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1. Introduction

Climate change and the increased need for crop production highlight the urgent impor-
tance of introducing crops with increased tolerance to adverse environmental conditions [1].
Many studies have focused on creating and studying various crop species (genotypes, vari-
eties, cultivars, hybrids, etc.) resistant to different abiotic stress factors, especially drought,
salinity, light, extreme temperatures, heavy metals, etc., applied alone or in combination.
Breeding and genetic modification methods intended for crop improvement have created
many plant species with greater resistance to abiotic stress [2]. The non-genetic approach
to enhancing crop yields in stressful environments involves the use of exogenous phyto-
and biostimulants [3], as well as primary and secondary plant metabolites [4,5]. Since the
effectiveness of these strategies in improving plant stress tolerance has been proven, they
have the potential for widespread application in the future. In addition to these strategies,
a lot of attention has been paid to protecting plants’ photosynthetic function under abiotic
stress [6,7]. There is evidence to suggest that the use of strategies to improve the photosyn-
thetic performance under stress conditions can increase plant yields, which has led to a
growing interest in studying photosynthetic tolerance as a tool to enhance plant production
under adverse environmental conditions [6]. Moreover, environmental stress has a strong
impact on the photosynthetic membranes of plants, causing damage on multiple levels
by affecting the ultrastructure of thylakoid membranes, pigment content, protein and
lipid compositions [7]. This fact emphasizes the importance of studying the adaptation
mechanisms of photosynthetic apparatus to achieve a deeper understanding of plant stress
responses, which will be useful in the actual selection of crop-tolerant genotypes.

This Special Issue, “Abiotic Stress Tolerance in Crop and Medical Plants” (Volume
I and II), collects papers on new approaches to the development of strategies to increase
the abiotic stress tolerance of crop and medicinal plants. It also focuses on studying
the photosynthetic adaptation mechanisms in strategic crops and medicinal plants to
changing environmental conditions for the fast detection and screening of their stress
tolerance in the context of climate change. The papers published in the present Special
Issue (consisting of 27 original articles and 2 reviews) address various environmental
stress factors such as drought, salinity, light stress, cold stress, heavy metal toxicity, etc.,
applied individual or in combination. They provide important insights into the underlying
mechanisms of plant tolerance, as well as practical ways to alleviate the harmful effects of
environmental stress by different means such as plant metabolites, signaling molecules,
phytoprotectants, biostimulants, etc. Some papers also demonstrate the adaptation of
different plant genotypes to individual or combined stress factors. The insights provided
by all of these studies will help us to better understand the tolerance mechanisms of plants
against various abiotic stress factors, helping to ensure future food security.

2. Tolerance Mechanisms in Crop Plants

Unfavorable environmental changes affect the biochemical and physiological pro-
cesses, growth, and development of crop plants and thus can significantly reduce crop
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yield and quality. Crop plants have developed a wide set of responses to tolerate envi-
ronmental stress depending on their capacity for adaptation [1,5]. In this Special Issue,
several articles explore the morphological, biochemical, and physiological responses of
important crop plants (or different genotypes) and their adaptation to environmental stress,
as well as the different ways to increase their resistance to drought stress (contributions
1–5), osmotic and salt stress (contributions 6–12), and the combined effects of drought and
salinity (contributions 13–15).

Information about the application of exogenous biostimulants and phytohormones
for improving crop stress tolerance is also included in this Special Issue. Rady et al.
(contribution 1) propose the use of exogenous gibberellic acid and diluted bee honey
as biostimulants to ameliorate the drought tolerance of bean plants, and in their study,
they achieved improved growth and productivity under water-deficient conditions. Al
Kahtani et al. (contribution 6) demonstrate the possible effectiveness of applying Bacillus
thuringiensis and silicon to endow lettuce plants with tolerance to salinity. Stassinos et al.
(contribution 7) suggest that seed priming with spermidine influences the responses to salt
stress of three rapeseed cultivars and demonstrate an improvement in their tolerance to
high-saline conditions. Another study by Stefanov et al. (contribution 12) discusses the
protective effects of sodium nitroprusside on the photosynthetic function of sorghum plants
subjected to salt stress. Kunene et al. (contribution 4) show that a drought-tolerant Bambara
groundnut genotype can be recognized during the early growth stage by screening for
drought-tolerance markers, and this knowledge can be used for improving crop production.
Yue et al. (contribution 15) propose that OsmiR535 has the potential to be a target for the
genetic editing of plants’ drought and salt tolerance which can be used as a new marker for
molecular breeding in rice plants.

Elkelish et al. (contribution 16) report that the exogenously applying ascorbic acid
enhances the cold stress tolerance of tomato plants. Popova et al. (contribution 17) reveal
that alternative electron pathways are involved in the photosynthetic responses to high-
light intensity and low temperature by studying the acclimation of two Arabidopsis thaliana
species (wild-type and mutant lut2) to both stress factors.

Other articles published in this Special Issue deal with the mitigation of heavy metal
stress, showing that the application of trehalose alleviates cadmium toxicity in mung bean
plants by enhancing the photosynthetic activity and antioxidant defense system (contri-
bution 18), and 5-aminolevulinic acid increases lead tolerance in sage plants (contribution
19). Zishiri et al. (contribution 20) identified several maize genotypes (inbred lines) with
genetic variations conducive to aluminum tolerance and explains that they could be used
by breeders in maize breeding programs to reduce yield losses.

The review paper by Giraldo Acosta et al. (contribution 21) proposes the application
of melatonin as a natural safener in herbicide treatments of crop plants, highlighting
its excellent capabilities to reduce herbicide damage and activate antioxidant defense.
Melatonin has been described as a hormonal molecule that can stimulate the functions of
plants under various abiotic and biotic stresses.

3. Tolerance Mechanisms in Medicinal Plants

Abiotic stress factors such as drought, salinity, high light, extreme temperatures, etc.,
can also reduce the quality and productivity of medicinal plants by disrupting their bio-
chemical, metabolic, and physiological processes [8,9]. It has been also established that
the application of various biostimulants like phytohormones, plant-growth-promoting
Rhizobium, nanomaterials, and biochar can improve the resistance of medicinal plants to
stress by stimulating the biosynthesis of primary and secondary metabolites and phyto-
hormones and increasing their chlorophyll contents, antioxidant potential, and nutrient
uptake, thereby reducing oxidative stress [9].

This Special Issue also includes studies on the tolerance mechanisms of medicinal
plants, as well as different treatments that can reduce the harmful effects of abiotic stresses to
achieve the high-quality production of medicinal and aromatic plants under environmental
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stress. The review by Hlongwane et al. (contribution 22) highlights the effectiveness of
plant-growth-promoting rhizobacteria in alleviating the harmful effects of abiotic stress
factors such as salt and drought in the medicinal plant Lessertia frutescens, whose curative
ability is related to its enriched phytochemical composition, which includes amino acids,
flavonoids, and triterpenoids. The study by Sichanova et al. (contribution 23) evaluates
the influence of different concentrations of two types of nanofibers (derivatives of aspartic
acid with silver ions) on the growth parameters, antioxidant activity, and steviol glycoside
content of micropropagated Stevia plants. The authors of this study suggest that the
application of silver salt nanofibers appears to be an effective strategy for enhancing the
presence of metabolites relevant to human health and addressing various abiotic and biotic
stresses.

Szekely-Varga et al. (contribution 24) establish the stress responses and the relative
tolerance of two commercial lavender varieties to drought and salinity, showing the rele-
vant mechanisms involved in their tolerance. They also describe the possibility of using
biochemical stress biomarkers for the quick screening and selection of lavender genotypes
better adapted to climate change scenarios.

El-Sherbeny et al. (contribution 25) discuss the morphoanatomical features and bio-
chemical responses (such as an increase in the contents of phenols, flavonoids, alkaloids,
and tannins, and increased antioxidant activity) of two medicinal vascular plants species—
Artemisia monosperma and Limbarda crithmoides—developing in the arid coastal habitats
of Egypt. The authors describe the adaptation mechanisms used by these plant species
and provide insights into the defense and survival strategy of these plant species under
extremely harsh conditions.

Zhao et al. (contribution 26) indicate that light intensity has a regulatory role in the
increasing accumulation of flavonoids, which allows the alpine herbal plant Sinopodophyl-
lum hexandrum to adapt to the elevated altitude associated with high-light intensity. It has
been also found that higher light intensities are correlated with greater flavonol, flavonoid,
and anthocyanin contents as well as with higher anthocyanin/total flavonoid and antho-
cyanin/total flavonol ratios.

In another study, the tolerance mechanisms of the medicinal and aromatic plant clary
sage (Salvia sclarea) against excess zinc (Zn) stress were evaluated by studying observed
changes in leaf pigment and phenolic content, photosynthetic performance, nutrient uptake,
and the characteristics of the leaf structure (contribution 27). This study reveals that clary
sage is an appropriate plant for the phytoextraction of Zn from polluted soils, as well
as for the phytoremediation of heavy-metal-contaminated soils. In addition, El-Shora
et al. (contribution 19) suggest that antioxidant defense mechanisms can improve the
heavy metal tolerance of sage plants (Salvia officinalis) and recommend the application of
5-aminolevulinic acid to alleviate lead stress.

4. Conclusions

The present Special Issue provides useful insights into the complex interactions be-
tween plants and the changing environment, shedding light on the different strategies that
crop and medicinal plants use to adapt to and mitigate the harmful effects of abiotic stresses,
which would have crucial effects on sustainable food and pharmaceutical production. This
Special Issue also presents studies of new tolerant crop genotypes and different eco-friendly
ways to improve the tolerance of plants under unfavorable environmental conditions.
The effectiveness of different phytoprotectants and/or biostimulants in inducing effective
tolerance mechanisms in plants against environmental stress is also discussed. The sharing
of such valuable insights must continue to help develop a sustainable future agriculture
that is better adapted to environmental changes and environmental pollution.

I express my deepest gratitude to all authors who accepted the opportunity to present
their research in this Special Issue and thank them for their efforts in studying abiotic stress
tolerance in plants.
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