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Abstract: The possibility of pigment detection and recognition in different environments such as
solvents or proteins is a challenging, and at the same time demanding, task. It may be needed in
very different situations: from the nondestructive in situ identification of pigments in paintings to
the early detection of fungal infection in major agro-industrial crops and products. So, we propose a
prototype method, the key feature of which is a procedure analyzing the lineshape of a spectrum.
The shape of the absorption spectrum corresponding to this transition strongly depends on the
immediate environment of a pigment and can serve as a marker to detect the presence of a particular
pigment molecule in a sample. Considering carotenoids as an object of study, we demonstrate that
the combined operation of the differential evolution algorithm and semiclassical quantum modeling
of the optical response based on a generalized spectral density (the number of vibronic modes is
arbitrary) allows us to distinguish quantum models of the pigment for different solvents. Moreover, it
is determined that to predict the optical properties of monomeric pigments in protein, it is necessary
to create a database containing, for each pigment, in addition to the absorption spectra measured in a
predefined set of solvents, the parameters of the quantum model found using differential evolution.

Keywords: optimization; differential evolution; absorption; optical response; carotenoids; multimode
Brownian oscillator model; fungal infection; Fusarium graminearum

1. Introduction

The development of methods for the non-invasive remote identification of organic
pigments in living organisms is a complex and highly demanding task. Potentially, these
methods, regardless of the specifics of their implementations, should combine at least two
aspects: spectroscopy and computation. The spectroscopic aspect refers to an instrumenta-
tion framework with which high-resolution registration of the optical response is possible.
The computational aspect involves the processing of the measurement results, modeling
of the investigated spectra, and comparative analysis of the simulated and experimental
results. The availability of an algorithm that would be able to distinguish the contribution
of many components to the complex optical response of the investigated object would allow
us to solve a large number of applied problems. In particular, the challenge of developing a
methodology for detecting crops and plants infested with various parasitic organisms at
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early stages of their growth using spectroscopy in the visible and ultraviolet range is the
focus of this study.

Most organic pigments are part of the pigment–protein complexes of bacteria, plants,
and fungal hyphae [1] (Figure 1A). Since pigments mainly absorb and fluoresce in the
visible range, there is a potential opportunity to develop a technique to detect a pigment in
any substance using its optical response. Spectroscopy methods currently provide a whole
arsenal of tools for studying the optical properties of pigment molecules [2]: absorption and
fluorescence spectroscopy [3] in the infrared, visible, and UV ranges [4], as well as Raman
spectroscopy [5]. However, to perform measurements on the studied pigments (Figure 1B),
they have to be isolated from proteins and placed in a cuvette with buffer (Figure 1A,C).
In vivo measurements can be taken using the laser remote sensing technique [6–10], but the
interpretation of the obtained signal is difficult [11] since the pigments are directly in the
living organism and their optical properties are differ from those of pigments in solvents.
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Figure 1. The protein complexes of fungi, bacteria, and plants contain pigments that are specific to
each type of organism (A). To run the detection method, the database of spectra and the corresponding
semiclassical quantum parameters have to be created for the pigments; (B) isolated from the fungi
hyphae, the light harvesting complexes of bacteria and plants (PSI, PSII, LHCII, and, for example,
phycobilisomes). All the spectra (D) must be measured for a predefined set of polar and nonpolar
solvents (C).

The main feature of the spectrum of any organic pigment is that its electronic absorp-
tion bands are quite broad (Figure 1D) and its line profile is usually irregularly shaped [12].
Such a spectrum cannot be fitted using simple Gaussians and Lorentzians, and therefore
these easy methods of analysis do not work in this case. Complex absorption profiles,
such as those of chlorophyll or carotenoids, are due to the presence of electron–phonon
interaction between the vibrational modes of the molecular skeleton and the optically active
electrons [13,14]. Moreover, all the spectra have inhomogeneity, which is the result of the
effects of the immediate environment (protein, solvent, etc.) [15,16].

Using the example of the analysis of the optical properties of lycopene [17], one of the
carotenoids found in fungi mycelia [18–20] and yeast cells [21], we demonstrate how the
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combined use of semiclassical quantum theory (the multimode Brownian oscillator model)
and differential evolution (DE) [22,23], a multiparametric optimization algorithm [24],
allows us to simultaneously fit the spectra of pigments in different solvents and obtain
characteristic functions representing the effects of vibronic modes, proteins, and solvents on
electronic excitation [25,26]. A key feature of our method is the use of generalized spectral
density. In the calculation of the optical response within the multimode Brownian oscillator
model, the spectral density completely determines the spectral width of the electronic
transition and the phonon wing profile. For this purpose, it is necessary to specify a set
of characteristic vibronic modes just before the spectrum calculation. However, if the
evolutionary optimizer is used, then instead of a set of frequencies directly corresponding
to the vibrational frequencies of the molecule, a generalized spectral density in the form of
a comb of frequencies has to be provided to the input of the simulation procedure. While
the method is running, unsuitable frequencies are filtered, and those that remain represent
the actual fingerprint of the electronic transition of the pigment in a solvent or protein.

The article is structured as follows: in Section 2, the methodology of the data analysis
and modeling of the pigment spectra is described in a formalized way; a brief overview
of the optimization algorithm, the theoretical background of the simulation of absorption
spectra, and some programming features and sample preparation are given in Section 3.
The obtained results and prospects for further research are detailed in Sections 4 and 5.

2. Statement of the Problem

The basic idea of the method is visualized in Figure 2. The measured spectra are
loaded into the software for processing and modeling (Figure 2B,C). The application of the
multimode Brownian oscillator theory [27] for simulating the spectra of organic pigments
in solvents or proteins from a mathematical point of view consists of a set of computational
procedures, particularly the fast Fourier transform and numerical integration. These
procedures process one-dimensional data arrays that are written in either frequency-domain
or time-domain representation. Since only one electronic state is considered, the main
optimization parameters are vibronic modes, on the basis of which correlation functions,
and eventually the absorption spectrum profile, are calculated [25,26].

A special feature of our method is the initial representation of the spectral density
(Figure 2F), which is an equidistant set of vibronic modes that interact equally with the elec-
tronic excited state. Thus, a set of model parameters (Figure 2G), including the electronic
transition energy, the full width at half maximum of inhomogeneous broadening, and vi-
bronic modes, is fed to the input of the simulation program. This set of parameters is called
a model solution. Since the multimode Brownian oscillator theory is semiclassical and does
not involve ab initio calculations [28,29], it is necessary to compare the calculated spectra
with the experimentally measured ones in order to reach a proper modeling solution.

As a result, by varying the free parameters, one can try to find a solution for which
the calculated spectra most accurately describe the measured ones. Ideally, the best solu-
tion is the set which gives an exact match between the calculated and measured spectra.
Obviously, the process of finding the best model parameters can be optimized. The use of
DE in this case is preferable to genetic algorithms because it allows us to vary the param-
eters continuously rather than discretely. Moreover, DE can classify the found solutions
according to their cost values. In general, the algorithm may become stuck at a local mini-
mum, but a special DE setting minimizes the probability of this event. Thus, the combined
software implementation of the optical response modeling procedures and the differential
evolution algorithm will allow us to find the exciton model parameters that provide the
best agreement between the experimental and calculated data.
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Figure 2. Graphic illustration explaining the main points of the methodology for the identification of
pigments by their optical properties. Registration of the optical response includes a wide range of ex-
perimental techniques. (A) Absorption, Raman spectroscopy, remote sensing. Optical measurements
(B,C), usually in the form of spectra; arrays of intensities and the corresponding frequencies at which
they were measured are processed using multiparametric evolutionary optimization and procedures
of spectra simulation within the framework of semiclassical quantum theory (F). The result of spec-
tra processing is represented in the form of spectral densities (D,E), which are considered unique
identifiers of pigments and their local environments as a system (coloring (D) and (E) represents the
intensity of the peaks). These results are further compared and analyzed with accumulated data in a
database (G) containing spectra and spectral densities for different pigments in reference solvents.
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3. Materials and Methods
3.1. Differential Evolution

DE is a heuristic multiparametric evolutionary optimization method used to find the
global minimum of a multimodal objective function. This method works effectively if it is
necessary to minimize the functions with a large number of variables [22,23].

The classic algorithm works as follows: at the initialization stage, a population of
candidate solutions (agents) is created inside n-dimensional space (where n is the number
of parameters to be optimized). For each free parameter, a range of its possible values
can be set. The best vector is selected from the others—the one for which the value of the
objective function is the smallest. For the next generation, this vector becomes the base.

After that, operations of mutation, crossover, and selection occur to create the next
generation of agents. Mutation is a linear operation for creating a new generation of vectors
to which the best agent from the previous one can contribute. Depending on the agent’s
contribution, there are two basic ways to create a mutant vector:

vg
i = xg

r0 + F
(

xg
r1 − xg

r2

)
, (1)

vg
i = xg

best + F
(

xg
r1 − xg

r2

)
, (2)

where F ∈ [0, 1] is the differential weight, which increases the diversity of the new genera-
tion of vectors.

When mutation is set, a crossover occurs, in which a trial vector is created by crossing
the base and mutant vector. The crossover probability (Cr ∈ [0, 1]) characterizes the
number of parameters inherited from a mutant vector by the trial one. There are two types
of crossover: exponential and binomial. Their names correspond to the type of distribution
of the number of parameters inherited from the mutant vector. The choice of strategy, F,
and Cr significantly affect the efficiency of the algorithm.

After crossover, the best trial vector of a new generation is compared with the best one
from the previous generation. As in the principles of natural selection, the one with the
smaller objective function will reach the next generation as the best vector. The number of
generations can be set initially, or reaching a certain value of the objective function could
be the stopping criterion.

The objective function characterizes the discrepancy between the experimental and
simulated spectrum and is defined as follows:

f
(

xg
i

)
=

1
N ∑N

n=1

(
I(ωn)− σabs

(
ωn, xg

i

))2
, (3)

3.2. The Theory of Optical Response

Any effects caused by the interaction of matter with an electromagnetic field can
be assessed by measuring a material quantity such as polarization. To demonstrate the
functioning of our method, we used the absorption spectra of lycopene measured at room
temperature in three solvents: chloroform, ethanol, and n-hexane (Figure 3).

Physical and chemical processes initiated by the absorption of a weak external field
E(r, t − t1) by organic molecules are described by the first-order polarization component:

P(r, t)(1) = − i
ℏ

∫ ∞

0
dt1E(r, t − t1)S(1)(t1), (4)

Here, S(1)(t1) is the first-order linear response function that includes the information
of the material system. The general expression for the absorption spectrum of an electronic
transition is

σabs(ω) =
∫ ∞

−∞
dt S(1)(t1)eiωt (5)
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Figure 3. Chemical structure of the all-trans isomer of lycopene and absorption spectra in chloroform
(magenta), ethanol (green), and n-hexane (blue) at room temperature.

To evaluate S(1)(t1), the cumulant expansion method is applied [27]. This allows us
to derive an exact solution for quantum systems using Gaussian statistics. By using this
approach, S(1)(t1) is calculated in terms of the correlation functions. By introducing the
spectral density of the system under consideration, we obtain a simple numerical procedure
for implementing a semiclassical theory for modeling the absorption spectra of organic
pigments. The theoretical calculations are detailed in Appendix A.

3.3. Empirical Data

To make the whole method run, preliminary work is needed to create a database
of semiclassical quantum parameters for as many pigments as possible involved in the
metabolic process of parasitic organisms at different stages of their growth.

The sample preparation and measurements, which we consider optimal for the mo-
ment, are described in detail in [26]. Using astaxanthin as an example, whose spectra were
measured in 18 polar and nonpolar solvents at room temperature from 350 nm to 600 nm,
the corresponding sets of parameters to simulate the electronic transition of the pigment
were obtained.

In addition to carotenoids, the database should include the processed spectra of other
pigments typical for the fungi: fusarubin, aurofusarin, rubofusarin, β-carotene, torulene,
neurosporaxanthin, and lycopene.

3.4. Programming and Software

At the current stage of developing a methodology for detecting infected crops and
the accompanying software, we have used our previous designs for modeling the optical
response. Procedures that can be used as independent library functions have been devel-
oped to estimate the spectral density, the lineshape function, and eventually the absorption
spectrum profile. The implemented software package used to optimize the fitting of the
spectra of organic pigments (chlorophylls, bacteriochlorophylls, and carotenoids) is de-
scribed in the related publications. It includes a differential evolution procedure adapted
for semiclassical quantum simulations (Figure 2F).

All the programs are written in C++, while the MKL library was used to speed up
calculations with matrices and arrays.
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4. Results

To demonstrate the functioning of our method, we used the absorption spectra of ly-
copene measured at room temperature in three solvents: chloroform, ethanol, and n-hexane
(Figure 3). To simulate the spectra, the computational procedure sequentially evaluated
Equations (A6)–(A8). The initial spectral density for each spectrum was calculated consider-
ing 30 vibronic modes. The frequencies, ωj, varied from 20 cm−1 to 3500 cm−1 in increments
of 120 cm−1. The damping factors were up to 5 cm−1 for all modes [26]. Thus, the total
number of parameters to be optimized, when the spectrum fit, was 35: the electronic transi-
tion energy, Ωeg; the full width at half maximum of inhomogeneous broadening, FWHMΩ;
three parameters of the lowest vibronic mode, {ωlow, Slow, γlow}; and the Huang–Rhys
factors for each vibronic mode of the spectral density function.

DE optimization was carried out with the following settings: DE/best/1/bin strategy,
F = 0.55, Cr = 0.9, the number of generations is 600. The results of modeling the lycopene
absorption spectra (B,D,F) and spectral densities (A,C,E) in chloroform, ethanol, and n-
hexane are shown in Figure 4.
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To interpret the obtained spectral densities, it is convenient to divide them into three
regions. The region from 800 cm−1 to 1500 cm−1 corresponds to the main vibronic modes
of carotenoids; the region from 2000 cm−1 to 2500 cm−1 represents the double overtones of
the ν2, ν3, and ν4 modes; and the region 3000 cm−1 and higher is the location of the double
overtones of the ν1 mode.

Table 1 contains the full sets of parameters obtained after the best run of DE optimiza-
tion. There is a clear tendency to zero out the Huang–Rhys factors of some modes that fall
within a certain frequency domain. The results show the large influence of solvents on the
spectra and the Huang–Rhys factor values.

Table 1. Parameters of the multimode Brownian oscillator model used to simulate absorption spectra
of lycopene in chloroform, ethanol, and n-hexane at room temperature.

Lycopene

Chloroform Ethanol n-Hexane

Ωeg, cm−1 21,526.7 21,833.2 21,899.4
FWHMΩ, cm−1 1090.0 1042.3 845.2

ωlow, cm−1 23.5 12.0 36.9
Slow 1.387 0.215 1.745

γlow, cm−1 490.1 314.4 115.7
S20 0.026 0.075 0.125
S140 0.000

(
< 10−3 ) 0.000

(
< 10−3 ) 0.001

S260 0.000
(
< 10−3 ) 0.000

(
< 10−3 ) 0.000

(
< 10−3 )

S380 0.001 0.000
(
< 10−3 ) 0.000

(
< 10−3 )

S500 0.000
(
< 10−3 ) 0.000

(
< 10−3 ) 0.000

(
< 10−3 )

S620 0.000
(
< 10−3 ) 0.000

(
< 10−3 ) 0.000

(
< 10−3 )

S740 0.000
(
< 10−3 ) 0.000

(
< 10−3 ) 0.000

(
< 10−3 )

S860 0.000
(
< 10−3 ) 0.000

(
< 10−3 ) 0.000

(
< 10−3 )

S980 0.000
(
< 10−3 ) 0.000

(
< 10−3 ) 0.000

(
< 10−3 )

S1100 0.103 0.000
(
< 10−3 ) 0.389

S1220 0.457 0.311 0.131
S1340 0.146 0.673 0.267
S1460 0.393 0.101 0.067
S1580 0.078 0.000

(
< 10−3 ) 0.359

S1700 0.019 0.002 0.000
(
< 10−3 )

S1820 0.001 0.000
(
< 10−3 ) 0.000

(
< 10−3 )

S1940 0.001 0.050 0.015
S2060 0.003 0.084 0.000

(
< 10−3 )

S2180 0.096 0.017 0.001
S2300 0.000

(
< 10−3 ) 0.000

(
< 10−3 ) 0.058

S2420 0.018 0.004 0.005
S2540 0.013 0.000

(
< 10−3 ) 0.000

(
< 10−3 )

S2660 0.020 0.026 0.000
(
< 10−3 )

S2780 0.000
(
< 10−3 ) 0.014 0.023

S2900 0.015 0.000
(
< 10−3 ) 0.023

S3020 0.001 0.005 0.012
S3140 0.027 0.009 0.005
S3260 0.000

(
< 10−3 ) 0.028 0.000

(
< 10−3 )

S3380 0.001 0.003 0.000
(
< 10−3 )

S3500 0.023 0.000
(
< 10−3 ) 0.000

(
< 10−3 )

We want to stress that the better the separation of the two overtone regions, the more
accurate the results. For chloroform, the first overtone region strictly lies in the range from
2000 cm−1 to 2600 cm−1, and the second—from 3000 cm−1 to 3500 cm−1. There is a wide
empty gap between them.

For n-hexane, a similar pattern is observed, but with a shift and a less wide gap
(200 cm−1) between the overtone regions. The first overtone region corresponds to the
range from 2000 cm−1 to 2400 cm−1, and the second region—from 2600 cm−1 to 3100 cm−1.
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Because of this, the agreement between the experimental and simulated spectra for n-
hexane was slightly worse than for chloroform.

For ethanol, there is no clear gap between the two regions, resulting in the worst
agreement between the experimental and simulated spectra of the three solvents. This may
be due to both experimental errors and the special effect of this solvent on lycopene.

The sets of spectral densities for lycopene in chloroform (A), ethanol (B), and n-hexane
(C) obtained after five runs of DE optimization are shown on Figure 5. Red arrows point to
the frequency region of the main carotenoid vibronic modes. Green and blue arrows point
to the overtone regions.
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As you can see, a set of statistics for each case creates a quite clear picture of the
simulation results. For each solvent, the overtone regions have the same ranges with a
small difference in mode intensity.

5. Discussion
5.1. Spectra Fitting

The idea of calculation using differential evolution is not new and has been successfully
applied to astaxanthin [12,25,26], a keto-carotenoid produced by microalgae and the yeast
fungus. Since we know all the information about the vibronic modes and their overtones,
we were able to achieve results with high accuracy. However, in this work, we take a
more general approach without limiting by a finite set of modes at certain frequencies.
We set the comb of vibronic modes with a certain step over a wide range. On the one
hand, such calculations become much longer due to the larger number of variables; on
the other hand, with the correct implementation of the algorithm, the total accuracy can
increase. For example, in the previously published study [30], there is a big discrepancy
in the high-energy region because only two vibronic modes of carotenoids were used
without overtones.

The idea of general spectral density is only feasible with the help of a powerful
optimizer since it is not possible to solve the problem analytically. To increase the predictive
power of the model, it is necessary to test it on a large number of carotenoids and other
solvents, analyze the results obtained, and create a database. It is possible to find certain
patterns based on the obtained results and classify the type of immediate surroundings
according to their influence on the objects of study. It must be stressed that the accuracy
of the results strongly depends on the step between the peaks in the comb (in this work,
it was constant and equal to 120). This value needs fine-tuning optimization, because if
the step is too large, many peaks may be missed, and if the step is too small, they may be
indistinguishable from each other. Based on the available comb peaks, the final absorption
spectrum can be calculated. However, the idea of general spectral density needs further
detailed analysis.

Comparing our method with similar studies, it is first of all worth noting that most
researchers apply data processing and machine learning (instead of evolutionary optimiza-
tion) to plant stress detection and automatic discrimination of crops and weeds [31–33]. The
advantage of our method is that we do not require knowledge about the leaf morphology
(shape, color, size) [31,32]; our goal is to detect the presence of characteristic pigments by
their optical response. Since some pigments are specific to the particular stage of fungi
growth, our methodology allows us to recognize the disease at an early stage, when the
external signs of infection are not yet visible. In addition, it is obvious that from the analysis
of photographs alone, it is impossible to obtain a description of the physical and chemical
processes occurring directly in the leaves or seeds. Also, input data containing a large
number of images are more time-consuming from the point of view of computer processing
than mathematical data (spectra, tables).

5.2. Possiblity of Application for the Early Detection of Fungi in Crops and Agricultural Products

There are a large number of fungal diseases affecting various cereal crops such as
oats, wheats, barley, and maize [34,35]. Moreover, infection can occur at any stage of crop
development [36] and does not depend on the volume and quality of the harvest [37]. These
contagious diseases are caused by fungi of the genera Fusarium, Alternaria, Neuraspora,
and many others [38,39]. It should be noted that most fungi produce and accumulate
mycotoxins that are dangerous for humans and animals [40]. Therefore, the study of the
characteristic symptoms of the disease and the improvement of diagnostic methods is a
crucial practical task [41,42]. One of the distinctive signs indicating the presence of a certain
species of fungus on the outer face of seeds is the appearance of color spots [43–45] due
to the fact that fungi have pigment molecules. The number of pigments synthesized by
fungi is very large [46]; the mycelium of some species at different states of their growth
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may contain up to a dozen pigments. Thus, the idea of detecting the plant pathogens using
optical methods [47] looks promising. Naturally, quantum chemistry calculations applying
the TD-DFT approach have been used for many carotenoids and other photosynthetic
pigments [48,49]; moreover, some studies have recently been published on the simulation
of the vibrational spectrum of rubrofusarin [50]. It is worth noting that these methods can
estimate the vibrational structures of the ground state quite well; however, for modeling
excited states, complicating the calculations is necessary.

The developed method for detecting pigments in the immediate surroundings might
also be used to recognize early crop infestation, both via remote sensing and when the
samples for study are washed off the surface of the grains. It is for such practical appli-
cations that the use of a database containing pigment spectra and generalized spectral
density functions plays a key role. The generalized spectral density calculated for pigment
spectra in different solvents allows us to distinguish frequencies, the influence of which
does not actually change from the pigment environment, as well as those that are specific
to a given environment. Such classification of spectral density frequencies will enable us to
examine the spectral density obtained for spectra not included in the database and to draw
conclusions about the belonging of the investigated spectra to a particular pigment. The
main question is whether it is possible to obtain the parameters with sufficient accuracy
using spectral density as the characteristic of the electronic transition of the observed
spectrum. We will try to clarify this problem in our future studies on this topic.

6. Conclusions

In this work, we have presented a prototype method that allows us to analyze the op-
tical response of organic pigments both in solvents and in a protein environment. Potential
applications include the identification of different microorganisms, based on the signal of
the pigments that are part of their cell membranes. In particular, it could be possible to
detect the infection of agricultural crops by parasitic fungi at early stages of their growth.

The technique is based on the combined usage of semiclassical quantum theory for
modeling the optical response and a multiparametric evolutionary optimization algorithm.
The synergistic effect of such a combination is manifested in the possibility to predict the
optical properties of organic pigments depending on the immediate protein environment,
based on the results of modeling these pigments in reference media (usually polar and
nonpolar solvents).

With the example of lycopene in three solvents (chloroform, ethanol, and n-hexane),
we showed that the use of spectral density of a special kind (in the form of a comb with
an equidistant distribution of vibronic modes from 20 cm−1 to 3500 cm−1) as an initial
condition for multiparametric optimization allowed us to fit the experimental data with
great accuracy and, at the same time, obtain statistically distinguishable values of the result-
ing spectral density. Thus, for the spectra of lycopene in different solvents, characteristic
frequencies in the spectral density were identified, which unambiguously determined the
solvent in which the spectrum was measured.

Obviously, the creation of a database of optical spectra measured in reference solvents
for widely distributed pigments will allow the generation of characteristic spectral densities,
on the basis of which it will be possible to recognize signals from pigments in living
organisms in the future.
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Appendix A

Let us consider a two-level system consisting of ground | g⟩ and excited | e⟩ electronic
states. The excited electronic states of carotenoids in the 400–600 nm region corresponds to
the so-called optically allowed |S0⟩ →|S2⟩ transition. The complete Hamiltonian of the
system, including the sets of vibrational modes, is written as:

Htot = | g⟩Hg(q) ⟨g |+ | e⟩He(q) ⟨e |, (A1)

Hg(q) = ∑N
j

(
p2

j

2mj
+

1
2

mjω
2
j q2

j

)
, (A2)

He(q) = ℏω0
eg + ∑N

j

(
p2

j

2mj
+

1
2

mjω
2
j
(
qj + dj

)2
)

, (A3)

where Hg(q) and He(q) are the Hamiltonians of the ground and excited states; ω0
eg is the

energy gap between | g⟩ and | e⟩ ; pj, mj, ωj, and qj are the effective moments, masses,
frequencies, and coordinates of the vibronic modes; dj is the displacement parameter
characterizing the deformation of the | e⟩ potential curve; and N is the number of modes.

The theory assumes that each vibronic mode of the system described by Htot interacts
with a set of bath modes. This assumption allows us to take into account the contribution
of low and high frequencies of nuclear oscillations in one equation for the spectral density
function. Thus, Htot is modified by adding the HVB contribution:

Htot = Hg + He + HVB, (A4)

HVB = ∑M
n

[
p2

n
2mn

+
1
2

mnω2
nx2

n − xn∑j cnjqj +
∑j c2

njq
2
j

2mnω2
n

]
, (A5)

Here, M enumerates the bath modes; pn, mn, and ωn are the parameters of the nth
bath mode; and cnj is the effective interaction between the nth bath mode and the jth
vibronic mode.

Since we are interested in the linear optical response, the system described by the
Hamiltonians (A4) and (A5) must be in the ground state ρg = exp

(
−βHg

)
/Trexp

(
−βHg

)
,

and 1/β = kT, where T is the temperature. Here, ρ(−∞) =
∣∣ g⟩ρg ⟨g | is the electronic

density operator ρ(t) in the thermal equilibrium conditions.
There are several ways to evaluate the spectral density function C′′(ω); one of them is

the path integral approach. An expression, suitable for numerical calculations, is as follows:

C′′(ω) = ∑j

2Sjω
3
j ωγj(

ω2
j − ω2

)2
+ ω2γ2

j

, (A6)

It already contains a set of effective parameters
{

ωj, Sj, γj
}

that is used to simulate
the optical response instead of the parameters from (A2), (A3), and (A5). The electron–
phonon coupling energy between an electronic state and the jth mode is described by Sj,
the Huang–Rhys factor, which is proportional to dj in (A3); γj is the damping factor of
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the jth vibronic mode. The expression for the spectral density is used to calculate the g(t)
lineshape function:

g(t) =
1

2π

∫ ∞

−∞
dω

1 − cos ωt
ω2 coth(βℏω/2)C′′(ω)− i

2π

∫ ∞

−∞
dω

sin(ωt)− ωt
ω2 C′′(ω), (A7)

g(t) is the temperature-dependent function that carries information about the contribution
of each vibronic mode to the final absorption spectrum. The broadening of the spectrum
associated with the vibronic modes of a pigment is called a homogeneous one. To make
the simulated spectrum appear as realistic as possible, in addition to inhomogeneous
broadening, it is necessary to take into account the influence of the immediate surroundings
of the molecule. Thus, the final expression for the absorption profile is:

σabs(ω) =
1
π

Re
∫ ∞

0
dtei(ω−Ωeg)te−g(t)e−

1
2 (∆t)2

, (A8)

where Ωeg is the energy of the | g⟩ → | e⟩ electronic transition, ∆ = FWHM/2
√

2·ln2 is
the standard deviation of the inhomogeneous broadening, and FWHMΩ is the full width
at half maximum.
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