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Abstract: Streptomyces alfalfa strain 11F has inhibitory effects on many phytopathogenic fungi and im-
proves the establishment and biomass yield of switchgrass. However, the antagonistic effects of strain
11F on Fusarium wilt of watermelon and its secondary metabolites that contribute to its biocontrol
activity are poorly understood. We evaluated the antagonistic and growth-promoting effects of strain
11F and conducted a transcriptome analysis to identify the metabolites contributing to antifungal
activity. Strain 11F had marked inhibitory effects on six fungal pathogens. The incidence of Fusarium
wilt of watermelon seedlings was decreased by 46.02%, while watermelon seedling growth was
promoted, as indicated by plant height (8.7%), fresh weight (23.1%), and dry weight (60.0%). Clean
RNA-sequencing data were annotated with 7553 functional genes. The 2582 differentially expressed
genes (DEGs) detected in the Control vs. Case 2 comparison were divided into 42 subcategories of
the biological process, cellular component, and molecular function Gene Ontology categories. Seven
hundred and forty functional genes (55.47% of the DEGs) were assigned to Kyoto Encyclopedia
of Genes and Genomes metabolic pathways, reflecting the complexity of the strain 11F metabolic
regulatory system. The expression level of the gene phzF, which encodes an enzyme essential for
phenazine-1-carboxylic acid (PCA) synthesis, was downregulated 3.7-fold between the 24 h and 48 h
fermentation time points, suggesting that strain 11F can produce phenazine compounds. A phenazine
compound from 11F was isolated and identified as phenazine-1-carboxamide (PCN), which con-
tributed to the antagonistic activity against Fusarium oxysporum f. sp. niveum. PCA was speculated
to be the synthetic precursor of PCN. The downregulation in phzF expression might be associated
with the decrease in PCA accumulation and the increase in PCN synthesis in strain 11F from 24
to 48 h. Streptomyces alfalfae 11F protects watermelon seedlings from Fusarium wilt of watermelon
and promotes seedling growth. The transcriptome analysis of strain 11F provides insights into the
synthesis of PCN, which has antifungal activity against F. oxysporum f. sp. niveum of watermelon.

Keywords: biological control; Streptomyces alfalfae; differentially expressed genes; secondary metabolites;
RNA-seq
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1. Introduction

The large-scale use of traditional chemical pesticides has resulted in serious envi-
ronmental pollution. The increase in prevalence of pesticide residues and bacterial resis-
tance has motivated the use of environmentally friendly and sustainable microbial control
methods. Recently, antibiotics, stress inducers, and biocontrol microorganisms have been
largely used for the prevention of plant diseases. The main biocontrol microorganisms are
bacteria, actinomycetes, fungi, and viruses [1], which can either secrete antimicrobial sub-
stances or perform niche competition to promote plant growth and induce plant systemic
resistance [2]. Microbial biological control agents are effective alternatives to synthetic
chemicals [3]. In the present study, Streptomyces alfalfae strain 11F isolated from the soil
near Qinghai Lake (101◦77′ E, 36◦62′ N) in China was observed to have inhibitory effects
on the phytopathogenic fungi Fusarium oxysporum f. sp. niveum, F. solani, F. graminearum,
Setosphaeria turcica, Botryosphaeria dothidea, and Botrytis cinerea. Strain 11F can produce
indole-3-acetic acid and siderophores and is known to have phosphate-solubilizing and
N2-fixing abilities. In addition, strain 11F improves the establishment and biomass yield
of switchgrass [4]. With analyses of phylogenetic trees constructed on the basis of 16S
rRNA sequences and genomic collinearity using Mauve_installer_2.3.1, strain 11F has
been shown to have a conserved genome structure and collinear relationships to S. alfalfae
ACCC40021 [4]. In China, S. alfalfae ACCC40021, a rhizobacterium beneficial to plants, is
widely used as a microbial fertilizer against phytopathogens [5]. However, little information
is available regarding its antibacterial active substances and related functional genes.

In this study, we evaluated the effects of S. alfalfae 11F on Fusarium wilt resistance
and on the promotion of seedling growth in watermelon and analyzed the differentially
expressed genes (DEGs) induced by the fermentation of strain 11F. The results clarified that
the 11F strain could promote plant growth and enhance disease resistance in watermelon
and identified the antifungal active substances PCA and PCN and its functional gene phzF,
contributing to the biocontrol activities of strain 11F.

2. Results
2.1. Antimicrobial Activity Assay

Strain 11F had strongly antagonistic effects on all tested phytopathogenic fungi, espe-
cially F. oxysporum f. sp. niveum and B. dothidea (Figure S1 and Table S1). After incubation of
the dual-culture plates for 10 days, the mean diameter of Fusarium oxysporum f. sp. niveum
colonies co-cultured with strain 11F was 3.1 ± 0.2 cm, which was significantly smaller than
the diameter of colonies in the absence of strain 11F (7.8 ± 0.31 cm) (Figure 1A,B). The
diameter of the growth inhibition zones of the 48 h fermentation broth (1.6 ± 0.15 cm) was
significantly larger than that of the 24 h fermentation broth (1.0 ± 0.22 cm) (Figure 1C).
Moreover, strain 11F induced morphological changes to F. oxysporum f. sp. niveum mycelia,
which were curled and excessively branched. In addition, the mycelial tips expanded to
form a spherical structure (Figure 2A,B), which was in contrast to the morphology of the
control mycelium (Figure 2C,D). The direct confrontation assay revealed the significant
antagonistic effect of strain 11F on F. oxysporum f. sp. niveum (42.3% inhibition rate).

2.2. Strain 11F Enhanced Watermelon Plant Growth and Disease Resistance

The effects of strain 11F on watermelon seedling characteristics and the development of
Fusarium wilt were evaluated. Treatment with strain 11F significantly increased watermelon
seedling height, fresh weight, and dry weight. Compared with those of the control, the
height, fresh weight, and dry weight of the watermelon seedlings treated with 60× diluted
fermentation broth (6 × 106 cfu/mL) increased by 8.7%, 23.1%, and 60.0%, respectively
(Figure 3 and Table 1).
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Figure 1. Inhibitory activity of S. alfalfae strain 11F. Compared with the control growth on PDA 
medium (B), F. oxysporum f. sp. niveum mycelial growth was inhibited by strain 11F (A). The strain 
11F fermentation broth supernatant collected at different time points (6, 24, and 48 h) inhibited F. 
oxysporum f. sp. niveum mycelial growth. The inhibitory effect of strain 11F on mycelial growth is 
shown in (C). 

 
Figure 2. Effect of S. alfalfae strain 11F on F. oxysporum f. sp. niveum mycelial growth on PDA me-
dium. Microscopic analysis of the morphological features of F. oxysporum f. sp. niveum mycelia 
treated with strain 11F (A,B) and the control mycelia (C,D). 

Figure 1. Inhibitory activity of S. alfalfae strain 11F. Compared with the control growth on PDA medium
(B), F. oxysporum f. sp. niveum mycelial growth was inhibited by strain 11F (A). The strain 11F fermen-
tation broth supernatant collected at different time points (6, 24, and 48 h) inhibited F. oxysporum f. sp.
niveum mycelial growth. The inhibitory effect of strain 11F on mycelial growth is shown in (C).
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Figure 2. Effect of S. alfalfae strain 11F on F. oxysporum f. sp. niveum mycelial growth on PDA medium.
Microscopic analysis of the morphological features of F. oxysporum f. sp. niveum mycelia treated with
strain 11F (A,B) and the control mycelia (C,D).



Plants 2023, 12, 3796 4 of 15

Plants 2023, 12, x FOR PEER REVIEW 4 of 15 
 

 

2.2. Strain 11F Enhanced Watermelon Plant Growth and Disease Resistance 
The effects of strain 11F on watermelon seedling characteristics and the develop-

ment of Fusarium wilt were evaluated. Treatment with strain 11F significantly increased 
watermelon seedling height, fresh weight, and dry weight. Compared with those of the 
control, the height, fresh weight, and dry weight of the watermelon seedlings treated 
with 60× diluted fermentation broth (6 × 106 cfu/mL) increased by 8.7%, 23.1%, and 60.0%, 
respectively (Figure 3 and Table 1). 

Strain 11F significantly decreased the severity of the disease caused by F. oxysporum 
f. sp. niveum on watermelon plants. The disease severity index (DSI) and incidence rate of 
the Fusarium-inoculated plants treated with strain 11F decreased to 27.57% and 25.14%, 
respectively, which were significantly lower than the DSI (73.59%) and incidence rate 
(100%) of the Fusarium-inoculated plants without strain 11F (Table 2). Thus, strain 11F 
protected the watermelon plants against infection by F. oxysporum f. sp. niveum and sig-
nificantly enhanced watermelon plant growth. 

Table 1. Effects of S. alfalfae strain 11F fermentation broth on watermelon seedling growth. 

Treatment 
(v/v) 

Plant Height/cm Leaf Length Leaf Width/cm Fresh Weight/g Dry 
Weight/g 

Control 8.75 ± 0.18 b 2.90 ± 0.17 c 3.35 ± 0.11 c 0.82 ± 0.01 c 0.05 ± 0.00 c 
11F (1:30) 9.20 ± 0.08 a 3.47 ± 0.13 b 3.45 ± 0.18 b 0.89 ± 0.19 b 0.07± 0.00 b 
11F (1:60) 9.51 ± 0.13 a 4.08 ± 0.24 a 3.98 ± 0.19 a 1.01 ± 0.01 a 0.08 ± 0.01 a 
11F (1:100) 8.32 ± 0.11 c 3.15 ± 0.03 b c 3.12 ± 0.10 b c 0.84 ± 0.02 c 0.06 ± 0.00 c 
Note: different lowercase letters in each column indicate a significant difference (p < 0.05) and 1:30, 
1:60, and 1:90 represent the volume ratios of fermentation broth (6 × 106 cfu/mL) to water. 

Table 2. Effects of treatment with S. alfalfae strain 11F fermentation broth on incidence, disease in-
dex, and control effect of Fusarium wilt in watermelon seedlings. 

Treatment Incidence (%) Disease Index Control Effect (%) 
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Figure 3. Effect of S. alfalfae strain 11F on watermelon seedling growth under greenhouse conditions.
Left to right: watermelon seedlings treated with water (A) or 60-fold diluted fermentation broth (B).

Table 1. Effects of S. alfalfae strain 11F fermentation broth on watermelon seedling growth.

Treatment
(v/v)

Plant
Height/cm Leaf Length Leaf

Width/cm
Fresh

Weight/g
Dry

Weight/g

Control 8.75 ± 0.18 b 2.90 ± 0.17 c 3.35 ± 0.11 c 0.82 ± 0.01 c 0.05 ± 0.00 c
11F (1:30) 9.20 ± 0.08 a 3.47 ± 0.13 b 3.45 ± 0.18 b 0.89 ± 0.19 b 0.07± 0.00 b
11F (1:60) 9.51 ± 0.13 a 4.08 ± 0.24 a 3.98 ± 0.19 a 1.01 ± 0.01 a 0.08 ± 0.01 a

11F (1:100) 8.32 ± 0.11 c 3.15 ± 0.03 b c 3.12 ± 0.10 b c 0.84 ± 0.02 c 0.06 ± 0.00 c
Note: different lowercase letters in each column indicate a significant difference (p < 0.05) and 1:30, 1:60, and 1:90
represent the volume ratios of fermentation broth (6 × 106 cfu/mL) to water.

Strain 11F significantly decreased the severity of the disease caused by F. oxysporum
f. sp. niveum on watermelon plants. The disease severity index (DSI) and incidence rate
of the Fusarium-inoculated plants treated with strain 11F decreased to 27.57% and 25.14%,
respectively, which were significantly lower than the DSI (73.59%) and incidence rate (100%)
of the Fusarium-inoculated plants without strain 11F (Table 2). Thus, strain 11F protected
the watermelon plants against infection by F. oxysporum f. sp. niveum and significantly
enhanced watermelon plant growth.

Table 2. Effects of treatment with S. alfalfae strain 11F fermentation broth on incidence, disease index,
and control effect of Fusarium wilt in watermelon seedlings.

Treatment Incidence (%) Disease Index Control Effect (%)

Control 0.00 ± 0.00 c 0.00 ± 0.00 c –
F. oxysporum f. sp. niveum 100.00 ± 0.00 a 73.59 ± 1.07 a –

11F 0.00 ± 0.00 c 0.00 ± 0.00 c –
F. oxysporum f. sp. niveum + 11F 25.14 ± 0.14 b 27.57 ± 0.18 b 62.54

Note: different lowercase letters in each column indicate a significant difference (p < 0.05).

2.3. Transcriptome Sequencing, Data Quality, and Transcript Assembly

The transcriptome of strain 11F was sampled and sequenced at three fermentation
time points: 6 h (Control), 24 h (Case 1), and 48 h (Case 2). The clean read percentage of
each sample exceeded 95% and the GC content ranged from 58% to 68% (Figure 4A). The
percentage of bases with Q20 (high sequencing quality) approached 99% (Figure 4B and
Table S2). The mapping results obtained using Bowtie2 (https://bowtie-bio.sourceforge.

https://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
https://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
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net/bowtie2/manual.shtml, accessed on 17 September 2023) software are provided in
the Supplementary Materials (Table S2). For the three sampling time points, the average
numbers of mapped reads (i.e., effective mRNA information) were 14,537,664 (97.31%),
13,940,012 (94.32%), and 13,400,250 (90.92%), and the multiple comparison percentage
was ≤10% (Table S3). Accordingly, the quality of the transcriptome sequencing data was
sufficient for further analyses.
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(6, 24, and 48 h). (A) Base composition and quality distributions. (B) Distribution of gene coverage.

2.4. Differential Gene Expression Analysis

A total of 181 DEGs were common to all three comparisons of the RNA-seq data
(Figure 5A), comprising 129 upregulated genes and 52 downregulated genes. The Control
vs. Case 1 comparison revealed 1873 DEGs, consisting of 1056 upregulated genes and
817 downregulated genes. The Case 1 vs. Case 2 comparison detected 948 DEGs, of which
458 were upregulated genes and 490 were downregulated genes. A total of 2582 DEGs
were identified by the Control vs. Case 2 comparison, comprising 1259 upregulated genes
and 1323 downregulated genes (Figure 5B). Compared with that for the Control vs. Case 1
comparison, the number of DEGs for the comparison of Case 1 vs. Case 2 was reduced by
49.38%. In addition, enrichment plots revealed distinct changes to the highly enriched DEGs
during the fermentation period. From Case 1 to Case 2, the number of DEGs associated with
cellular components decreased, whereas the number of DEGs associated with biological
processes increased (Figure 5C,D). The expression patterns of DEGs between Case 1 and
Case 2 are shown in a cluster analysis heatmap (Figure S2).

https://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
https://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
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Figure 5. Analysis of differential gene expression among the three fermentation periods. (A) Venn
diagram of differentially expressed genes (DEGs) common to the three comparisons. (B) Number of
DEGs in each comparison. (C,D) Top 20 enriched GO terms. The Rich factor refers to the ratio of the
number of differentially expressed transcripts in the GO entry to the total number of transcripts in
the GO entry. An increase in the Rich factor reflects an increase in the degree of enrichment. The dot
size indicates the number of DEGs assigned to that particular term, and the dot color indicates the
p-value.

2.5. Verification of DEG Expression Levels by Quantitative Real-Time PCR Analysis

To verify the changes in expression levels of the DEGs detected by the fragments
per kilobase of transcript per million fragments mapped (FPKM) analysis, 19 DEGs were
selected for a quantitative real-time PCR (qRT-PCR) analysis (Figure 6 and Table S4). The
expression levels of 14 genes were upregulated by more than 4-fold. These genes en-
coded the following proteins: phosphate ABC transporter substrate-binding protein PstS,
DegT/DnrJ/EryC1/StrS aminotransferase, GNAT family N-acetyltransferase, phosphate
ABC transporter ATP-binding protein, N-acetylmuramoyl-L-alanine amidase, aminogly-
coside phosphotransferase family protein, phosphate ABC transporter permease PtsA,
AraC family transcriptional regulator, ergothioneine biosynthesis protein EgtC, amino
acid acetyltransferase, ABC transporter ATP-binding protein, FadR family transcriptional
regulator, and polysaccharide biosynthesis protein. The expression levels of the remaining
five genes were downregulated by more than 4-fold. These genes encoded the following
proteins: TerD family protein, MFS transporter, ABC transporter substrate-binding protein,
nitrate reductase, and fructose-bisphosphate aldolase. The qRT-PCR data were generally
consistent with the results of the FPKM analysis and thus were indicative of the reliability
of the RNA-seq data.
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Figure 6. Relative expression levels of 19 differentially expressed genes verified by qRT-PCR analysis.

2.6. Functional Annotation and Enrichment Analysis of the DEGs

All DEGs were included in the gene ontology (GO) analysis. The DEGs in the Control
vs. Case 2 comparison were classified into three main functional groups, comprising
18 biological process subcategories, 12 molecular function subcategories, and 12 cellular
component subcategories (Figure 7). More specifically, “metabolic process” (920 DEGs),
“cellular process” (933 DEGs), and “single biological processes” (706 DEGs) were the most
common GO terms in the biological process category. Regarding the cellular component
category, the predominant terms were “cell” (794 DEGs), “membrane part” (414 DEGs), and
“cell part” (790 DEGs). In the molecular function category, the most commonly assigned
terms were “catalytic activity” (1004 DEGs) and “binding” (861 DEGs). These findings
reflect the enrichment of the biological process and molecular function categories among
the DEGs.
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The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database is use-
ful for systematic analyses of the metabolic pathways and functions of gene products in
cells. Such analyses provide information regarding molecular interaction networks and
the unique changes to individual biological pathways in organisms. The present KEGG
pathway analysis indicated that the DEGs in the Control vs. Case 2 comparison participate
in 180 pathways in six major categories and 29 subcategories. Moreover, 740 functional
genes, accounting for 55.47% of the DEGs, were assigned to KEGG metabolic pathways.
The ribosome (ko03010) and acarbose and validamycin biosynthesis (ko00525) pathways
were significantly enriched (p < 0.05) among the DEGs in the Control vs. Case 2 com-
parison. In the Control vs. Case 1 comparison, the ribosome (ko03010) and porphyrin
and chlorophyll metabolism (ko00860) pathways were significantly enriched (p < 0.05)
among the DEGs. The significantly enriched (p < 0.05) pathways among the DEGs in
the Case 1 vs. Case 2 comparison were ABC transporter (ko02010), acarbose and val-
idamycin biosynthesis (ko00525), MAPK signaling pathway (ko04011), oxidative phos-
phorylation (ko00190), polyketide sugar unit biosynthesis (ko00523), longevity regulating
pathway (ko04211\ko04212\ko04213), sulfur metabolism (ko00920), and arginine biosyn-
thesis (ko00220) (Figure S3). Metabolic pathways were mainly enriched from 24 h to 48 h,
which was the period in which strain 11F metabolic pathways were most active. Notably,
the expression levels of eight DEGs involved in 10 steps of the acarbose and validamycin
biosynthesis pathway (i.e., those involving acbR, valC, acbC, valK, acbK, acbS, acbU, acbV,
rfbA, and rfbB) were upregulated between the 24 h and 48 h fermentation time points
(Figure 8).
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2.7. Expression of phzF and Characterization of a Phenazine Compound in Strain 11F

Among the DEGs, the expression level of phzF was downregulated 3.7-fold between
the 24 h and 48 h fermentation time points. PhzF is an isomerase that catalyzes trans-
2,3-dihydro-3-hydroxyan-thranilic acid isomerization and plays an essential role in the
phenazine biosynthetic pathway in Pseudomonas species. Phenazine and its derivatives
are nitrogen-containing heterocyclic redox agents with broad-spectrum activity against
gram-positive and gram-negative bacteria [6], fungi, and algae [7], and these compounds
are produced mainly by Pseudomonas and Streptomyces species [8]. In the present study, we
isolated the phenazine compound that had antifungal activity against F. oxysporum f. sp.
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niveum in accordance with the differential expression of phzF. The molecular formula of
the phenazine compound is C13H9N3O, ESI-MS m/z: 224.08 [M + H]+, 246.06 [M + Na]+;
1H NMR (500 MHz, DMSO-d6) δ: 9.72 (1H, s, NH2), 8.69 (1H, dd, J = 7.0 Hz, 1.7 Hz,
H-2), 8.44 (1H, dd, J = 8.7 Hz, 1.7 Hz, H-4), 8.42 (1H, m, H-6), 8.31 (1H, m, H-9), 8.09
(1H, s, NH2), 8.07 (1H, m, H-3), 8.06 (1H, m, H-7), 8.04 (1H, m, H-8); 13C NMR (Table 3)
(125 MHz, DMSO-d6) δ: 165.7 (CONH2), 142.8 (C-4a), 142.6 (C-9a), 141.3 (C-5a), 140.2
(C-10a), 134.1 (C-2), 133.0 (C-4), 132.0 (C-7), 131.6 (C-8), 130.9 (C-1), 130.3 (C-3), 129.3 (C-6),
129.2 (C-9). The structure of the phenazine compound was confirmed by heteronuclear
multiple bond correlation (HMBC) and 1H-1H correlation spectroscopy (1H-1HCOSY)
experiments (Figure 9A and Figure S4) and comparison of the spectra with reference
spectra [9,10]. The phenazine compound was elucidated as phenazine-1-carboxamide
(PCN; Figure 9B) and its antagonistic activity against F. oxysporum f. sp. niveum was verified
by an inhibition zone test (Figure 9C).

Table 3. 1H (500 MHz) and 13C NMR (125 MHz) data for the phenazine compound isolated from the
S. alfalfae strain 11F fermentation broth (δ in ppm, J in Hz, in DMSO-d6).

No. δH (J in Hz) δC

1 131.0
2 8.69, dd (7.0, 1.7) 134.1
3 8.07, m 130.3
4 8.44, dd (8.7, 1.7) 133.0
4a 142.8
5a 141.3
6 8.42, m 129.3
7 8.06, m 132.0
8 8.04, m 131.6
9 8.31, m 129.2
9a 142.6

10a 140.2

CONH2 Ha: 9.73, s
Hb: 8.09, br s 165.7
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Figure 9. 1H-1H COSY and key HMBC correlations of the isolated phenazine compound.
(A) Structure of phenazine-1-carboxamide. (B) Phenazine-1-carboxamide purified from strain 11F
fermentation broth. (C) Inhibition of F. oxysporum f. sp. niveum mycelial growth by the purified
phenazine-1-carboxamide.

3. Discussion

Streptomyces-derived compounds have potent bioactivities for pharmaceutical appli-
cations, including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic,
anti-inflammatory, antiparasitic, antimalarial, antiviral, antioxidant, and anti-angiogenesis
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activities [11,12]. In the present study, strain 11F decreased the disease symptoms in water-
melon and altered F. oxysporum f. sp. niveum mycelial morphology. Secondary metabolites
of strain 11F affected F. oxysporum f. sp. niveum mycelial differentiation. Takemoto et al.
demonstrated that diphenylene iodonium, which is an NADPH oxidase inhibitor, decreases
wild-type Epichloë festucae colony size and induces hyphal hyperbranched [13]. Similar
results were obtained during an investigation of the antagonistic effects of Bacillus subtilis
SG6 on F. graminearum D187 [14]. However, the mechanisms mediating the changes to
fungal mycelial morphology require more thorough exploration. It is possible that strain
11F-induced stress changes the mycelial cell wall composition of F. oxysporum f. sp. niveum.

Transcriptome analyses are not only useful for clarifying transcript-level changes
in developing cells and during responses to environmental perturbations, but may also
contribute to the elucidation of unknown regulatory patterns. Transcriptome analyses
have been conducted to comprehensively study the transcripts of model organisms, in-
cluding Arabidopsis thaliana, Drosophila melanogaster, Saccharomyces cerevisiae, and Oryza
sativa [14–16]. In the current study, the antifungal activities of the strain 11F fermentation
broth against F. oxysporum f. sp. niveum varied among the examined fermentation time
points. Regarding Streptomyces growth and development, the highly regulated synthesis of
secondary metabolites generally begins after the morphological differentiation process is
initiated [17–19]. Therefore, strain 11F gene expression in different fermentation periods
was analyzed to screen for DEGs associated with secondary metabolite synthesis. Vali-
damycin A, which is a trehalase inhibitor, has been used to prevent fungal infections of
agricultural products [20]. The present results revealed that the acarbose and validamycin
synthesis pathways are significantly enriched. Eight DEGs (acbR, valC, acbC, valK, acbK, acbS,
rfbA, and rfbB) involved in 10 steps of these pathways were much more highly expressed at
48 h than at 24 h. In addition, the ABC transporter directly involved in antibiotic synthesis is
significantly enriched. Many antibiotic-producing actinomycetes produce at least one ABC
transporter (ATP-binding cassette) that participates in the antibiotic biosynthesis pathway
and mediates the drug resistance of heterologous hosts [21]. Thus, ABC transporters may
be responsible for the secretion of antibiotics from strain 11F cells.

High-throughput sequencing technology has been applied to reveal expression pat-
terns in transcriptomes, identify novel genes and molecular markers, and clarify the
regulation of non-coding RNA [22]. The technology has been widely used for the identifi-
cation and functional characterization of genes in plants and microorganisms [23]. Recent
research has clarified the transcriptional changes during bacterial–fungal/bacterial inter-
actions. For example, Hennessy et al. demonstrated that the expression levels of genes
involved in metabolite detoxification are highly upregulated in Pseudomonas fluorescens
In5 co-cultured with plant pathogens, especially the fungus Rhizoctonia solani [24]. Li et al.
characterized reference genes differentially expressed in S. coelicolor [25]. Arseneault et al.
reported that the production of PCA by the biocontrol agent P. fluorescens LBUM223 affects
several virulence-related cellular processes in S. scabies, including mycelial formation and
oxidation–reduction homeostasis, and alters the expression of several well-characterized
genes [26]. We found that strain 11F produced phenazine compounds, in part based on
the differential expression of phzF with the analysis of DEGs. In addition, the antifun-
gal metabolite PCN was isolated and identified, in accordance with the characteristics of
phenazine compounds, and contributed to the biocontrol activity against Fusarium wilt
in watermelon.

It is known that PhzF is an enzyme essential for PCA synthesis in Pseudomonas species.
The production of PCN, rather than PCA, is the crucial metabolite required for the biocon-
trol ability of strain PCL1391 in the tomato–F. oxysporum test system [27]. There are few
reports on the function of phzF in phenazine biosynthesis in Streptomyces species. PhzF
is an essential enzyme for PCA synthesis in Pseudomonas spp.; the downregulation of its
expression may be associated with the decrease in PCA accumulation and the increase in
PCN synthesis in strain 11F from 24 to 48 h. However, we failed to identify the phenoth-
iazine compound biosynthetic gene cluster in a genome-wide scan using the antiSMASH
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database (Table S5). It is possible that phzF may perform a completely different regulatory
role in phenazine synthesis in strain 11F. In future research, genome mining from genomic
bacterial artificial chromosome (BAC) libraries, using the LEXAS system [28], will be con-
ducted to mine gene clusters associated with phenazine compound biosynthesis in strain
11F. Synthesis of PCN will guide the optimization of fermentation processes in strain 11F
and provide a strong basis for the further precise application of this strain in agriculture.

4. Materials and Methods
4.1. Microbe Strains and Culture Conditions

Streptomyces alfalfae strain 11F was cultured at 28 ◦C on potato dextrose agar (PDA)
slants to induce spore formation [29]. The spores were used to inoculate a 50 mL seed
culture medium (15 g/L sucrose, 40 g/L peptone, 0.5 g/L K2HPO4, 0.5 g/L CaCO3,
0.5 g/L NaCl, and 0.5 g/L MgSO4

.7H2O, pH 6.0). The seed cultures were incubated at
28 ◦C for 36 h on a rotary shaker (200 rpm). A yeast–salt–glycerol (ISP2: 4 g/L glucose,
4 g/L yeast extract, and 10 g/L malt extract, pH 7.2) [30] medium was used for the produc-
tion of antifungal substances. The following plant pathogens were included in this study:
F. oxysporum f. sp. niveum, S. turcica, F. solani, B. dothidea, F. graminearum, and B. cinerea. All
of them were preserved at the Institute of Plant Protection, Beijing Academy of Agriculture
and Forestry Sciences, China.

4.2. Assay of the S. alfalfae 11F Antimicrobial Spectrum

The antimicrobial spectrum of strain 11F was determined in accordance with a slightly
modified dual-culture assay [31,32]. Hyphal plugs (7 mm diameter) were excised from
a 3-day-old fungal culture on PDA. Each plug was placed at the center of a PDA plate,
which was then incubated at 25 ◦C for 1 day. On either side of the plug, the PDA was
inoculated with a single streak of strain 11F from PDA slants (2 cm from the plug). The
plate was further incubated in darkness at 28 ◦C for 3 days. The antagonistic effects
of strain 11F on F. oxysporum f. sp. niveum mycelial growth were examined. Plates
containing PDA that were not inoculated with bacteria were used as controls. The assay
was performed using three plates. The percentage inhibition (I%) was calculated as the
following: I% = [(R − r)]/R × 100, where the radial growth of each Fusarium colony was
measured in the presence (r) and absence (R) of strain 11F. The edges of the colonies
cultured for 3 days were removed using a sterile scalpel and examined (×400 magnification)
using a DMIRE2 light microscope (Leica, Wetzlar, Germany). All analyses were repeated
three times.

4.3. Pot Experiment

A pot experiment was conducted in an air-conditioned greenhouse at the Institute of
Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, China. Sterilized
watermelon seeds were germinated and then seedlings of uniform growth at the 3- to
4-leaf stages were selected for the following four treatments: (1) seedlings were treated
with strain 11F (1 × 107 cfu/mL) and then inoculated with a pathogen conidial suspension
(5 × 106 cfu/mL) for 15 min; (2) seedlings were only inoculated with a pathogen conidial
suspension for 15 min; (3) seedlings were only treated with strain 11F; or (4) seedlings were
treated with sterile distilled water. Twelve replicates of experimental pots were arranged in
a randomized block design. The DSI and biocontrol effect were assessed when 50% of the
plants were diseased at 10 days post-inoculation in the greenhouse. Growth characteristics
such as plant height, number of tillers per plant, leaf size, and plant biomass, with or
without treatment with strain 11F, were analyzed after 1 month to assess the effects of strain
11F on seedling growth.

In this experiment, the classification of the severity of the disease and the calculation
method of the disease of flue cured watermelon wilt was strictly in accordance with the
Survey method of the watermelon wilt plant diseases classification to evaluate the disease
severity classification [33,34].
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The disease severity index (DSI) was calculated as the following: ∑((disease pro-
gression • number of plants in this class)/(number of the highest incidence • number of
plants investigated)).

4.4. Sample Collection and Library Construction

Total RNA was extracted from S. alfalfae strain 11F mycelia collected at three fermenta-
tion time points (6 h for the Control, 24 h for Case 1, and 48 h for Case 2). Mycelia were
harvested by centrifugation at 12,000× g for 10 min at 4 ◦C and then immediately frozen in
liquid nitrogen before being ground to powder using a mortar and pestle. Total RNA was
extracted using the TRIzol reagent (Invitrogen, Waltham, MA, USA). The following nine
samples were obtained (three replicates for each of the three time points): 171109D_6_1,
171109D_6_2, 171109D_6_3, 171109D_24_1, 171109D_24_2, 171109D_24_3, 171109D_48_1,
171109D_48_2, and 171109D_48_3. The RNA concentration was determined using a Nan-
oDrop spectrophotometer (Thermo Fisher Scientific, Shanghai, China) and RNA quality
was assessed using an Agilent Bioanalyzer (Agilent Technologies Inc., Santa Clara, CA,
USA). The high-quality RNA was used to construct cDNA libraries.

4.5. Illumina HiSeq Sequencing and Analysis

The cDNA libraries constructed for the nine RNA samples were sequenced using an
Illumina HiSeq 2000 sequencing platform by Beijing Boao Jing Dian Biotechnology Co., Ltd.
(Beijing, China). The raw data were processed by eliminating the low-quality sequences
to obtain high-quality clean data. After a stringent quality control step, the sequencing
coverage and depth were determined using TopHat2 [35]. High-quality sequences were gen-
erated according to the reference genome (GCF_001975025.1_ASM197502v1_genomic.fna
downloaded from NCBI). RSEM-1.2.26 [36] was used for quantitative analyses. Genes were
annotated on the basis of the Pfam database and the reference genome (GCF_001975025.1_
ASM197502v1_genomic.gtf downloaded from NCBI). The DEGs were identified using the
DESeq2 package [37] in R (version 3.4.2) and the following criteria: |log2 (fold-change)| ≥ 1
and p < 0.05. Genes with an adjusted p-value less than 5% (according to the false discovery
rate) were considered to be differentially expressed. The DEGs were functionally annotated
using the BLASTP algorithm and the Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) databases.

4.6. Quantitative Real-Time PCR Analysis of DEGs

The identified DEGs were verified by a qRT-PCR analysis. Total RNA (1 µg) was used
to synthesize cDNA for the qRT-PCR, which was performed using SYBR® Premix Ex Taq™
II (Tli RNaseH Plus) (Takara, Beijing, China), supplemented with ROX and the CFX96™
Optics Module Real-Time PCR System (BIO−RAD, Hercules, CA, USA). The qRT-PCR
primers were designed according to the reference gene sequences using SnapGene 5.3
software. Relative expression levels were determined using the 2−∆∆Ct method [38].

4.7. Isolation, Purification, and Determination of the Antifungal Metabolite

The fermentation broth of strain 11F was centrifuged at 12,000× g for 10 min to remove
the cellular debris and the supernatant was extracted in an equal volume of ethyl acetate.
The organic layer was concentrated under reduced pressure and the crude extract was
dissolved in methanol.

The crude extract was chromatographed by thin-layer chromatography using a
chloroform–methanol mixture (9:1) as the eluent and semipreparative reversed-phase
high-performance liquid chromatography. The structure of the compound was eluci-
dated by an analysis of spectroscopic and spectrometric data (1D, 2D-NMR, and HRES-
IMS). Determination of the structure of the compound was confirmed by HMBC and
1H-1HCOSY experiments.
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4.8. Data Analysis

Raw data were organized using Excel 2010 and analyzed using IBM SPSS Statistics 22.0
software. The significance of differences among treatments was evaluated using Duncan’s
multiple range test (p < 0.05). The results were expressed as means ± standard error (SE).

5. Conclusions

In this study, S. alfalfae strain 11F was highly antagonistic toward fungal pathogens
tested. The greenhouse experiment indicated that the fermentation broth of strain 11F
protected watermelon seedlings from Fusarium wilt to a certain extent and promoted
seedling growth. Following transcriptome sequencing, the number of DEGs and enriched
pathways changed significantly during the fermentation period. The number of DEGs
involved in biological processes increased with prolonged fermentation from 6 h to 48 h.
The GO analysis revealed that the biological process and molecular function categories
were enriched among the DEGs, whereas the KEGG pathway analysis suggested that
metabolic pathways were most active in strain 11F from 24 h to 48 h. The qRT-PCR analysis
confirmed the reliability of the RNA-seq data. The phenazine substance PCN, which has
antifungal activity against F. oxysporum f. sp. niveum based on the differential expression of
phzF, was isolated. Further research will include the use of the LEXAS system to mine gene
clusters responsible for phenazine compound biosynthesis in strain 11F.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants12223796/s1, Figure S1: Antifungal activity of strain 11F
against six pathogens. (A) F. oxysporum f. sp. niveum. (B) S. turcica. (C) F. solani. (D) B. cinerea.
(E) F. graminearum. (F) B. Dothidea; Figure S2: Expression patterns of the DEGs between Case 1 and
Case 2; Figure S3: Top 20 enriched KEGG pathways. (A) Control vs. Case 2 comparison. (B) Case 1
vs. Case 2 comparison. The Rich Factor refers to the ratio of the number of differentially expressed
transcripts in the pathway entry to the total number of transcripts in the pathway entry. Increases in
the Rich Factor reflect increases in the degree of enrichment. The dot size indicates the number of
DEGs assigned that particular term, whereas the dot color indicates the p-value; Figure S4: 1H NMR
(A) and 13C NMR (B) of the phenazine compound (in DMSO-d6); Table S1: Strain 11F inhibitory
effects on various fungi; Table S2: Details regarding the RNA-seq data; Table S3: Mapping of the
clean reads to the reference genome; Table S4: Detailed information for the selected genes for qPCR;
Table S5: Prediction of secondary metabolites in strain 11F using antiSMASH database.
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