]. In the present study, an additional
four major phenylpropanoids (compounds 1 and 5–7) were isolated from the hot water
extract of A. galanga rhizomes by chromatographic method. The plain structures of com-
pounds were confirmed by interpretation of 1D-NMR spectroscopic data (Figures S1–S7)
and by comparison with previously reported data [25–31].

In order to determine the absolute configuration of compounds 1–3, specific optical
rotation values of 1–3 were measured and compared to published values [26,28]. Com-
pound 1 is a racemic mixture, since its average specific rotation was close to zero [−0.4◦

(c 0.1, EtOH)] (Table S1). Compounds 2 and 3 exhibited negative values of specific rotation
[−50.2◦ (c 0.1, EtOH) and −16.6◦ (c 0.21, EtOH), respectively] (Table S1). According to the
previous research, the optical rotation value for the 1′S configuration of compound 2 is
negative, while the value for the 1′R configuration is positive [26]. Additionally, the 1′S
configuration of compound 3 has also been reported to have a negative value [28]. Thus,
the absolute configuration of compounds 2 and 3 was determined as 1′S.
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As a result, compounds 1–7 were identified as: (±)-1′-hydoxychavicol acetate (1;
HCA) [25,26], (1′S)-1′-acetoxychavicol acetate (2; ACA) [26,27], (1′S)-1′-acetoxyeugenol
acetate (3; AEA) [24,28], eugenyl acetate (4) [29], trans-p-coumaraldehyde (5) [30], trans-p-
acetoxycinnamyl alcohol (6) [31], and trans-p-coumaryl diacetate (7) [28] (Figure 1).
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Figure 1. Phenylpropanoids 1–7 isolated from the rhizomes of A. galanga.

2.2. Effects of Phenylpropanoids 1–7 on Glucose-Stimulated Insulin Secretion

Phenylpropanoids 1–7 were tested for their effect on cell viability to select the non-toxic
concentration to be used in the glucose-stimulated insulin secretion assay, and did not show
any toxicity at any concentration (Figure 2). As shown in Figure 3, phenylpropanoids 1–4
increased glucose-stimulated insulin secretion (GSIS). GSIS was expressed as the GSI. GSI
values were: 3.95 ± 0.11 for HCA (1) at a concentration of 10 µM (Figure 3A); 3.12 ± 0.11
for ACA (2) at a concentration of 10 µM (Figure 3B); 3.17 ± 0.14 and 6.16 ± 0.14 for AEA
(3) at concentrations of 5 and 10 µM (Figure 3C); 3.95 ± 0.11 for eugenyl acetate (4) at a
concentration of 10 µM (Figure 3D). Among these phenylpropanoids, the GSI of AEA (3)
was the highest, and it was selected as the subject of further mechanistic studies.
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Figure 2. Effects of phenylpropanoids 1–7 on the viability of INS-1 cells. Effect of (A–G) com-
pounds 1–7 compared with the control (0 µM) on the viability of INS-1 cells for 24 h by MTT assay
(n = 3 independent experiments, p < 0.05, Kruskal–Wallis nonparametric test). Data represent the
mean ± SEM.
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Figure 3. Effects of phenylpropanoids 1–7 on glucose-stimulated insulin secretion in INS-1 cells. Effect
of compounds 1–7 (A–G) compared with the control (0 µM) on GSIS in INS-1 cells for 1 h by insulin
secretion assay. The fold change in GSIS was expressed in terms of the glucose stimulated index
(GSI, 16.7 mM/2.8 mM glucose for 1 h). (n = 3 independent experiments, * p < 0.05, Kruskal–Wallis
nonparametric test). Data represent the mean ± SEM.

2.3. Effects of AEA (3) on the Protein Expression of P-IRS-2, IRS-2, P-PI3K, PI3K, P-Akt (Ser473),
Akt, and PDX-1

To explore the underlying influence of AEA (3) on glucose-stimulated insulin secretion
in INS-1 cells, the expression of proteins related to pancreatic β-cell metabolism was
analyzed. As shown in Figure 4A, 10 µM of AEA (3) increased the relative abundances of
P-IRS-2 (Ser731), P-PI3K, P-Akt (Ser473), and PDX-1 proteins. The bar graphs illustrate the
ratio of P-IRS-2 (Ser731), P-PI3K, P-Akt (Ser473), and PDX-1 expression normalized to their
corresponding GAPDH expression (Figure 4B–E). These results suggest that the effect of
AEA (3) enhances the expression of proteins related to pancreatic β-cell metabolism.
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Figure 4. Effects of AEA (3) on the protein expression levels of phospho-insulin receptor substrate-2
(P-IRS-2) (Ser731), IRS-2, phospho-phosphatidylinositol 3-kinase (P-PI3K), PI3K, phospho-Akt (P-Akt)
(Ser473), and Akt, and pancreatic and duodenal homeobox-1 (PDX-1) in INS-1 cells. (A) Protein
expression levels of P-IRS-2 (Ser731), IRS-2, P-PI3K, PI3K, P-Akt (Ser473), Akt, pancreatic and
duodenal homeobox-1 (PDX-1), and glycer-aldehyde 3-phosphate dehydrogenase (GAPDH) in INS-1
cells treated or untreated with 2.5 µM, 5 µM, and 10 µM AEA (3) for 24 h. (B–E) The bar graph
presents the densitometric quantification of Western blot bands (n = 3 independent experiments,
* p < 0.05, Kruskal–Wallis nonparametric test). Data represent the mean ± SEM.

2.4. Effects of AEA (3) on α-Glucosidase Inhibitory Activity

As shown in Figure 5A, α-glucosidase activity was 64.27 ± 0.43% and 57.43 ± 0.39%
after incubation with AEA (3) at 5 and 10 µM, respectively, compared with that of the
control (0 µM). AEA (3) were more effective than acarbose (positive control) of the same
concentration. α-Glucosidase activity was 69.14 ± 4.89%, 57.76 ± 2.96%, and 45.03 ± 4.43%
after incubation with acarbose at 10, 20, and 40 µM, respectively, compared with that
of the control (0 µM) (Figure 5B). This result showed that AEA (3) could be a potential
α-glucosidase inhibitor.
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compared with that of the control (0 µM) by α-glucosidase-inhibitory activity assay (n = 3 independent
experiments, * p < 0.05, Kruskal–Wallis nonparametric test). Data are expressed as the mean ± SEM.

3. Discussion

Type-1 diabetes is characterized by insulin deficiency due to the destruction of pancre-
atic β cells, while T2D is associated with a gradual loss of insulin secretion [32]. Therefore,
impairment of GSIS is known to be a risk factor for developing T2D, while, at the same
time, improved GSIS might be a strategy for the discovery of a potential agent to treat
T2D. In the present study, seven major phenylpropanoids were isolated from the 95%
EtOH and hot water extracts of A. galanga. The phenylpropanoids 1–7 were identified
as HCA (1), ACA (2), AEA (3), eugenyl acetate (4), trans-p-coumaraldehyde (5), trans-
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p-acetoxycinnamyl alcohol (6), and trans-p-coumaryl diacetate (7). Among the isolated
phenylpropanoids, phenylpropanoids 1–4 increased GSIS. p-Coumaraldehyde (5), a ma-
jor component of cinnamon and A. galanga, induces apoptosis in L-60 and U937 human
leukemic cells via mitochondrial and endoplasmic reticulum stress pathways [33]. The
antimicrobial activity of p-coumaryl diacetate (7) against methicillin-resistant Staphylococcus
aureus (MRSA) has been reported [34]. The ACA (2) was also enacted because it has a
significant anti-bacterial effect on MRSA [35]. ACA also possesses anti-inflammatory and
anti-cancer properties [36,37]. Despite their pharmacological effects, compounds 5–7 did
not have significant effects on GSIS in this study. As far as we know, no in vitro study has
yet assessed the effect of HCA (1), ACA (2), AEA (3), and eugenyl acetate (4) on GSIS effect.
Thus, these beneficial results may be of great importance for the discovery of a potential
agent to treat T2D.

Insulin secretion and pancreatic β-cell function are tightly coupled and regulated
through a network of multiple interacting transcription factors [38,39]. It has been reported
that the role of PPAR-γ agonists in pancreatic β cells is related to improved GSIS and
decreased serum proinsulin to insulin ratio. An increase in serum proinsulin to insulin
ratio is an indicator of the impaired secretory response of β cells [40]. PDX-1 is a frequently
mentioned transcription factor involved in the function of pancreatic β cells [41]. In animal
studies using mice, a complete lack of PDX-1 impairs GSIS [42]. Expression of the PDX-1
within islet β-cells leads to GSIS through membrane-mediated insulin-containing vesicular
exocytosis [43]. An inadequate β-cell mass of 50% or less is known to induce impaired
GSIS [44]. Insulin receptor substrate proteins (IRS-1 and IRS-2) have been reported to
maintain the normal pancreatic β-cell function [45]. IRS-1 is involved in the regulation of
insulin production in pancreatic β-cells, while IRS-2 controls the pancreatic β-cell mass,
which decides the limit of insulin production [21]. PI3K and Akt are important downstream
signaling molecules for IRS-2. Activation of the PI3K/Akt pathway contributes to the
adequate mass of functional pancreatic β cells, as well as the nuclear translocation of
PDX-1 [46]. Thus, the current study examined the changes in protein expression of P-IRS-2
(Ser731), P-PI3K, P-Akt (Ser473), and PDX-1 in INS-1 cells treated with AEA (3). It was
observed that the protein expression levels of P-IRS-2 (Ser731), P-PI3K, P-Akt (Ser473), and
PDX-1 were increased by treatment with AEA (3) at 10 µM compared to the untreated
controls. These results enhance the understanding of the underlying mechanisms of AEA
(3) on the amelioration of GSIS.

Since the inhibition of α-glucosidase, a carbohydrate hydrolyzing enzyme, lowers
blood glucose levels by delaying the digestion of carbohydrates, α-glucosidase inhibitors
such as acarbose and miglitol could help to treat T2D [47]. Although many natural products
have already been reported as sources of α-glucosidase inhibitors [6], researching natural
products with great structural diversity still offers an attractive strategy for finding α-
glucosidase inhibitors. In the present study, AEA (3) inhibited the α-glucosidase activity.
AEA (3) was more effective than acarbose (positive control) at the same concentration.
This result shows that AEA (3) could partly replace acarbose as a potential α-glucosidase
inhibitor. The next step in our research would be to inspect the side effects of AEA (3) to
compare them with those reported for acarbose—meteorism and abdominal distention [48].

4. Materials and Methods
4.1. Isolation of Phenylpropanoids 1–7 from A. galanga

The rhizomes of A. galanga were supplied from GNP BIO Co., LTD (Seoul, South
Korea) and identified by Prof. Dae Sik Jang. A voucher specimen (ALGA-2018) has been
kept in the Natural Product Medicine Laboratory of Kyung Hee University. The grinded
rhizomes of A. galanga (100.0 g) were extracted twice with hot water under reflux condition
for 2 h to produce a hot water extract. The extract (22.8 g) was dissolved in water and
suspended in the same volume of EtOAc for the production of an EtOAc-soluble fraction
(ALGAE, 944.3 mg). ALGAE was fractionated using silica gel column chromatography
(CC; 230–400 mesh; φ 3.6 × 27.0 cm; n-hexane: EtOAc = 8.5:1.5 to 5:5, v/v) to generate
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25 fractions (ALGAE1~25). ALGAE14 and ALGAE21 were identified as compounds 1
(20.7 mg) and 7 (11.5 mg), respectively. Compound 5 (4.9 mg) was obtained by separating
ALGAE23 using flash CC with an ODS cartridge (13.0 g) with a gradient solvent system
(acetonitrile:H2O = 2:8 to 3:7, v/v). Compound 6 (79.6 mg) was obtained from ALGAE22
by a flash CC system equipped with an ODS cartridge (13.0 g; acetonitrile:H2O = 2.8:7.2 to
3.8:6.2, v/v). Compounds 2 (3.98 g), 3 (36.8mg), and 4 (14.6 mg) were isolated by 95% EtOH
extraction with an isolation procedure that has been described in previously published
methods [19].

4.2. Cell Culture

Rat INS-1 pancreatic β-cells (Biohermes, Shanghai, China) were grown in an RPMI-
1640 (Cellgro, Manassas, VA, USA) containing 10% fetal bovine serum (FBS), 1% peni-
cillin/streptomycin (Invitrogen Co., Grand Island, NY, USA), 11 mM D-glucose, 2 mM
L-glutamine, 10 mM HEPES, 0.05 mM 2-mercaptoethanol, and 1 mM sodium pyruvate
under 5% CO2 and 95% air atmosphere with saturated humidity.

4.3. Cell Viability Assay

INS-1 cells were seeded at a density of 1 × 104 cells per well in 96-well plates for
24 h. INS-1 cells were treated with phenylpropanoids 1–7 at concentrations of 2.5, 5, and
10 µM for 24 h to assess their non-toxic dose ranges. The samples of phenylpropanoids 1–7
were first dissolved in DMSO at 100 mM concentrations, and then diluted to the desired
concentrations in RPMI-1640 medium supplemented with 1% penicillin/streptomycin
and 10% FBS. The control (0 µM) solvent used same media. Cell viability was identified
according to the manual of the Ez-Cytox cell viability detection kit (Daeil Lab Service Co.,
Seoul, Korea). Ez-Cytox reagent, at the indicated concentrations, was added per well under
light-limited conditions and its absorbance at 450 nm was measured using a PowerWave
XS microplate reader (Bio-Tek Instruments, Winooski, VT, USA).

4.4. GSIS Assay

INS-1 cells were seeded at a density of 4 × 105 cells per well in 12-well plates for
24 h. INS-1 cells were carefully washed twice with Krebs-Ringer bicarbonate HEPES
buffer (KRBB, 4.8 mM KCl, 129 mM NaCl, 1.2 mM KH2PO4, 1.2 mM MgSO4, 2.5 mM
CaCl2, 10 mM HEPES, 5 mM NaHCO3, and 0.1% bovine serum albumin (BSA), pH 7.4).
To induce starvation, cells were incubated with fresh KRBB for 2 h, and treated with
phenylpropanoids 1–7 at concentrations 2.5, 5, and 10 µM. After treatment for 2 h, INS-1
cells were stimulated with normal (2.8 mM) and high (16.7 mM) glucose, respectively, for
1 h. GSIS was measured according to the manual of the rat insulin ELISA kit (Gentaur,
Shibayagi Co. Ltd., Shibukawa, Gunma, Japan). The fold change in GSIS was expressed in
terms of the glucose-stimulated index (GSI, 16.7 mM/2.8 mM glucose for 1h).

4.5. Western Blot Analysis

INS-1 cells were seeded at a density of 8 × 105 cells per well in 6-well plates for
24 h. Then, the cells were treated with AEA (3) at concentrations of 2.5, 5, and 10 µM for
24 h. The expression of proteins including phospho-insulin receptor substrate-2 (P-IRS-
2) (Ser731), IRS-2, phospho-phosphatidylinositol 3-kinase (P-PI3K), PI3K, phospho-Akt
(P-Akt) (Ser473), Akt, and pancreatic and duodenal homeobox-1 (PDX-1) was measured
by Western blot analysis. All antibodies were purchased from Cell Signaling (Boston,
MA, USA). The cells were lysed in RIPA buffer (Cell Signaling, Danvers, MA, USA)
with a protease inhibitor for 20 min on ice. Samples containing a 20 µg concentration
of protein were separated by 10% sodium dodecyl sulfate polyacrylamide gel and then
transferred onto polyvinylidene difluoride membranes. The membranes were incubated
with primary antibodies against P-IRS-2 (Ser731), IRS-2, P-PI3K, PI3K, P-Akt (Ser473), Akt,
PDX-1, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) overnight at 4 °C, fol-
lowed by incubation with horseradish peroxidase (HRP)-conjugated anti-rabbit secondary
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antibodies at room temperature for 1 h. The expression of proteins was visualized by
an enhanced chemiluminescence reagent (GE Healthcare UK Limited, Buckinghamshire,
UK) and a chemiluminescence system (FUSION Solo, PEQLAB Biotechnologie GmbH,
Erlangen, Germany).

4.6. Assay of α-Glucosidase Activity

α-Glucosidase activity was identified according to the manual of the Sigma-Aldrich
commercial kits (Art. No. MAK123, St. Louis, MO, USA). AEA (3; 20 µL) was mixed with
α-glucosidase enzyme solution (200 µL). The mixture was incubated at 37 ◦C for 20 min
and its absorbance at 405 nm was measured using a PowerWave XS microplate reader
(Bio-Tek Instruments, Winooski, VT, USA).

4.7. Statistical Analysis

Statistical significance was determined using one-way analysis of variance (ANOVA)
and multiple comparisons with a Bonferroni correction. P values less than 0.05 indicated
statistical significance. All analyses were performed using SPSS Statistics ver. 19.0 (SPSS
Inc., Chicago, IL, USA).

5. Conclusions

Based on the results, we report that AEA (3) from A. galanga exerted α-glucosidase
inhibitory activity and GSIS effect. In addition, their GSIS effects were supported by in-
creased expressions of IRS-2, PI3K, Akt, and PDX-1. Although further studies are necessary
to investigate the safety and effectiveness of AEA (3) in animal models of T2D, AEA (3) can
be further developed into an alternative option for treating T2D.
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