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Abstract: Kenaf (Hibiscus cannabinus L.) is considered suitable for the remediation of cadmium (Cd)-
contaminated farmlands, because of its large biomass and resistance to Cd stress. The addition of
nitrogen (N) fertilizer is an important measure used to increase crop yields, and it may also affect
Cd accumulation in plants. To clarify the effects of different forms and concentrations of N on plant
growth and Cd absorption in kenaf, a hydroponic experiment was conducted using three N forms
(NH4

+–N, NO3
−–N and urea–N) at four concentrations (0, 2, 4 and 8 mM, 0 mM as control) under

Cd stress (30 µM). The plant growth, the antioxidant enzyme activity and the Cd contents of various
parts of the kenaf seedlings were measured. The results showed that the N form had the greatest
impact on the growth of the kenaf and the absorption and transport of the Cd, followed by the
interaction effect between the N type and the concentration. Compared to the control, the addition of
N fertilizer promoted the growth of kenaf to varying degrees. Among all the treatments, the use of
2 mM of NO3

−–N enhanced the biomass and Cd accumulation to the greatest extent compared to CK
from 2.02 g to 4.35 g and 341.30 µg to 809.22 µg per plant, respectively. The NH4

+–N significantly
reduced the Cd contents of different parts but enhanced the translocation factors of Cd stem to root
(TF S/R) and leaf to stem (TF L/S) by 34.29~78.57% and 45.10~72.55%, respectively. The peroxidase
(POD), superoxide dismutase (SOD) and catalase (CAT) enzyme activities of the kenaf increased with
the N treatments, especially with NH4

+–N. Overall, applying low concentrations of NO3
−–N can

better promote the extraction of Cd by kenaf.

Keywords: kenaf; cadmium; absorption; antioxidant capacity; translocation factors

1. Introduction

Cadmium (Cd) is a highly toxic and non-essential heavy metal that is difficult to
degrade. Although Cd is not abundant in soil, it is easily absorbed by plants and impairs
their growth. It enters the human body through the food chain, where it causes various
diseases [1–3]. China has a large population but limited arable land resources, and ap-
proximately 1/6 of the land is polluted with Cd to varying degrees [4,5]. The remediation
and safe use of Cd-contaminated farmlands are important to ensure the food supply, and
considerable research on the restoration and management of Cd-contaminated farmlands
has been conducted in recent years [2,4–7]. For farmlands with mild-to-moderate heavy
metal pollution, the main measures employed are to rescue Cd bioavailability in the soil by
using low-uptake varieties and adopting agronomic measures to reduce the Cd contents of
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grains. For heavily polluted farmlands, economical plants that do not enter the food chain
are used as substitutes for planting, and to restore the basic ecological functions of polluted
farmland while generating economic benefits [5–7].

Hibiscus cannabinus L., also known as kenaf, is an annual bast fiber crop and an indus-
trial crop used in a wide range of applications (such as textile production, papermaking,
construction materials, hemp plastic and activated carbon) [8–11]. Related research has
indicated that kenaf can adapt to high concentrations of Cd stress (4.9 mg·kg−1) and extract
a certain amount of Cd (74.42~149.17 g·hm−2) [9,12]. In addition, the heavy metal content
extracted from bast fiber and stem xylems is known to meet the diamond standard for
ecological textiles (<40 mg/kg) and the limits for indoor decoration and the refurbishing
of materials (<75 mg·kg−1) [12,13]. Therefore, the use of kenaf is widely considered in the
reclamation of heavy-metal-contaminated farmlands [9,11,12].

The application of nitrogen (N) fertilizers has become an essential approach for in-
creasing crop yields in China [14–17], even in heavy-metal-contaminated soils. Research
has shown that the application of N fertilizer can alleviate the damage caused by Cd stress
in plants and affect the absorption and accumulation of Cd in plants [1,18,19]. Studies have
suggested that ammonium N fertilizer can lead to soil acidification and increased plant Cd
contents [20,21]. However, other studies have found a synergistic relationship between the
absorption of NO3

− and Cd2+ by plants; and compared to ammonium N fertilizer, nitrate
N fertilizer has been found to enhance the absorption of Cd by plants [22,23]. In addition
to the fertilizer form, the N concentration can also affect Cd absorption by plants [24,25],
but research results have varied greatly because of the differences in the experimental
materials and methods used [23,25,26]. In summary, although the effects of N fertilizer on
different plants vary, the use of fertilizers to regulate the uptake of heavy metals by plants
is considered the most economical and least disruptive method for plant growth [1,19].

Related research has not been conducted using kenaf. Therefore, kenaf (Qingpi no. 3)
was used as the experiment material in this study. It was grown in a hydroponic system
under Cd (30 µM) stress, where it was supplied with three N forms (NH4

+–N, NO3
−–N

and urea–N) at four concentrations (0, 2, 4 and 8 mM, and 0 mM as the control). To screen
out the applicable N form and concentration that enhanced Cd accumulation in kenaf, the
phenotypic traits of the kenaf seedlings and the physiological changes occurring in relation
to the Cd stress and the Cd content were investigated, in addition to accumulation (total Cd
in plant) and the translocation factor TF (the ratio of the metal concentration in the stems
or leaves to that in the roots) were investigated [9,13], The findings in this study provide a
theoretical basis for the remediation of Cd-contaminated farmlands using kenaf.

2. Results
2.1. Phenotypic Traits

After four weeks of treatment, significant differences in kenaf growth were observed
under Cd-stress conditions (Table 1). The two-way ANOVA results (Table 2) indicated that
the N form and the interaction between the N form and concentration significantly affected
multiple agronomic traits, except for the stems’ dry weight.

The plant heights ranged from 34.08 cm to 49.92 cm, the stem diameters ranged from
2.70 mm to 3.84 mm, the maximum root lengths ranged from 17.42 cm to 29.83 cm, and the
dry weights of the roots, stems and leaves ranged from 0.49 to 0.81, 1.09 to 1.99, and 0.31 to
1.59 g·plant−1, respectively. Compared with the N-deficiency (CK), the application of N
promoted the growth of kenaf to varying degrees (except for the root dry weight). Among
all the agronomic traits, the increase in the leaf dry weight was the most significant, ranging
from 148.38% to 412.90%, followed by stem dry weight, which increased by 22.02% to 82.57%
(except for the group with 8 mM NO3

−–N). Within the experimental concentration range,
the growth of kenaf in the urea- and NO3

−–N groups showed an increasing trend, followed
by a decreasing trend with increasing N concentration. The best growth performance at
4 mN was seen with urea–N, whereas NO3

−–N provided the best growth performance at



Plants 2023, 12, 4067 3 of 13

2 mM. The growth potential of the kenaf in the presence of NH4
+–N gradually increased

with the increasing N concentration.

Table 1. Changes in kenaf morphology with different treatments under Cd stress.

Treatment
N

Concentration
(mM)

Plant Height
(cm)

Stem Diameter
(mm)

Root Dry Weight
(g·Plant−1)

Stem Dry
Weight

(g·Plant−1)

Leaf Dry
Weight

(g·Plant−1)

Maximum Root
Length (cm)

CK 0 34.08 ± 3.15
ef B 3.06 ± 0.23

cd B 0.62 ± 0.09
abcd AB 1.09 ± 0.02

c B 0.31 ± 0.04
e C 29.83 ± 3.74

a A

Urea 2 40.54 ± 1.45
cd A 3.52 ± 0.26

ab A 0.77 ± 0.10
abc A 1.57 ± 0.25

ab A 0.77 ± 0.16
d B 21.25 ± 3.03

bc B

4 46.92 ± 0.80
ab 3.81 ± 0.12 a 0.81 ± 0.12 a 1.90 ± 0.22

a
1.00 ± 0.07

cd
23.83 ± 1.44

b
8 45.42 ± 0.29

abc
3.57 ± 0.21

ab
0.66 ± 0.11

abcd
1.75 ± 0.31

ab
1.14 ± 0.23

bcd
25.08 ± 3.17

b

NO3
− 2 49.92 ± 6.39

a A 3.68 ± 0.34 a A 0.80 ± 0.12
ab AB 1.99 ± 0.36

a A 1.56 ± 0.27
a A 24.92 ± 1.04

b B

4 43.58 ± 3.39
bc 3.65 ± 0.39 a 0.60 ± 0.15

bcd
1.63 ± 0.35

ab
1.50 ± 0.29

ab
25.42 ± 3.30

b
8 38.08 ± 3.09

de 2.70 ± 0.08 d 0.49 ± 0.06 d 1.10 ± 0.08
c

1.13 ± 0.24
bcd

22.42 ± 2.31
b

NH4
+ 2 30.83 ± 1.91

f B 3.09 ± 0.24
cd A 0.58 ± 0.03

cd B 1.33 ± 0.09
bc A 1.33 ± 0.16

abc A 16.83 ± 1.01
d C

4 32.25 ± 2.84
f

3.21 ± 0.07
bc 0.55 ± 0.12 d 1.53 ± 0.32

abc
1.26 ± 0.26

abc
17.42 ± 0.76

cd
8 42.33 ± 1.18

bcd 3.84 ± 0.22 a 0.65 ± 0.10
abcd

1.81 ± 0.20
a

1.59 ± 0.29
a

24.25 ± 1.00
b

Data in the table are means ± SD, different lowercase letters within a column indicate significant differences
between treatments and different uppercase letters represent significant differences between nitrogen forms and
CK (p < 0.05, Duncan).

Table 2. The effect of N on agronomic traits, Cd content and Cd accumulation of kenaf under Cd
stress based on two-way ANOVA.

Variable N Form Concentration N Form × Concentration

Plant height 27.39 ** 0.61 14.33 **
Stem diameter 3.99 * 1.45 12.34 **

Root dry weight 4.96 * 2.8 3.1 *
Stem dry weight 1.57 2.52 5.71 **
Leaf dry weight 11.33 ** 0.22 3.63 *

Maximum root length 10.44 ** 3.5 4.61 **
Chlorophyll a 7.67 ** 2.68 11.65 **
Chlorophyll b 42.08 ** 5.96 ** 20.49 **

Cd content in leaf 38.9 ** 5.21 ** 4.53 **
Cd content in stem 441 ** 25.8 ** 3.42 *
Cd content in root 1292.62 ** 12.63 ** 13.25 **

Translocation factor leaf/root 2359.46 ** 63.25 ** 75.72 **
Translocation factor stem/root 1137.41 ** 8.34 ** 38.91 **

Total Cd in root 127.25 ** 1.77 7.11 **
Total Cd in stem 44.64 ** 0.87 5.72 **
Total Cd in leaf 6.04 ** 2.2 5.79 **

Total Cd in plant 109.37 ** 0.68 12.47 **
* and ** denote statistically significant differences at p < 0.05 and p < 0.01 (Duncan), respectively.

2.2. Chlorophyll Content

The chlorophyll content is an important indicator of plants’ responses to stress. The
two-way ANOVA results revealed that the N form and the interaction between the N
form and the concentration significantly affected the chlorophyll a and chlorophyll b
contents, whereas the N concentration only significantly affected the chlorophyll b content
(Table 2). The chlorophyll a, chlorophyll b and total chlorophyll contents of the plants in
each treatment ranged from 0.57 to 0.90 mg·g−1 FW, 0.29 to 0.70 mg·g−1 FW and 0.87 to
1.62 mg·g−1 FW, respectively (Figure 1). Overall, the chlorophyll contents of the plants in
the NO3

−- and NH4
+–N treatments were higher than those in the urea–N treatments, with

the highest total chlorophyll content observed in the 4 mM NO3
−–N and 8 mM NH4

+–N
treatments, which increased by 60.20% and 65.31%, respectively, compared to the CK.
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Figure 1. Chlorophyll contents of kenaf leaves under different treatments. Data are means ± SD,
the black dots above the bar chart are individual data points, different lowercase letters indicate
significant differences between treatments (p < 0.05, Duncan) and different uppercase letters represent
significant differences between nitrogen fertilizer forms and CK (p < 0.05, Duncan).

2.3. Uptake, Transfer and Accumulation of Cd in Different Parts of Kenaf
2.3.1. Cd Content

The Cd contents of kenaf leaves, roots and stems are shown in Figure 2, where
significant differences between the treatments are evident. The two-way ANOVA results
(Table 2) indicated that the N form and concentration, as well as their interaction, had
significant effects on the Cd contents of different parts of the kenaf. The variance of the N
form was greater than that of the concentration and the interaction effect of the N form and
concentration (Table 2), indicating that the N form had a greater effect on the Cd absorption
than the N concentration.
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Figure 2. Cd contents of different kenaf parts. Data are means ± SD, the black dots above the
bar chart are individual data points, different lowercase letters in each part indicate a significant
difference between treatments (p < 0.05, Duncan), different uppercase letters in each part indicate a
significant difference between nitrogen fertilizer forms and CK (p < 0.05, Duncan).

The root system was the major organ accumulating Cd in the kenaf, and the Cd con-
tents ranged from 187.50 mg·kg−1 to 1521.50 mg·kg−1 (Figure 2). At equal N concentrations,
the root Cd concentration was the highest under the NO3

−–N treatment, followed by the
urea–N treatment, and it was the lowest under the NH4

+–N treatment. Compared with the
CK, the NO3

−–N treatment significantly increased the Cd content by 104.44~122.97%, while
the NH4

+–N reduced the content by 57.78~72.52%. For the Cd contents of the stems, there
was no significant difference between the Urea- and NO3

−N treatments, which ranged
from 444.67 mg·kg−1 to 523 mg·kg−1, but they were significantly higher than that of the
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NH4
+–N treatment (212.58~290.68 mg·kg−1). The Cd contents of the leaves ranged from

164.92 mg·kg−1 to 301.39 mg·kg−1. With an increase in the N concentration, there was a
gradual increase in the Cd contents of all the kenaf parts with urea–N, while the Cd content
of the root system treated with NO3

−–N and the Cd contents of all the kenaf parts treated
with NH4

+–N showed an initial increase and a final decrease.

2.3.2. Translocation Factor

The corresponding TFs were calculated based on the Cd contents of different plant
parts (Figure 3). The two-way ANOVA results (Table 2) showed that the N form and
concentration, as well as the interaction between hem, significantly affected the shoot/root
(TF S/R) and leaf/root (TF L/R) TFs, among which the effect of the N form was the strongest.
Generally, the TF S/R of different treatments ranged from 0.30 to 1.25, in the following
order: NH4

+–N > CK > Urea-N> NO3
−–N. Specifically, compared with the CK, the TF S/R

under the NH4
+–N treatments increased by 34.29~78.57%, while those under the NO3

−–N
treatments decreased by 49.98~57.14%. The TF L/R values for the different treatments
ranged from 0.16 to 1.09, and the highest values were also observed in the NH4

+–N
treatments, which increased by 102.27~203.62% compared to the CK. With an increase in
the N concentration, the TF S/R and TF L/R under different treatments showed different
tendencies. Specifically, the TF S/R and TF L/R under the NH4

+–N treatments first increased
and then decreased, whereas those of the urea–N treatments showed a linear decrease, and
no significant changes were observed for those under the NO3

−–N treatment. In general,
NH4

+–N was more beneficial for the transport of Cd to the aerial parts, whereas NO3
−–N

decreased the transport of Cd to the stem.
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2.3.3. Cd Accumulation in Different Parts of Kenaf

The total amount of Cd absorbed by kenaf is an important indicator of remediation
effectiveness. The amount of Cd accumulated by each plant part was calculated by com-
bining the biomass and the Cd content of the kenaf (Figure 4). The two-way ANOVA
analysis (Table 2) revealed that the N form and the interaction effect between the N form
and the concentration significantly affected the amount of Cd accumulated in various parts
of the kenaf, and the N form had the greatest effect. The results in Figure 4 show that
the urea- and NO3

−–N treatments significantly increased the amount of Cd accumulated
in the whole plant, with the highest amounts accumulated under the 2 mM and 4 mM
NO3

−–N treatments, which increased by 137.10% and 96.47%, respectively, compared to
the CK treatment (Figure 4d). Specifically, the amount in the roots increased by 165.81%
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and 112.15% (Figure 4a, that in the stems increased by 70.26% and 43.34% (Figure 4b),
and that in the leaves increased by 434.46% and 373.27% (Figure 4c), respectively. With
the increasing N concentrations, different N treatments showed different Cd absorption
trends across the whole plant. The total amount of Cd in kenaf under the urea–N treatment
showed a gradually increasing trend, and that under the NO3

−–N showed a gradually
increasing trend followed by a decreasing trend, whereas that under the NH4

+–N treatment
showed a decreasing trend followed by an increasing trend.
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Figure 4. Assessment of Cd uptake under different treatments. (a) Cd accumulation in roots, (b) Cd
accumulation in stems, (c) Cd accumulation in leaves, (d) the total Cd in kenaf. Data are means ± SD,
the black dots above the bar chart are individual data points, different lowercase letters in each part
indicate a significant difference between treatments (p < 0.05, Duncan), different uppercase letters in
each part indicate a significant difference between nitrogen fertilizer forms and CK (p < 0.05, Duncan).

2.4. Antioxidant Enzyme Activity and Proline Content

After applying different N fertilizer treatments for 7 days under Cd-stress conditions,
the activities of SOD, POD and CAT, as well as the MDA contents of the roots, were
tested, and the results are shown in Table 3. Compared to the CK, the addition of N
treatments significantly increased the activities of SOD, POD and CAT, with the greatest
increase observed in the NH4

+–N treatment, and SOD, POD and CAT activities increased
by 112.51~177.35%, 149.18~180.21% and 240.14~328.75%, respectively. The MDA content
of each treatment ranged from 4.54 to 6.34 nmol·g−1 FW. The MDA content in the urea-
and NO3

−–N treatments increased with increasing N concentration, whereas that in the
NH4

+–N treatments showed a trend of first increasing and then decreasing.
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Table 3. Effects of nitrogen fertilizer on superoxide dismutase (SOD), peroxidase (POD) and catalase
(CAT) activities and proline contents in kenaf leaves under Cd stress.

Treatment N Concentration
(mM)

SOD
(U·g−1 FW)

POD
(U·g−1 FW)

CAT
(nmol·g−1 FW)

MDA
(nmol·g−1 FW)

CK 0 339.36 ± 9.34 h 33.96 ± 1.33 h 9.74 ± 0.50 h 4.54 ± 0.29 e
Urea 2 382.15 ± 13.28 g 63.95 ± 1.07 d 21.82 ± 0.14 g 5.13 ± 0.30 bc

4 561.36 ± 36.19 e 58.12 ± 0.92 e 25.41 ± 0.82 f 4.74 ± 0.12 cde
8 637.94 ± 32.95 d 63.54 ± 1.37 d 47.97 ± 0.82 a 6.34 ± 0.36 a

NO3
− 2 413.44 ± 3.40 fg 43.89 ± 0.74 g 29.53 ± 1.03 e 4.67 ± 0.18 de

4 549.41 ± 5.42 e 49.47 ± 0.35 f 20.24 ± 0.43 g 5.20 ± 0.17 b
8 425.75 ± 9.84 g 62.39 ± 1.01 d 30.44 ± 1.03 e 5.22 ± 0.14 b

NH4
+ 2 941.21 ± 21.69 a 95.16 ± 0.34 a 41.76 ± 1.10 c 5.24 ± 0.27 b

4 805.66 ± 13.22 b 84.62 ± 0.43 c 46.23 ± 1.43 b 4.93 ± 0.19 bcde
8 721.17 ± 25.43 c 87.18 ± 2.14 b 33.13 ± 0.44 d 4.98 ± 0.17 bcd

Data in the table are means ± SD, different lowercase letters within a column indicate significant differences
between treatments (p < 0.05, Duncan).

3. Discussion
3.1. Under Cd Stress, the Supply of N Promoted the Growth of the Aerial Part

Nitrogen is an essential element for plant growth, and it plays an important role in
cellular genetics and metabolism [1], as well as in crop yields [15–17,19]. Studies have
shown that increasing N fertilizer application can alleviate plant toxicity symptoms in
Cd-contaminated soils [27,28], and with an increase in the amount of N fertilizer added, the
plant biomass gradually increases under Cd stress [27–30]. Different types of N fertilizer
have different effects on plant growth under Cd stress. For example, NH4

+–N fertilization
was shown to produce better growth in corn and rice [31,32], and the yield of rice treated
with urea–N fertilizer was found to be higher than that treated with other N fertilizers [33].

In the present study, the effects of different forms and concentrations of N fertilizer
on the biomass, agronomic traits and chlorophyll contents of kenaf were compared. The
results illustrated that compared with N-deficiency treatment (CK), the supply of N can
promote the growth of kenaf stems and leaves (Table 1), which is consistent with previous
studies [31,34]. The two-way ANOVA analysis indicated that the N form had the greatest
effect on the growth of the kenaf, followed by the interaction effect of the N form and
concentration (Table 2). Comparing the biomass of the kenaf under different N treatments,
the treatment with NO3

−–N ranked first (Table 1), which is consistent with the N fertilizer
study on brassica [35], but opposite to the results obtained using rice [22,32], indicating
that kenaf has nitrification characteristics and that NO3

−–N has a more significant effect on
promoting its growth [19]. Different N forms significantly change chlorophyll contents in
plants under Cd stress [32,36]; urea–N shows a great advantage in improving chlorophyll
content [36]. In this study, NO3

−-and NH4
+–N enhanced the chlorophyll content more sig-

nificantly than the CK and urea–N treatments (Figure 1), further illustrating the differences
in fertilizer effectiveness between rice and kenaf.

3.2. NO3
−–N Promotes the Absorption of Cd by Kenaf, and the Total Accumulation of Cd Was

Highest under Low-Concentration Conditions

A considerable amount of research has been conducted on Cd absorption in relation
to the N fertilizer form or concentration [37–40]. Some studies have revealed that the Cd
content is significantly positively correlated with the amount of N fertilizer applied [37,38],
while another study arrived at the opposite conclusion [39], and a further study showed
that Cd accumulation in plants is not linearly related to the amount of N fertilizer applied.
In addition, one study found that under a moderate urea treatment, the Cd content and total
accumulation in corn were higher than the values obtained under other N-concentration
treatments [30]. In terms of studies on the N form, several have shown that the addition of
NH4

+–N fertilizer can lower soil pH and increase the available Cd content in the soil, which
thus increases the plant Cd content and accumulation [21,26,33]. Hydroponic experiments
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have shown that NO3
−–N fertilizer is beneficial for absorbing more Cd [21,22,35,40], and a

further analysis revealed that NO3
− and Cd exhibited synergistic effects, whereas NH4

+

and Cd exhibited antagonistic effects [32,41].
In this study, we compared the Cd contents of kenaf leaves, stems and roots under

different N conditions. The total amount accumulated in each part was calculated in com-
bination with the biomass. The results showed that the N form and the interaction effect
between the N form and the concentration significantly affected the content and accumu-
lation of Cd in different parts of the kenaf (Table 2). The Cd contents in the leaves, stems
and roots ranged from 164.92 to 301.39 mg·kg−1, 212.58 to 523.91 mg·kg−1 and 187.50 to
1521.50 mg·kg−1, respectively, which was consistent with previous hydroponic experiments
on kenaf under Cd stress [10,42,43]. The difference in the Cd content of the root system of
the kenaf was the most significant under different N forms, specifically NO3

−–N > urea–N
> NH4

+–N (Figure 2). Compared to the CK, the NO3
−- and urea–N treatments significantly

increased the Cd in the roots. In contrast, the NH4
+–N treatments significantly reduced the

Cd contents of various plant parts (Figure 2); this result is consistent with those of previous
studies [29,33,44]. Progress has been made in explaining the mechanism associated with
the N form and plant Cd absorption. First, NO3

− significantly increases nitrate reductase
(NR) activity, whereas NH4

+ significantly inhibits NR activity and ultimately affects the
level of nitric oxide (NO) [45,46]. Furthermore, NO can increase the contents of pectin and
hemicellulose, fix Cd in the roots and reduce its transport to the aerial parts [47], which
may also explain the difference between the translocation factors of the NO3

− and NH4
+–N

treatments. Second, NO3
−–N can affect the absorption of Cd by regulating Fe transporters.

According to a previous study on rice, NO3
−–N regulated the expression of OsIRT1 and

OsNramp1 genes in rice to increase the absorption of Cd in rice roots [25]. In addition,
when the ratio of NO3

−/NH4
+ in the nutrient solution was increased, the expression of the

OsIRT1, OsNramp5 and OsHMA2 genes in roots increased, leading to an increase in the Cd
content [48]. Finally, studies have shown that NO3

− transporters significantly affect Cd
absorption [41,49].

This study also discovered that, with urea–N, the Cd contents in various parts of
kenaf gradually increased with increasing concentrations (Figure 4), which agrees with the
previous results [30]. The concentration of Cd in the roots treated with NO3

−–N showed
a trend of first increasing and then decreasing with an increase in the N concentration
(Figure 4), which is similar to the results of a previous study, which concluded that the
highest accumulation of Cd occurs in plants treated with low concentrations of NO3

−–N
fertilizer [50]. The concentration of Cd in various parts of the plant treated with NH4

+–N
showed a trend of first decreasing and then increasing with an increase in the N concen-
tration (Figure 4), which is consistent with a study conducted on Kandelia obovata, which
found that high concentrations of NH4

+ promoted Cd accumulated in roots [51]. The
comparison of the total amount of Cd accumulated in kenaf under different N treatments
showed that the 2 mM NO3

−–N treatment ranked first (20.68~259.82% higher than that of
other treatments) (Figure 4), which indicated that adding a certain amount of NO3

−–N can
enhance Cd extraction by kenaf.

3.3. NH4
+–N Promotes the Transfer of Cd in Kenaf to the Aerial Parts

Following Cd’s adsorption in the roots, a large proportion is trapped in the roots and
stored in vacuoles [52], while another part complexes with amino acids and citric acid. It is
transported to the aerial parts of the plant (through loading, transportation and unloading
in the xylem under the combined function of transpiration and root pressure) and then
allocated to the vegetative organs, such as the leaves [3]. Different forms of N significantly
affected the transport of Cd to aerial parts, and one study found that NH4

+–N promoted
the transfer of Cd from straw to grain and the roots to the aerial parts [20,33].

In the present study, the form and concentration of N and their interactions signif-
icantly influenced the transfer of Cd to the aerial parts (Table 2). Compared with the
N-deficient treatment, the addition of NH4

+–N significantly increased the TF S/R and
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TF L/R, whereas the NO3
−–N significantly reduced the TF S/R and TF L/R (Figure 3), which

is consistent with previous research [20]. According to a previous study, a ratio of 50/50
NH4

+/NO3
− is beneficial for plant Cd absorption and transport [53]. We thus consider

that it may be possible to apply NH4
+- and NO3

−–N in a certain proportion to increase the
Cd contents of both aboveground and underground parts.

3.4. Applying N Fertilizer Promotes Antioxidant Enzyme Activity of Kenaf and the NH4
+–N

Treatment Showed the Most Significant Enhancement

The MDA is a product of lipid peroxidation, which is considered an indicator of tissue
damage. Plants can resist Cd stress by increasing the activity of antioxidant enzymes and
antioxidants [31,41,54]. These antioxidant enzymes include SOD, POD, CAT and APX.
When plants encounter stress conditions, SOD first converts O2

− to H2O2, and then POD,
CAT and APX scavenge H2O2 and other ROS products, such as MDA [42,54]. It has been
reported that adding N fertilizer can decrease the MDA and H2O2 contents under Cd
stress [33] and that different N fertilizer treatments significantly affect antioxidant enzyme
activity [31,35]. In the present study, the addition of N fertilizer significantly increased
the SOD, POD and CAT enzyme activities (Table 3), which is consistent with a previous
study [31]. The most signficant antioxidant enzyme activity enhancement was observed
under the NH4

+–N treatment, particularly the values of SOD and POD (Table 3), In this
respect, it was confirmed that SOD and POD play a crucial role in resisting Cd stress [53].
Unlike in previous studies, the MDA content did not decrease with the addition of the N
fertilizer, and this may have been the result of the combined effects of the root Cd content
and the antioxidant enzyme activity [41,54].

4. Materials and Methods
4.1. Plant Material and Experimental Treatments

Qingpi no. 3 was obtained from the Zhejiang Xiaoshan Institute of Cotton and Bast
Fiber Crops. Previous research has shown that Qingpi no. 3 has proficient Cd accumula-
tion. Healthy and plump seeds were sterilized with 75% alcohol for 2 min, washed with
deionized water three times and germinated on moist filter paper in Petri dishes for 2 d
in the dark. Uniform kenaf seedlings were selected and cultured in Hoagland nutrient
solution for 7 days. The Hoagland nutrient solution was composed of Na(NO3)2 2.0 mM,
NH4Cl 2.0 mM, CaCl2 2.0 mM, K2SO4 0.75 mM, MgSO4 0.5 mM, KH2PO4 0.1 mM, MnSO4
0.5 mM, H3BO3 10 µM, ZnSO4 1.0 µM, CuSO4 0.20 µM, (NH4)2MoO4 0.01 µM and Fe-EDTA
100 µM.

Uniformly grown seedlings were then selected and transferred to an improved Hoagland
solution in which the N composition was altered. Three N forms (urea, Na(NO3)2 or NH4Cl
replacing the mixture of Na(NO3)2 and NH4Cl as the sole N) at 4 N concentrations (0,
2, 4 and 8 mM, 0 mM as control) were employed, and there were 10 treatments in total.
Each treatment was set up in triplicate to ensure the reproducibility of the results. Each
treatment comprised 4 kenaf seedlings, all treatments were supplied with 30 mM CdCl2,
and the nutrient solution was refreshed every 5 days. The seedlings were grown in an
artificial climate culture room that maintained a day/night cycle of 16/8 h at 25 ◦C/20 ◦C,
respectively, with relative humidity close to 65% and a light intensity of 12,000 lx.

After 7 days of Cd and different N treatments, 4 plants from each treatment were
selected, and the roots and the penultimate functional leaf were collected in liquid nitrogen
and stored at −80 ◦C for further physiological analysis.

4.2. Determination of POD, SOD, CAT and MDA Contents

Frozen fresh root samples were obtained to measure the activities of antioxidant
superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and malondialdehyde
(MDA), according to a modified method [55,56]. The MDA was determined using the
thiobarbituric acid (TBA) test; SOD activity was measured by nitroblue tetrazolium (NBT)
test; POD activity was measured using guaiacol colorimetric method; and CAT activity was
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measured using the molybdate ammonium test. All these indicators were detected using a
microplate reader (BioTek Synergy H1, BioTek Instruments, Inc., Winooski, VT, USA). The
absorbance was measured at 450 nm for SOD, 470 nm for POD, 405 nm for CAT, 532 nm
and 600 nm for MDA. The SOD and POD activities were expressed as enzyme U·g−1 (fresh
weight, FW), the CAT activities were expressed as enzyme nmol/g/min FW and the MDA
contents were calculated as nmol·g−1 FW.

4.3. Chlorophyll Contents

Frozen leaf samples were collected to measure the chlorophyll contents in accordance
with the method presented in a previous study [56], and the supernatant was collected
for absorbance at 663 nm and 645 nm using a spectrophotometer (L6, Shanghai Jingke,
Shanghai, China). The chlorophyll contents were calculated as mg·g−1 FW.

4.4. Growth and Biomass Analyses

After 4 weeks of treatment, the plant heights, stem diameters and maximum root
lengths of 8 kenaf plants in each treatment were measured. To measure the biomass, the
roots, stems and leaves were separated and dried at 105 ◦C for 30 min and then dried
at 80 ◦C for another 48 h. After cooling, the dry weights of roots, stems and leaves
were recorded.

4.5. Determining Cd Concentration and Translocation Factor (TF)

To determine the Cd content, dry samples of the roots, stems and leaves (0.2 g) were
ground and digested separately in 5 mL of a digestion solution, composed of HNO3 and
HClO4 at a volume ratio of 4:1. After digestion, the samples were diluted to 25 mL with
deionized water, and the Cd concentration was determined using an atomic absorption
spectroscope and associated method (Z2310, Hitachi, Tokyo, Japan).

The translocation factor was calculated to evaluate the translocation capability of Cd
in kenaf tissues [13,56] as follows:

TF L/R = Cd content in leaves/Cd content in roots;
TF S/R = Cd content in stems/Cd content in roots.

4.6. Statistical Analysis

All results are presented as the means ± standard (SD). Data taken for the exper-
iments were processed by two-way and one-way analyses of variance and the means
were compared using Duncan’s multiple range test at 5% and 1% (p < 0.05, 0.01) in SPSS
(IBM SPSS Statistic 23.0, IBM SPSS Inc., Almunk, OR, USA). Graphical presentations were
performed using using GraphPad Prism (GraphPad Prism 9.0.0, GraphPad Software, San
Diego, CA, USA).

5. Conclusions

In summary, adding N fertilizer can promote the growth of kenaf to varying de-
grees, increase POD, SOD, and CAT enzyme activities and affect the concentration and
accumulation of Cd in various parts of kenaf under Cd stress. The two-way ANOVA
revealed that the N form had the greatest effect on the growth and Cd absorption of the
kenaf, indicating that selecting the appropriate N fertilizer type is more important than the
amount of N fertilizer used in regulating Cd uptake by plants. The application of N had
the most significant effect on the Cd contents of the kenaf roots, with the highest content in
the NO3

−–N treatments and the lowest content in the NH4
+–N treatment. Therefore, in

production practice, NH4
+ fertilizer can be used to reduce the Cd content and to accelerate

the remediation of Cd-contaminated soil by plants. Increases in Cd accumulation can be
achieved by applying NO3

− fertilizer. Among all the treatments, the highest amount of
total Cd accumulated in kenaf occurred in the low-concentration NO3

−–N. Compared
with the other two N fertilizer types, the NH4

+–N treatment significantly reduced the Cd
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contents in various parts of the kenaf, whereas it significantly increased the transportation
of Cd to the aerial parts.

This study reveals the effects of N fertilizer on kenaf from the perspectives of phe-
notype, physiological response and Cd accumulation, and thus provides a theoretical
reference for the remediation and safe use of Cd-polluted soil. However, crop production is
mostly based on the soil environment, and it is difficult to ignore the changes in soil charac-
teristics caused by N fertilizer application, which may indirectly affect the absorption of Cd
by plants. Therefore, to better guide production practices, further verification is required.
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