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Abstract: Sorghum mosaic virus (SrMV, the genus Potyvirus of the family Potyviridae) is a causal agent
of common mosaic in sugarcane and poses a threat to the global sugar industry. In this study, a total
of 901 sugarcane leaf samples with mosaic symptom were collected from eight provinces in China
and were detected via RT-PCR using a primer pair specific to the SrMV coat protein (CP). These leaf
samples included 839 samples from modern cultivars (Saccharum spp. hybrids) and 62 samples from
chewing cane (S. officinarum). Among these, 632 out of 901 (70.1%) samples were tested positive for
SrMV. The incidences of SrMV infection were 72.3% and 40.3% in modern cultivars and chewing
cane, respectively. Phylogenetic analysis showed that all tested SrMV isolates were clustered into
three clades consisting of six phylogenetic groups based on 306 CP sequences (this study = 265 and
GenBank database = 41). A total of 10 SrMV isolates from South America (the United States and
Argentina) along with 106 isolates from China were clustered in group D, while the remaining
190 SrMV isolates from Asia (China and Vietnam) were dispersed in five groups. The SrMV isolates
in group F were limited to Yunnan province in China, and those in group A were spread over eight
provinces. A significant genetic heterogeneity was elucidated in the nucleotide sequence identities of
all SrMV CPs, ranging from 69.0% to 100%. A potential recombination event was postulated among
SrMV isolates based on CP sequences. All tested SrMV CPs underwent dominant negative selection.
Geographical isolation (South America vs. Asia) and host types (modern cultivars vs. chewing cane)
are important factors promoting the genetic differentiation of SrMV populations. Overall, this study
contributes to the global understanding of the genetic evolution of SrMV and provides a valuable
resource for the epidemiology and management of the mosaic in sugarcane.

Keywords: genetic diversity; molecular evolution; mosaic disease; population structure; sorghum
mosaic virus; sugarcane

1. Introduction

The Potyviridae is the largest family of known RNA viruses, having significant impact
on agriculture and ecology [1–3]. There are currently 12 genera and 246 species in this
virus family (https://ictv.global/taxonomy (accessed on 28 October 2023). The largest
genus of plant viruses, the Potyvirus, belongs to the Potyviridae family and causes significant
losses in a variety of crops around the world, such as maize, potatoes, sorghum, soybeans,
sugarcane, and so on [4–7]. Mosaic is an important viral disease of sugarcane around the
world, caused by a single or mixed infection of sugarcane mosaic virus (SCMV), sorghum
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mosaic virus (SrMV), sugarcane streak mosaic virus (SCSMV), and maize yellow mosaic
virus (MaYMV) [8,9]. In addition to sugarcane, these viruses have a wide range of hosts
such as maize, sorghum, and other grasses [8]. SCMV and SrMV (genus Potyvirus, family
Potyviridae) are distributed globally, while SCSMV (genus Poacevirus, family Potyviridae)
appears in Asia and Côte d’Ivoire and MaYMV (genus Ampelovirus, family Closteroviridae)
occurs in Africa, Asia, as well as South America [9–12].

The potyviral genome encodes a long polyprotein that is processed by proteinases,
giving rise to at least 10 mature proteins: P1 (protein 1 protease), HC-Pro (helper component
protease), P3 (protein 3), PIPO (pretty interesting Potyviridae ORF), 6K1 (6 kDa peptide 1),
CI (cylindrical inclusion), 6K2 (6 kDa peptide 2), NIa-Pro (nuclear inclusion a-protease), NIb
(nuclear inclusion b, RNA-directed RNA polymerase), CP (capsid protein), as well as VPg
(virus protein genome-linked) [5,13,14]. The potyviral CP participates in various biological
functions such as coating and protection of the RNA genome, aphid transmission, as well
as cell-to-cell and long-distance movement [4,15]. Meanwhile, this viral protein may also be
involved in the regulation of CP stability and functional diversity during the viral life cycle
through various post-translational modifications [4]. However, these biological functions
in SrMV CP have not yet been identified. The CP-coding region of these potyvirus-encoded
proteins is preferentially a targeted region used for viral genetic diversity and phylogeny
analysis as well as disease diagnosis using molecular and serological approaches [5,8,16].

The genetic diversity of SrMV isolates has been explored using sequencing technology
and virus taxonomy. In the 1990s, three strains of SrMV (H, I, and M) were identified,
and these were distinguished from SCMV, johnsongrass mosaic virus (JGMV), and maize
dwarf mosaic virus (MDMV) [17–19]. Perera et al. reported that the CP nucleotide iden-
tities ranged from 97.4% to 99.9% among SrMV isolates from Argentina [20]. In China,
based on CP sequence analysis, Xu et al. (2008) revealed that obvious genetic diversity
(76–100%) occurred among 18 SrMV isolates, while Luo et al. (2016) found that the nu-
cleotide identities were 74.3–94.1% (nucleotide) and 84.7%–98.1% (amino acid) among
188 SrMV isolates worldwide [21]. Meanwhile, Zhou et al. (2014) demonstrated that
SrMV-GX together with SrMV-XoS, SrMV-YH, and SrMV-H were grouped in the same
evolutionary cluster based on the genomic sequence analysis, and they shared sequence
identities of 80.9–95.4% and 90.4–98.4% at nucleotide and amino acid levels [22], respec-
tively. Several phylogenetic groups of SrMV isolates were proposed based on viral CP
and genome sequences. For example, two phylogenetic groups of SrMV were clustered
based on host origins, i.e., modern cultivars (Saccharum hybrids spp.) vs. noble cane
(S. officinarum) [21,23]. Three and six phylogenetic groups of SrMV were proposed by
Zhang et al. (2015) [24] and Luo et al. (2016) [25], respectively, in China.

Evolutionary driving forces, population structure, and differentiation among SrMV
isolates have been investigated. For instance, insertion/deletion mutations, negative
selection, and frequent gene flow were proposed to contribute to the genetic divergence
and population structure of SrMV isolates [25]. No obvious recombination event was
found in the CP gene region of all tested SrMV isolates [24,25]. High rates of mutation and
recombination between potyvirus strains result in the creation of new viral strains. These
novel isolates show a high degree of pathogenicity in a variety of host species and cultivars,
which is posing a challenge to global crop production [4,26,27]. Importantly, it is critical to
distinguish between SrMV strains when breeding resistant sugarcane genotypes. However,
these research aspects of SrMV remain unclear. In China, SrMV is one of main viruses infecting
sugarcane, particularly modern commercial cultivars, followed by SCSMV [8,25,28]. Therefore,
in this study we extensively analyze the occurrence, distribution, genetic variation, and
population differentiation of SrMV infecting sugarcane based on viral CP fragments. These
findings offer insights into the virus’s prevalence in China’s sugarcane-growing regions
and crucial recommendations for the management and prevention of mosaic disease.
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2. Results
2.1. Detection of SrMV Using RT-PCR

The SrMV was detected using RT-PCR in 632 of 901 (70.1%) leaf samples. The inci-
dences of SrMV-positive were 72.3% and 40.3% in modern cultivars and chewing cane,
respectively. Subsequently, 265 representative CP fragments (approximately 850 bp) were
selected for a further sequence analysis.

2.2. Phylogenetic Relationship among SrMV Isolates

A phylogenetic analysis showed that all the 306 SrMV isolates (this study = 265 and
GeneBank library = 41) were clustered into three clades (I, II, and III), including six different
groups (A–F) with 4–120 isolates. Clades I and II consisted of two (A and B) and three (C–E)
groups, respectively. Clades III included a unique group F. Moreover, 39.2% and 37.9%
of SrMV isolates were assigned to groups A and D, respectively. Apart from 106 SrMV
isolates from China, 10 isolates from the United States and Argentina were clustered into
group D. The remaining SrMV isolates from Asia (China and Vietnam) were clustered in
six groups (Figure 1). Notably, the 18 SrMV isolates from chewing cane were distributed
in four groups (SrMV-A, -D, -E, and -F). The frequency of SrMV phylogroups over eight
Chinese sugarcane-planting provinces is shown in Figure 2. The SrMV isolates from groups
A and D were observed in eight provinces, while the SrMV isolates from group B were
found in seven provinces except Guangdong (GD). Additionally, the SrMV isolates from
group E were found in six provinces except Sichuan (SC) and Yunnan (YN) provinces.
Group C was present in four provinces including Fujian (FJ), Guangxi (GX), Hainan (HN),
and Sichuan, but group F only occurred in Yunnan province.
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plus 41 isolates from the GenBank database. A sequence of sugarcane mosaic virus (SCMV) isolate
SCMV-HZ (GenBank accession no. NC_003398) was used as outgroup. The number (n) of isolates in
each phylogroup is in parentheses.
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2.3. Sequence Identities between SrMV Populations

The sequence identities of 265 SrMV isolates obtained in this study ranged from 70.3
to 100% (nucleotide) and from 73.8 to 100% (amino acid). In each phylogenetic group,
the minimum sequence identities of 73.2% (nucleotide) and 80.5% (amino acid) were
observed between SCJK003 (MZ419743) and other isolates in group D (Table 1). Among
six phylogenetic groups, nucleotide sequence identities ranged between 69.0% (between
groups D and E) and 97.5% (between groups C and D), while amino acid sequence identities
were 72.8% (between groups A and D) and 100% (between groups C and D). Notably,
obvious divergence was exhibited between clade I and the other two clades (II and III), as
evidenced by lower nucleotide sequence identities (<85%) among SrMV isolates, except
those between the SCJK003 isolate (group D) and 111 SrMV isolates in group A. In addition,
the nucleotide and amino acid sequence identities between geographical groups were
between 71.3–100% and 74.9–100%, respectively (Table S1). Meanwhile, nucleotide and
amino acid identities between host origin groups were shared by 71.3–100% and 74.9–100%,
respectively (Table S2).

To further investigate the variation among SrMV CP sequences, 12 representative CP
amino acid sequences (two sequences in each phylogroup) were aligned. At least four
Insertion/deletion (InDel) at the N-terminal and 26 mutation sites were exhibited in SrMV
CP sequences (Figure S1). It is noteworthy that no deletion, but a unique site mutation,
was present among these CP amino acid sequences in the SrMV-F group as compared to
other groups.
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Table 1. Percentage identities (%) of nucleotide (low-left) and amino acid (up-right) sequences of
SrMV coat protein within and between phylogenetic groups a.

Group A (n = 120) B (n = 26) C (n = 19) D (n = 116) E (n = 21) F (n = 4)

A 85.3–100
(81.1–100) 77.8–97.7 73.2–89.2 72.8–90.0 73.8–91.8 77.5–90.3

B 79.3–94.0 89.2–100
(88.5–99.6) 76.0–89.2 76.4–90.0 77.1–92.2 81.4–91.0

C 70.7–80.7 69.1–81.3 87.8–100
(86.1–99.5) 79.2–100 81.4–97.5 88.5–95.7

D 70.1–90.7 69.3–84.6 71.7–97.5 80.5–100
(73.2–100) 75.0–98.5 82.5–96.4

E 72.5–81.8 69.4–82.5 78.9–92.4 69.0–92.6 86.7–100
(82.4–100) 84.6–96.0

F 71.6–80.3 72.2–81.2 80.3–87.3 75.2–87.4 78.0–87.3 97.1–99.6
(95.6–99.5)

a Nucleotide sequence identities (%) of SrMV CP within phylogenetic groups are shown in parentheses.

2.4. Genetic Recombination Events among SrMV Isolates

Genetic recombination events were identified using RDP4 based on 306 CP sequences
of SrMV. A significant recombination event was found as supported by four algorithms
(p < 0.05). The potential recombinant isolate was FJSX017 (MZ419585) from Fujian province,
China. The recombinant was derived from the major parent SCH (U07219) from the United
States and a minor unknown parent (Table 2).

Table 2. Recombination signals detection among 306 SrMV isolates based on the CP genes.

Recombinant
Potential Parents Detection Method a

Main Parent Minor Parent R G B M C S T

FJSX017
(MZ419585) SCH (U07219) Unknown - - - + + + +

a Seven algorithms include RDP (R), GENECONV (G), Booscan (B), Maximum Chisquare (M), Chimaera (C),
Sister Scan (S), and 3Seq (T); +, significant (10−6 < p ≤ 0.05); -, non-significant (p > 0.05).

2.5. Neutrality Test and Selection Pressure on SrMV Populations

Nucleotide diversity (π) showed that SrMV CP sequences in the Asian population had
a higher genetic variation (π = 0.12160), while the sequences in the American population
had a lower genetic variation (π = 0.02200). However, the π values of the SrMV CP
sequences in modern cultivars and chewing cane were 0.12062 and 0.10265, respectively,
indicating a higher genetic variation of SrMV CP in both host origins. A neutrality test
showed that Tajima’s D values for four SrMV populations were all negative, suggesting
that the SrMV population exhibited a trend of expansion. Conversely, Tajima’s D values for
neutrality tests were not statistically significant (p > 0.10) in all cases. Meanwhile, the ratios
of dN/dS ranged from 0.070 to 0.078 (less than 1) among four populations, suggesting that
the SrMV CP gene was under a negative selection (Table 3).

Table 3. Genetic variation and population genetic parameters between different populations based
on SrMV CP sequences.

Population π Tajima’s D a dN/dS b

Total (n = 306) 0.12186 −0.28177 (ns) 0.077
Asia (n = 296) 0.12160 −0.25049 (ns) 0.078

South America (n = 10) 0.02200 −1.25048 (ns) 0.077
Modern cultivar (n = 288) 0.12062 −0.28584 (ns) 0.078

Chewing cane (n = 18) 0.10265 −0.61461 (ns) 0.070
a ns, non-significant. b dN/dS, the ratio of nonsynonymous (dN) and synonymous (dS) substitution.
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2.6. Genetic Differentiation and Gene Flow between SrMV Populations

Geographic (Asia vs. America) and host (modern cultivars vs. chewing cane) origins
showed considerable genetic differentiation as detected by three permutation-based sta-
tistical tests (Ks*, Z*, and Snn) that reached significant levels (p < 0.05). The Fst values
were >0.33, and the Nm values were <1.0 between geographical groups (Asia vs. America),
suggesting that the gene flow between two populations was not frequent. Conversely,
the Fst values were <0.33, and the Nm values were >1.0 between host origins (modern
cultivars vs. chewing cane), indicating that the gene flow between two populations was
frequent (Table 4).

Table 4. Tests of genetic differentiation and gene flow among SrMV groups based on geographical
origins and host types a.

Comparison Ks*
(p-Value) Z* (p-Value) Snn

(p-Value) Fst Nm

Asia (n = 296) vs. South
America (n = 10)

4.14107
(0.0000 ***)

9.68253
(0.0000 ***)

0.99183
(0.0000 ***) 0.44293 0.63

Modern cultivar (n = 288)
vs. chewing cane (n = 18)

4.15947
(0.0000 ***)

9.71312
(0.0000 ***)

0.92157
(0.0300 *) 0.15628 2.70

a Asterisks: *, 0.01 < p < 0.05; ***, p < 0.001.

3. Discussion

The crop productivity is affected by a wide range of adverse environmental factors,
including biotic and abiotic stress [29]. Mosaic can cause losses ranging from 17% to
50% in susceptible varieties [8]. A survey of the occurrence and distribution of causal
agents is an important step for prevention and control for this disease. However, SrMV
is often mixed with other viruses causing mosaic diseases, and, therefore, distinguishing
the species or strain of viruses causing mosaic disease is nearly impossible through a
visual observation [8,25,30,31]. In this study, the RT-PCR technology was employed to
accurately identify SrMV. A higher SrMV detection rate was found in modern cultivars than
chewing cane. A lower SrMV detection rate existed in chewing cane because of the lower
vulnerability of the host to SrMV pathogenesis [21,32]. In addition to cultivar resistance,
vector populations and their vagility being subjected to ecosystem simplification also affects
virus infection rates [33]. However, this difference in interaction between the virus and
sugarcane host need to be further explored. In addition to SrMV, SCSMV is another main
causal agent of mosaic in sugarcane modern cultivars in China [8,21,22].

According to our findings, the SrMV isolates from China and South America were
grouped together in the SrMV-D group, while the SrMV isolates from Asia were distributed
throughout the six phylogroups. Compared to a previous study by Luo et al. (2016), a
large number of sugarcane samples was used in this study, but no new phylogroup was
proposed [25]. Nonetheless, more phylogroups were discovered in some specific provincial
regions in China. For example, Luo et al. (2016) proposed that only one phylogroup
(SrMV-G1) occurred in Guizhou province, while the results of the current study indicate
that four phylogroups (SrMV-A, -B, -D, and -E) were in this region [25]. The possible reason
is that more leaf samples with mosaic were analyzed in this study. The low sequence
identities among the SrMV isolates were indicative of high genetic divergence. The viral
species demarcation in Potyviridae family is typically based on the sequence identity of
the CP-coding region with a threshold of <76% (nucleotide) and <82% (amid acid) [34].
Therefore, even if these isolates are in line with the threshold of viral species in this family,
more research is required to determine whether SrMV isolates from Yunnan Province
clustered in phylogroup F belong to a unique quasispecies or species. New viral species
will be considered following investigations based on full genome sequences (genomic
feature and phylogeny), together with additional data about biological characteristics such
as host range and vector [5].
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A high rate of viral genome mutation aids in the creation of novel strains, including
resistance-breaking isolates [4]. Our data showed that there are at least four InDels in
the N-terminal of SrMV CPs and numerous site mutations across the viral CP sequence.
Notably, an obvious feature of CP amino acid sequences in the SrMV-F group is no deletion,
but a unique mutation site is present compared to other groups. It is unclear whether
these different SrMV isolates in different phylogroups are associated with the variation of
viral pathogenicity. Additionally, recombination is a major driving force in the evolution
of potyviruses [35,36], but this evolutionary force seems to be an uncommon mechanism
of speciation [35]. Our data showed that there was a potential recombination event in all
tested SrMV CP sequences. However, no recombination was found in previous studies by
Zhang et al. (2015) [24] and Luo et al. (2016) [25]. Natural selection is another important
evolutionary mechanism and driving force for viral population variation, and purification
selection accelerates the elimination of harmful mutations in genes as well as the formation
of a stable population genetic structure [37]. Notably, all potyvirus genomes undergo
a negative selection, with certain genes such as HC-Pro, CP, Nia, and NIb being more
strongly selected than others [35]. In this study, the tested SrMV CP was subjected to
negative selection.

The genetic makeup of viral populations is significantly influenced by geographic
isolation [37]. However, modern travel and trade have grown to be significant factors in
the transmission of viruses and the swapping of their hosts [35]. Sugarcane is a vegetative
propagated crop and frequent exchange of germplasm resources or plant settings between
Asian countries, which likely resulted in the absence of obvious population divergence
of SrMV within the Asian population. Similarly, Wang et al. (2017) also demonstrated
that there was no obvious geographic difference among SrMV isolates [38]. But, to some
extent, SrMV populations in China were linked to their geographical origins [24]. Here, our
data showed that geographic isolation plays a significant role in the divergence of SrMV
isolates between Asia and South America. The host type is another crucial factor leading to
the genetic differentiation of plant viruses [33,37]. Based on the phylogenetic analysis of
18 Chinese SrMV isolates, they were divided into two virus populations associated with
host types (moder cultivar and chewing cane) [21]. Our data revealed that the phylogenetic
grouping of SrMV isolates was not related to two host sources. On the other hand, these
SrMV isolates were strongly differentiating the populations of chewing cane and modern
cultivars, according to genetic differentiation analysis. A large-scale study of SrMV samples,
host sources, and sugarcane-planting regions should be carried out to further explore SrMV
population differentiation. Overall, various driving forces contribute to form different
SrMV populations or quasispecies.

4. Materials and Methods
4.1. Collection and Distribution of Leaf Samples

A total of 901 leaf samples with mosaic were collected from eight sugarcane-planting
provinces from 2017 to 2020, including 839 samples from modern cultivars (Saccharum
spp. hybrids, Sh) and 62 samples from chewing cane (S. officinarum, So). Distribution of
leaf samples in different provinces: Guangdong (Sh = 45), Guangxi (Sh = 173), Guizhou
(Sh = 165 and So = 5), Fujian (Sh = 90 and So = 9), Hainan (Sh = 51), Sichuan (Sh = 181),
Yunnan (Sh = 81), and Zhejiang (Sh = 53 and So = 48). All leaf samples were scrubbed and
disinfected with 75% alcohol and stored at −80 ◦C for further molecular detection.

4.2. RT-PCR Detection

Total RNA was extracted from leaf samples using the TRIzol® Reagent (Invitrogen,
Carlsbad, CA, USA). After the quality and quantity of total RNA were checked, these RNA
samples were used for molecular detection using RT-PCR [39]. The HiScript II 1st Strand
cDNA Synthesis Kit (Novozan, Nanjing, China) was used to synthesize cDNA from each
RNA sample (1.0 µg) with the reverse transcription primer Oligo (dT) 23VN. The set of
SrMV-specific primers SrMV-F (5′-ACAGCAGAWGCAACRGCACAAGC-3′) and SrMV-R
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(5′-CTCWCCGACATTCCCATCCAAGCC-3′) was used for PCR amplification [39]. The
PCR amplification in a 25 µL volume included 1 µL cDNA, 12.5 µL Premix Taq (Ex Taq
Version 2.0 plus dye) (TaKaRa, Dalian, China), and 1 µL of each primer (10 µmol/L). The
PCR was performed in the following conditions: 94 ◦C for 5 min; followed by 35 cycles at
94 ◦C for 30 s, 52 ◦C for 30 s, and 72 ◦C for 1 min; a final extension at 72 ◦C for 10 min. The
PCR products were analyzed via a gel electrophoresis on 1.0% agarose gels.

4.3. Cloning and Sequencing of RT-PCR Fragments

The target fragments from partial SrMV-positive PCR products were eluted using a
Gel Extraction Kit (OMEGA Bio-Tek, Norcross, GA, USA). The purified PCR fragments
were ligated into the pMD19-T vector (TaKaRa) and then transformed into Escherichia coli
DH5α competent cells. Three positive colonies from each leaf sample were sent to Sangon
Biotech Co., Ltd. (Shanghai, China) for sequencing. The inserted fragments were sequenced
bidirectionally using the M13 universal primers.

4.4. Sequence Alignment and Phylogenetic Analysis

A total of 306 CP sequences (this study = 265 and GenBank database = 41) trimming
the primer pair sequences were used for sequence alignment and phylogenetic analysis,
including 288 sequences from modern cultivars and 28 sequences from chewing cane
(Table S3). Sequence alignment was carried out using the ClustalW algorithm implemented
in MEGA 10.1.8 software [40] The Neighbor-joining (NJ) method was used to construct the
phylogenetic tree, and the robustness of the nodes of the phylogenetic tree was assessed
from 1000 bootstrap replicates. A sequence of SCMV isolate SCMV-HZ (NC_003398)
was used as outgroup. Sequence identity analysis was conducted using BioEdit 7.1.9
software [41].

4.5. Genetic Recombination Analysis

Sequence recombination analysis was performed using seven different recombina-
tion algorithms (RDP, GENECONV, Chimaera, MaxChi, Bootscane, SISCAN, and 3Seq)
implemented in RDP4 (Recombination Detection Program version 4) software [42]. Only
recombination events that were detected by more than four algorithms (p < 0.05) were
considered significant.

4.6. Evaluation of Population Genetic Parameters

All population genetic parameters of SrMV CP sequences based on different geograph-
ical origins (South America vs. Asia) and sugarcane hosts (modern cultivar vs. chewing
cane) were calculated using DnaSP version 5.10.01 software [43]. Genetic parameters in-
cluded nucleotide diversity (π) [44] and Tajima’s D [45]. Three statistical test values (Ks*,
Z*, and Snn) were used to evaluate the genetic differentiation between SrMV populations.
|Fst| > 0.33 or Nm < 1 indicates that gene flow between populations is not frequent, while
|Fst| < 0.33 or Nm > 1 suggests frequent gene flow. The selection pressure on SrMV CP
in each population was evaluated by calculating the ratio of nonsynonymous (dN) and
synonymous (dS) substitutions in nucleotide sequences. Positive, neutral, and negative
selections were indicated by dN/dS ratios >1, =1, and <1.

5. Conclusions

In this study, the molecular divergence and population structure of SrMV isolates
infecting sugarcane (modern cultivars and ancient chewing cane) were investigated based
on the CP fragment sequences. A high incidence (70.1%) of the samples was tested positive
for SrMV through an RT-PCR assay. Based on 306 SrMV CP sequences, three clades
including six phylogenetic groups were proposed. High genetic diversity was present
among all tested SrMV isolates based on CP sequence identities ranging from 69.0% to
100%. The SrMV-A and -D groups dispersed in eight sugarcane planting regions/provinces,
but SrMV-F only occurred in Yunnan province, China. Our data suggested that numerous
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evolutionary driving forces such as nucleotide mutant, gene recombination, and purifying
selection as well as geographical and host isolation contributed to form different SrMV
populations around the world. These findings enrich the information of the genetic diversity
of this virus. However, the molecular divergence and genetic population of SrMV at the
complete genome level remain unclear. In addition, the molecular mechanism of the
interaction between this virus and host sugarcane is largely unknown. Therefore, these
research aspects need to be further explored.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12213759/s1. Table S1 Percent identities (%) of nucleotide
(low-left) and amino acid (up-right) sequences of SrMV CP within and between different geographical
origins. Table S2 Percent identities (%) of nucleotide (low-left) and amino acid (up-right) sequences
of SrMV CP within and between host types. Table S3 Information of sequences from sorghum mosaic
virus (SrMV) isolates worldwide. Figure S1. Insertion/deletion (InDel) and site mutation among
amino acid sequences of SrMV CP. Twelve representative CP sequences (two sequences in each
phylogroup) were selected for the alignment by DNAMAN version 6 software. Insertion/deletion
(InDel) is showed in red boxes. A unique site mutation of SrMV CP between SrMV-F and other
groups is marked with a solid triangle.
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