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Abstract: Fiber quality traits, especially fiber strength, length, and micronaire (FS, FL, and FM),
have been recognized as critical fiber attributes in the textile industry, while the lint percentage
(LP) was an important indicator to evaluate the cotton lint yield. So far, the genetic mechanism
behind the formation of these traits is still unclear. Quantitative trait loci (QTL) identification and
candidate gene validation provide an effective methodology to uncover the genetic and molecular
basis of FL, FS, FM, and LP. A previous study identified three important QTL/QTL cluster loci,
harboring at least one of the above traits on chromosomes A01, A07, and D12 via a recombinant
inbred line (RIL) population derived from a cross of Lumianyan28 (L28) × Xinluzao24 (X24). A
secondary segregating population (F2) was developed from a cross between L28 and an RIL, RIL40
(L28 × RIL40). Based on the population, genetic linkage maps of the previous QTL cluster intervals
on A01 (6.70–10.15 Mb), A07 (85.48–93.43 Mb), and D12 (0.40–1.43 Mb) were constructed, which span
12.25, 15.90, and 5.56 cM, with 2, 14, and 4 simple sequence repeat (SSR) and insertion/deletion
(Indel) markers, respectively. QTLs of FL, FS, FM, and LP on these three intervals were verified by
composite interval mapping (CIM) using WinQTL Cartographer 2.5 software via phenotyping of F2

and its derived F2:3 populations. The results validated the previous primary QTL identification of FL,
FS, FM, and LP. Analysis of the RNA-seq data of the developing fibers of L28 and RIL40 at 10, 20,
and 30 days post anthesis (DPA) identified seven differentially expressed genes (DEGs) as potential
candidate genes. qRT-PCR verified that five of them were consistent with the RNA-seq result. These
genes may be involved in regulating fiber development, leading to the formation of FL, FS, FM, and
LP. This study provides an experimental foundation for further exploration of these functional genes
to dissect the genetic mechanism of cotton fiber development.

Keywords: Gossypium hirsutum; secondary segregating population; fiber quality; lint percentage; QTL

1. Introduction

Cotton fiber is an important raw material in industrial production [1]. Owing to its
high yield and wide adaptability, allotetraploid upland cotton is widely planted around the
world, accounting for over 95% of the world’s total cotton planting areas. However, its fiber
quality is less attractive than sea-island cotton [1,2]. With the continuous upgrading and
innovation of textile technology, the requirements for the quality and quantity of cotton
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fibers are constantly increasing [3]. Cotton fiber quality is mainly composed of fiber length
(FL), fiber strength (FS), fiber micronaire (FM), fiber uniformity (FU), and fiber elongation
(FE) [4]. The lint percentage (LP) is a main indicator for evaluating cotton fiber yield [5].
The cost-effectiveness of raw cotton fiber production requires high fiber quality that meets
the technical requirements of the textile industry and a high yield potential that reimburses
the agricultural costs. Therefore, effectively improving the fiber quality and yield of upland
cotton remains one of the main goals of current cotton breeding projects [6].

Fiber quality and yield traits are complex traits controlled by multiple minor quantita-
tive trait loci (QTLs)/genes and are easily affected by environments [7,8]. Conventional
breeding methods have made great contributions to the improvement of both fiber qual-
ity and yield. However, the limitations in the further simultaneous improvement of the
two are becoming increasingly prominent due to the negative correlations between them,
which become obvious under the current high-level breeding conditions [9]. QTL mapping
provides a powerful approach for cotton breeders to improve the fiber quality and yield
traits of upland cotton via marker-assisted selection (MAS) [9,10]. With the continuous
improvement in the reference genome and the large-scale sequencing of a large number
of bi-parental segregating and natural populations, a large number of QTLs and QTNs
of fiber quality, yield traits, and biotic stresses, etc., have been identified and associated,
providing important resources for cotton breeding programs via MAS [4,10,11]. However,
the practical value of these QTLs in MAS lies in their ability to pyramid the favorable alleles
into newly developed cultivars. Furthermore, a large number of QTLs still need to be
validated or fine-mapped for practical MAS applications or functional gene studies [12–14].
With the improvement in genome and genome annotation information and the application
of transcriptome technology, researchers will be able to identify candidate genes based
on the annotation information and transcriptional expression profiles of genes within the
QTL interval and explore gene functional research [3,12]. Fang et al. [15] constructed an F2
population (CCRI35 × Yumian1) containing 2484 individual plants to fine map an FS QTL,
qFS07.1, to a DNA fragment of 62.6 kb (0.17 cM) containing four annotated genes. Through
qRT-PCR and sequence comparison analysis, a leucine-rich repetitive protein kinase (LRR
RLK) family protein-coding gene, Gh_A07G1749, was identified as its candidate gene. Is-
lam et al. [3] used 27 SNP markers to finely map multiple QTLs, namely qFBS-c3, qSFI-c14,
qUHML-c14, and qUHML-c24, in an intraspecific F3 population (MD90ne × MD52ne) of
upland cotton and accurately mapped them to the physical intervals of 4.4 Mb, 1.8 Mb,
and 3.7 Mb in the reference genome. The receptor kinase pathway gene was identified as
a candidate gene responsible for FS and FL based on the differential expression profiles
and the amino acid mutation analysis of the gene between the two parents. Zang et al. [12]
constructed four F2 populations containing 1864 individuals through backcrossing four re-
combinant inbred lines (RILs) derived from the cross of Prema×86-1, RIL43, RIL98, RIL120,
and RIL168, with 86-1, respectively. qFS-D3-1 was finely mapped to a fragment of 0.93 Mb
(1.14 cM), which contained 23 annotated genes. Based on the transcriptional expression
profiles of these genes during fiber development and gene sequencing, an allele with a
6 bp (GCCTCC) deletion of GhUBX (GH_D03G0985) gene was identified to be responsible
for higher FS in Prema. GhUBX regulates fiber helix growth by degrading GhSPL1 in
fiber cells through the ubiquitin 26S–proteasome pathway, leading to an increase in the
number of cotton fiber helices and eventually improving fiber strength. Liu et al. [14] finely
mapped qSI-A07-1 to 17.45 kb via an F2 population and identified an allele with a deletion
of 845 bp in the intron region of its candidate gene GH_A07G2179 (GhSI7; transcriptional
regulator STERILE APETALA) responsible for regulating seed size. However, how these
candidate genes altogether regulate cotton fiber quality development yield formation still
keeps elusive. In the current climate changing conditions, research on the genetic regula-
tion mechanisms of fiber yield and quality formation has become increasingly important,
which may impose a great impact on the future development of both cotton cultivation and
textile industry.
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In a previous study, three QTL clusters were identified via a RIL population derived
from an intraspecific upland cotton cross of Lumianyan28 and Xinluzao24 (L28 × X24) [16].
The clusters mainly consisted of major-effect QTLs for their target traits of FS, FL, FM, and
LP (Table 1). These loci may have potential implications for future variety improvement
and for dissecting the formation mechanism of target traits. In this study, a secondary
segregating F2 population was constructed via a cross of L28 and RIL40, which was an
excellent fiber quality RIL-derived L28 × X24. An F2:3 population derived from F2 was
also constructed. Both F2 and F2:3 populations were applied to verify the genetic effect of
the QTLs in the above three clusters, and the potential candidate genes were identified
via analysis of the differentially expressed genes (DEGs) within the QTL interval based on
an RNA-seq strategy. The results revealed that these QTLs will be of great significance in
future breeding projects, and further dissection of the candidate genes will be beneficial to
understanding their acting mechanism in cotton fiber development.

Table 1. Basic information of the QTL clusters in the primary QTL analysis in a previous study [16].

Chromosome
QTL Compositions

Physical Position (Mb)
FS FL FM LP

A01 qFS-chr01-2 7.63–8.04
A07 qFS-chr07-2 qFL-chr07-2 qFM-chr07-1 qLP-chr07-3 89.53–90.08
D12 qFL-chr26-1 0.46–0.52

2. Results and Analysis
2.1. Phenotypic Statistics of Fiber Quality and Yield Traits of the Experimental Materials

Basic phenotypic statistics describing the FL, FS, FM, and LP of the parental lines,
and the F2 and F2:3 populations are presented in Table 2. The RIL40 had higher FL and FS
phenotypic values and lower FM and LP phenotypic values than those of L28, which were
the same as those observed in the previous study (Table 2) [16]. The t test revealed that the
differences in these traits between RIL40 and L28 reached at least significance at p ≤ 0.05
(Table 2). The skewness and kurtosis evaluations showed that the phenotypes of all the
target traits fit a normal distribution in both the F2 and F2:3 populations and that the F2:3
phenotypic values could represent the variations and distributions of those of F2 (Figure 1).
Correlation analysis revealed that the phenotypic performances of these target traits were
significantly positively correlated between the F2:3 and F2 generations. However, within
each generation, the trait pairs of FL-FS and FM-LP were significantly positively correlated,
while those of FL-FM/LP and FS- FM/LP were significantly negatively correlated in both
the F2:3 and F2 (except FM-FS in F2 and LP-FS in F2:3) (Table 3).

Table 2. Fiber quality traits and LP of parental lines and secondary segregating populations of F2 and F2:3.

Parent Materials Population

Trait Year L28 RIL40 |AVDP| Generation Range Min Max Average SD Skewness Kurtosis

FL/mm 2019 31.39 35.44 ** 4.06 F2 10.35 27.22 37.57 32.95 1.65 −0.42 0.15
2020 30.90 32.94 * 2.04 F2:3 7.37 26.62 33.99 31.21 1.30 −0.65 0.49

FS/cN·tex−1 2019 31.28 36.49 ** 5.20 F2 14.30 27.02 41.32 34.28 2.21 0.06 −0.13
2020 30.18 35.05 * 4.87 F2:3 15.68 23.61 39.29 31.64 2.34 0.01 0.32

FM 2019 5.05 3.79 ** 1.26 F2 3.88 2.14 6.02 4.13 0.66 −0.25 −0.31
2020 5.37 4.01 * 1.36 F2:3 2.58 3.35 5.93 4.73 0.45 −0.02 −0.22

LP/% 2019 40.21 34.20 ** 6.01 F2 19.20 27.45 46.65 37.10 2.72 −0.05 0.28
2020 39.36 36.16 * 3.20 F2:3 11.86 32.97 44.83 38.34 2.12 0.09 −0.14

* and ** indicate that the difference between L28 and RIL40 reaches significance levels of p < 0.05 and p < 0.01,
respectively, in t-test. |AVDP| represents absolute values of difference between L28 and RIL40.
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Figure 1. The phenotypic distribution of fiber quality traits and lint percentage of F2 and F2:3

populations. Dotted diamond bar presents phenotype distribution of F2 population; Trellis presents
phenotype distribution of F2:3 population. The curve on the graph represents the fitted normal
distribution of the population. The red and blue arrows indicate the positions of L28 and RIL40 in the
distribution, respectively. FL, fiber length; FS, fiber strength; FM, fiber mocronaire; LP, lint percentage.

Table 3. Correlation analysis of fiber quality traits and LP of secondary segregating populations of F2

and F2:3.

Trait Generation
FL/mm FS/cN·tex−1 FM LP/%

F2 F2:3 F2 F2:3 F2 F2:3 F2 F2:3

FL/mm
F2 1

F2:3 0.593 ** 1

FS/cN·tex−1 F2 0.252 ** - 1
F2:3 - 0.300 ** 0.328 ** 1

FM
F2 −0.348 ** - −0.028 - 1

F2:3 - −0.434** - 0.163 ** 0.594 ** 1

LP/%
F2 −0.351 ** - −0.189 ** - 0.508 ** - 1

F2:3 - −0.453** - −0.008 - 0.597 ** 0.583 ** 1

** indicate the correlation significances between different traits at the 0.01 levels.

2.2. Linkage Map Construction and QTL Mapping of the Target Loci

All polymorphic markers were used to genotype the 1961 individual plants of the F2
population (Table S1). Three genetic linkage groups were finally constructed for the target
loci on chromosomes A01, A07, and D12 (Table 1), each of which contained 2, 14, and 4
molecular markers, spanning 12.25, 15.90, and 5.56 cM, respectively (Figure 2). The linkage
groups of the previous study, the physical positions of the markers, and the linkage groups
of the current study are presented in Figure 2a–c. The results revealed that the linkage
groups of the current study were consistent with those of the previous study.
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Figure 2. QTLs of fiber quality traits and LP on genetic linkage maps. (a) QTLs of fiber quality traits
(FL, FS, and FM) and LP on A01, A07, and D12 in primary linkage analysis of RIL population; (b,c)
QTLs of fiber quality traits (FL, FS, and FM) and LP on the physical maps, and on the linkage maps
of secondary segregating population; (d) differentially expressed genes (DEGs) in developing fibers
between L28 and RIL40 in the target QTL intervals.

QTL analysis of these three linkage groups on chromosomes A01, A07, and D12 of
1961 F2 individuals and 356 F2:3 lines revealed that the QTLs identified in the linkage
groups were consistent with the ones identified at the same loci in the previous study.
Namely, in the linkage group on A01, an FS QTL qFS-A01-1 was identified, which spanned
a physical interval of 0.27 Mb (7.73–8.00 Mb in the physical map). In the linkage group
on A07, four QTLs, including qFL-A07-1, qFS-A07-1, qFM-A07-1, and qLP-A07-1 for
each trait, respectively, were identified, which spanned a physical interval of 2.24 Mb
(88.95–91.29 Mb in the physical map). In the linkage group on D12, an FL QTL qFL-D12-1
was identified, which spanned a physical interval of 0.11 Mb (0.48–0.59 Mb in the physical
map) (Table 4, Figure 2c).
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Table 4. QTL verification results of fiber quality traits and LP on A01, A07, and D12 in secondary
segregating populations of F2 and F2:3.

Chromosome Trait QTL Generation Position
(cM) Marker Interval LOD Additive Dominant R2/% Physical

Interval

A01 FS qFS-A01-1 F2:3 1.01 T01_58-T01_56 3.40 0.10 −1.12 1.45 7.73–8.00

A07 FL qFL-A07-1 F2 6.31 TA07-49-TA07-36 38.84 0.55 0.47 2.31 88.95–91.29
F2:3 0.01 TA07-60-TA07-32 14.98 0.51 0.70 8.79

FS qFS-A07-1 F2 8.01 TA07-49-TA07-32 42.53 0.89 0.34 5.79 88.95–90.63
FM qFM-A07-1 F2 6.61 TA07-49-TA07-36 71.33 −0.35 −0.09 11.34 88.95–91.29

F2:3 8.91 TA07-60-TA07-32 29.85 −0.29 −0.04 31.87
LP qLP-A07-1 F2 6.61 TA07-49-TA07-36 73.40 −1.53 −0.29 12.67 88.95–91.29

F2:3 8.91 TA07-60-TA07-32 26.57 −1.30 −0.40 27.36

D12 FL qFL-D12-1 F2 2.71 D12(26)_3-
TD12_55 4.44 0.17 −1.26 0.03 0.48–0.59

2.3. Screening and Analysis of DEGs from Genes within the QTL Intervals

In the QTL intervals, a total of seven DEGs, including one, five, and one on A01,
A07, and D12, respectively, were identified, which were differentially expressed between
the parental lines, L28 and RIL40, in the corresponding stages of fiber development via
RNA-seq analysis (Table 5). In these DEGs, two, GH_A07G2180 and GH_A07G2209, were
highly expressed at 10 DPA during fiber development, and their expression gradually
decreased after 20 DPA; one gene, GH_A07G2203, was highly expressed at 20 DPA during
fiber development; three genes, GH_A07G2222, GH_A07G2247, and GH_D12G0031, were
highly expressed at 30 DPA during fiber development; one gene, GH_A01G0633, was
similarly expressed at 10, 20, and 30 DPA during fiber development (Figure 2d).

Table 5. Seven DEGs/candidate genes of between L28 and RIL40 identified via RNA-seq at different
fiber development stages.

Gene ID
10 DPA * 20 DPA 30 DPA

Gene Name Arabidopsis ID ArabDesc
FDR Log2FC FDR Log2FC FDR Log2FC

GH_A01G0633 0.01 −1.05 0.01 −1.51 - - CBSX5 AT5G53750 CBS domain-containing protein
GH_A07G2180 - - 0.00 2.20 - - NA AT3G13130 transmembrane protein
GH_A07G2203 - - 0.00 −1.01 - - COL9 AT3G07650 CONSTANS-like 9
GH_A07G2209 - - 0.01 −1.29 - - RABB1C AT4G17170 RAB GTPase homolog B1C
GH_A07G2222 - - 0.00 1.05 - - BIR1 AT5G48380 BAK1-interacting receptor-like kinase 1
GH_A07G2247 - - 0.00 1.94 0.00 1.33 GHL17 AT3G07320 O-Glycosyl hydrolases family 17 protein
GH_D12G0031 0.00 1.27 - - - - HT1 AT3G22750 Protein kinase superfamily protein

* DPA: days post anthesis.

Genes in the QTL intervals of A01, A07, and D12 were screened via their FPKM
values in developing fibers at 10, 15, 20, and 25 DPA of TM-1, which were fetched from
the cotton functional genomic database (CottonFGD: https://cottonfgd.net/, accessed
on 30 October 2022). The genes that had a mean FPKM value >0.5 were regarded as
expression genes. A total of 79 genes from the interval on the A01 chromosome, 133 genes
on the A07 chromosome, and 49 genes on the D12 chromosome were identified to have a
dynamic expression during fiber development, forming six, six, and four distinct expression
clusters, respectively (Figure 3). The results revealed that the DEG GH_A01G0633 was
identified in expression cluster 1 of the interval on chromosome A01, which exhibited a
steadily decreasing expression trend (Figure 3). The DEGs GH_A07G2180, GH_A07G2203,
GH_A07G2209, GH_A07G2222, and GH_A07G2247 were identified in expression cluster 4,
6, 2, 5, and 1 on chromosome A07, respectively (Figure 3). The DEG GH_D12G0031 was
identified in expression cluster 2 of the interval on chromosome D12, which showed a high
expression at 15 DPA and then went down in slightly different styles (Figure 3). These
results indicated the DEGs’ involvement in the fiber development of cotton plants.

https://cottonfgd.net/
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Figure 3. Expression clustering of the dynamically expressed genes in the QTL intervals on chromo-
somes A01 (6.70–10.15 Mb), A07 (85.48–93.43 Mb), and D12 (0.40–1.43 Mb) in TM-1 gene expression
database. Each cluster presents a similar gene expression profiling. The red zigzag line in the figure
presents the fitted expression trend of each gene cluster. The yellow lines represent the gene expres-
sion profiles are more proximal to the fitted expression trend, while the green lines less proximal to
the fitted expression trend.

qRT-PCR verification using fiber samples of L28 and X24 at 5, 10, 15, 20, 25, and 30
DPA confirmed the differential expression of the seven DEGs between L28 and X24. It also
revealed that five DEGs, GH_A01G0633, GH_A07G2180, GH_A07G2222, GH_A07G2247,
and GH_D12G0031, were consistent with the results of the RNA-seq analysis, while two
DEGs, GH_A07G2203 and GH_A07G2209, were inconsistent (Figure 4). The consistent
results of the RNA-seq, TM-1 gene expression data analysis, and qRT-PCR indicated the
important roles of these five DEGs in cotton fiber development.

Plants 2023, 12, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 3. Expression clustering of the dynamically expressed genes in the QTL intervals on chro-
mosomes A01 (6.70–10.15 Mb), A07 (85.48–93.43 Mb), and D12 (0.40–1.43 Mb) in TM-1 gene ex-
pression database. Each cluster presents a similar gene expression profiling. The red zigzag line in 
the figure presents the fitted expression trend of each gene cluster. The yellow lines represent the 
gene expression profiles are more proximal to the fitted expression trend, while the green lines less 
proximal to the fitted expression trend. 

 
Figure 4. qRT-PCR analysis of candidate genes during fiber development of L28 and RIL40. *, ** 
and *** indicate the difference between L28 and RIL40 reaching a significant level at p < 0.05, p < 
0.01 and p < 0.001 in t-test, respectively. 

Table 5. Seven DEGs/candidate genes of between L28 and RIL40 identified via RNA-seq at differ-
ent fiber development stages. 
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Figure 4. qRT-PCR analysis of candidate genes during fiber development of L28 and RIL40. *, ** and
*** indicate the difference between L28 and RIL40 reaching a significant level at p < 0.05, p < 0.01 and
p < 0.001 in t-test, respectively.
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3. Materials and Methods
3.1. Plant Materials and Phenotypic Measurement

In a previous study, a G. hirsutum RIL population was established using a cross
between two upland cultivars Lumianyan28 (L28) and Xinluzao24 (X24), L28 × X24 [16].
L28 is a conventional cotton cultivar showing high yield potential, while X24 is a cultivar
possessing high-quality fibers. The QTLs of the fiber quality and yield traits were identified,
of which three cluster loci were selected for further analysis in the current study (Table 1).
For this purpose, RIL40, a line of the L28 × X24 RIL population [16], which had the
favorable alleles from X24, was selected to cross L28 to develop a secondary F2 population.
The developmental procedures were as follows: In the 2017 winter growing season, a
cross of L28 × RIL40 was made at the experimental station of the Institute of Cotton
Research in Sanya (Hainan province, China), the F1 seeds were harvested and then planted
in Anyang (Henan province, China) in the 2018 summer growing season. The F1 plants
were self-pollinated to obtain F2 seeds in the 2018 summer growing season in Anyang. The
F2 population and parental lines, L28, RIL40, and X24, were planted in the 2019 summer
growing season in Anyang. The F2 were harvested per plant to form F2:3 seeds, and an
F2:3 population was planted in two replications in a completely randomized block design
in the 2020 summer growing season in Anyang. All naturally opened bolls were hand
harvested per plant from the F2 plants, and per line from the F2:3 and the parental lines,
respectively. The seed cotton of each sample was weighed and then ginned. The LP of each
sample was evaluated, and the fiber quality traits were evaluated using the HVI (High
Volume Instrument) system at the Institute of Cotton, Hebei Academy of Agriculture and
Forestry Sciences (Shijiazhuang, China). The fiber quality traits include the FL (mm), FS
(cN/tex), and FM. The descriptive statistics and correlation analysis of phenotype data were
calculated using SPSS 21 software. Bar plots were created using OriginPro 2021 software.

3.2. Maker Development for Genotyping of the Secondary Population

Total genomic DNA was extracted from young leaves of F2 individuals and the
parental lines, L28 and RIL40, using a modified CTAB method [17]. Three simple sequence
repeat (SSR) markers, SWU2707, DPL0852, and DPL0757, reported in previous studies [16]
were directly used to genotype the F2 population (Table S1). De novo-designed molecular
markers, SSR and Indel, were based on the TM-1 reference genome [18] within or adjacent
to the physical intervals of the three target loci (Table 1). Each primer pair was designed
in a ±200 bp sequence interval. All distinctive and unambiguous polymorphic markers
between L28 and RIL40 were used to genotype the F2 populations. The marker loci were
named following their primer names. The genotyping results of the F2:3 population were
deduced from the results of the F2.

3.3. QTL Mapping

The genetic linkage maps of the three target regions were constructed using JoinMap
4.0 software [19]. The conversion of the recombination frequencies to map distances (cM)
used the Kosambi function [20]. The QTLs were identified by composite interval mapping
(CIM) using WinQTL Cartographer 2.5 software [21]. Linkage groups and QTL distribution
on the map were visualized using MapChart 2.2 software [22].

3.4. Candidate Gene Screening Based on DEG Analysis between L28 and RIL40

Total RNA was extracted from developing fiber samples of L28 and RIL40 at 10,
20, and 30 DPA, using TRIzol reagent (Tiangen, Beijing, China). Three biological repli-
cates were performed for each sample. The raw data of the Illumina NovaSeq6000 se-
quencing platform had adaptor trimming, low-quality, and short reads processing with
Fastp (v.0.20.0) [23] to obtain clean data. Quality control of the clean data was performed
using Fastqc (v.0.11.5) [24]. RNA-seq data analysis was performed using BMKCloud
(www.biocloud.net, accessed on 24 May 2023). To obtain the location information of clean
reads on the reference genome, the clean reads were aligned to and compared with the G.
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hirsutum (TM-1_V2.1) reference genome [18] using Hisat2 (v2.0.4) [25] and SAMtools [26].
Then, the mapped reads were reassembled into a transcriptome by StringTie (v2.2.1) [27]
based on the G. hirsutum (TM-1_V2.1) reference genome [18]. The fragments per kilobase
of transcript per million fragments of mapped reads (FPKM) values [28] of all genes were
normalized using StringTie (v2.2.1) [27] software, which was used to evaluate the gene
expression levels in the fiber developmental stages. The differentially expressed genes
(DEGs) between L28 and RIL40 in the same development stage were analyzed using the
DESeq2 (v1.30.1) [29] of the R package based on the criteria of |Fold Change| ≥ 2.0 and
false discovery rate (FDR) < 0.01.

The FPKM values of the genes of TM-1 at 10, 15, 20, and 25 DPA (days post anthesis)
were downloaded from the cotton omics data platform COTTONOMICS (http://cotton.zju.
edu.cn/, accessed on 13 October 2022) [30]. Gene expression profile clustering in the QTL
cluster intervals was performed based on the FPKM values in the developing fibers of TM-1
using the Mfuzz [31] software (v2.29) in the R package in Hiplot Pro (https://hiplot.com.cn/,
accessed on 2 May 2023).

3.5. qRT-PCR Experiment

The expression of the candidate genes in the parents of the secondary population was
again verified based on the RNA of fibers in different development periods (5, 10, 15, 20,
25, and 30 PDA) of the parents through a qRT-PCR experiment to validate the potential
function of candidate genes in different fiber developments. The total RNA at each period
of fiber development was isolated by the above and was converted to cDNA using the
HiScript III RT superMix for qPCR (+gDNA wiper) reverse transcription (R323-01AA,
Vazyme, Biotech, Nanjing, China). The qRT-PCR analyses were performed on an Applied
Biosystems 7500 fast real-time PCR system (ABI) utilizing the chamQ universal SYBR
qPCR master mix (Q711-02-AA, Vazyme, Biotech, Nanjing, China). The relative expression
level of genes was calculated with the 2−∆∆CT method [32]. All primer sequences for the
qRT-PCR analysis are listed in Table S1. The actin gene was used as a reference gene.

4. Discussion
4.1. MAS Strategy in Breeding Practice

The screening of functional markers is the key step in MAS-based breeding projects.
However, QTLs in previous studies were usually identified via the following key steps, i.e.,
(a) constructing a linkage segregation population, temporary or permanent; (b) genotyping
the individuals of that population using an appropriate set of markers or marker collections;
(c) phenotyping the individuals of the population in a certain environment; and (d) using
the proper software to calculate the correlation between the genotype and phenotype. If an
allele of a locus is significantly correlated to the expression of a trait, then it is thought that
a QTL has been identified at this locus. Therefore, the QTLs are usually genetic background
dependent and environment tagged. Obtaining effective QTLs that are not constrained
by the genetic background and environment and using their markers in future practical
breeding practices via MAS still remains of particular interest to researchers. Various studies
have tackled this issue via several strategies [33,34]. In a previous study, QTLs of FL, FS,
FM, and LP were identified through linkage analysis [16]. To validate the effectiveness of
these QTLs, the current study selected three loci consisting of these QTLs or QTL clusters on
chromosomes A01, A07, and D12 and used secondary segregation populations, including
F2 and its derived F2:3, to validate them. The result positively confirmed the effectiveness
of QTL selection during early generations after hybridization. However, we also noticed
that, compared to the previous results [16], the phenotypic variation rates of the target
traits explained by the loci of A01 and D12 in the F2 or F2:3 generations were relatively low
(Table 4). The dominant effect is a common phenomenon in QTL identification in temporary
populations and it is not always in the same direction as the additive effect [35–37]. The
reason might be the opposite direction of the dominant effects of the same locus against
additive effects. As the ultimate goal in a breeding project is to pyramid the loci of additive

http://cotton.zju.edu.cn/
http://cotton.zju.edu.cn/
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effects, except for the utilization of heterosis, the presence of such dominant effects does
not affect the effectiveness of MAS in early generations. Moreover, the physical intervals of
the three loci in this study were consistent with those of previous reports [14,33,34,38–42].
The results of this study indicate that the target traits, FL, FS, FM, and LP, are interrelated,
as the QTLs of these traits are co-located in specific genomic regions. These loci could be
effectively used for further research on the formation fiber quality and yield traits, as well as
for future breeding projects via MAS, which necessitates an integrative consideration of the
QTL compositions in the clusters and the distribution of QTL loci of each trait, especially
the ones for the comprehensive improvement of multiple traits.

4.2. Function Validations of Candidate Genes

In this study, of the three QTL cluster locations, both the DEG analysis and qRT-
PCR results demonstrated that GH_A01G0633 and GH_D12G0031 were candidate gene
for QTL clusters in chromosomes A01 and D12, respectively. CBSX5 is a member of the
CBS domain-containing protein family (PF00571), which might be involved in cell wall
synthesis. Studies showed that the promoter region of the CBSX gene family members
contained numerous stresses and phytohormone-responsive elements, indicating their
involvement in regulating various stress responses and plant growth development via
the plant hormone pathway in plants [43–47]. In Arabidopsis, it was demonstrated that
CBSX regulates H2O2 levels and lignin polymerization [45], as well as secondary cell wall
thickening of the endothecium during anther dehiscence [46], reactive oxygen species (ROS),
and lignin deposition [44]. Previous studies revealed that, in cotton, genes specifically
expressed under stress were also specifically expressed during fiber development. In cotton,
a study indicated that GhCBS genes were regulated under abiotic stress and hormonal
treatments and in ovule and fiber development [48], indicating their significant impact on
fiber development. HT1 (GH_D12G0031) is a member of the protein kinase superfamily
(PF07714), which is involved in protein serine/threonine kinase activity and protein kinase
activity. An early study identified that HT1 was important for the regulation of stomatal
movements in response to CO2 [49]. Later research revealed that it also regulated red
light-induced stomatal opening [50], which is a strong indicator of the water-use efficiency
of a plant [51]. Our results suggested that HT1 also played an important role in cotton fiber
development; however, its mechanism of action still needs further clarification.

GH_A07G2222 in the interval of the QTL cluster on chromosome 7 was annotated pos-
sibly as BRASSINOSTEROID-INSENSITIVE1 (BRI1)-associated kinase 1 (BAK1)-interacting
receptor-like kinase 1 (BIR1), a small leucine-rich repeat receptor-like kinase. In Arabidopsis,
BIR1 was demonstrated to negatively regulate cell death pathways in plant BAK1-mediated
pathogen-triggered immunity (PTI) signaling [52,53]. The functioning of BIR1 is partially
dependent on the salicylate (SA)-dependent resistance (R) protein pathway [54]. In higher
plants, BAK1 participates in multiple developmental processes through the brassinosteroid
(BR) signaling pathway [55,56], including degrading H2O2 via activation of CAT activity
and the development of phloem vascular tissues [57]. As a receptor, BAK1 forms ligand-
induced complexes with different LRR-RLKs and flagellin-sensitive 2 in the regulation of
vascular development and immune responses via the hormone pathway in plants [57,58],
including ABA signaling [59]. GH_A07G2247 was annotated to encode a member of the
glycosyl hydrolase family 17 proteins (GHL17), which hydrolyzes 1,3-b-glucan polysac-
charides found in the cell wall matrix [60]. GHL17 is demonstrated to be involved in
physiologically important processes in plants, including responses to biotic and abiotic
stresses [61–63], defense against herbivores, and activation of phytohormones, lignification,
and cell wall remodeling [64,65]. The regulatory mechanisms of these candidate genes
in fiber development still need validation. However, previous studies have shown that
genes specifically expressed during fiber development are also specifically expressed under
stresses [66,67], inferring that cotton fiber development and the stress responses of cotton
plants may involve the same metabolic pathways.
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In addition, in this QTL cluster interval, another two genes, GH_A07G2203 and
GH_A07G2209, were also identified to have specific expression in fiber development.
GH_A07G2203 was annotated as CONSTANS-like 9 (COL9), which is a transcription fac-
tor involved in regulating plant flowering and responses to abiotic stress [68,69]. In rice,
OsCOL9 interacted with OsRACK1 and enhanced rice blast resistance through salicylic
acid (SA) and ethylene (ET) signaling pathways [68]; it also regulated the grain number
formation of the main panicle in rice plants [69]. In cotton, a study revealed that COL9
was involved in affecting flowering and the response to drought and salt stresses [70].
GH_A07G2209 was identified as RAB GTPase homolog B1C (RABBIC), which is part of the
Ras superfamily of small GTPases. RAB GTPases regulate vesicle formation, actin- and
tubulin-dependent vesicle movement, and membrane fusion [71]. The RAB GTPase family
shares major trafficking elements related to the cell wall modification in ripe fruit, involv-
ing the trafficking of cell wall polymers and enzymes between cellular compartments in
plants [72,73]. These two candidate genes may also have a possible role in fiber develop-
ment. In summary, these genes are likely potential candidate genes regulating cotton fiber
development, which will be validated in future work.

5. Conclusions

In this study, based on the primary QTL identification results via a RIL population
developed from L28 × X24, three important QTL or QTL cluster intervals on chromosomes
A01, A07, and D12 were selected to conduct further dissection. An F2 and its derived
F2:3 populations were developed from a cross of L28 × RIL40. Genetic linkage maps of
these three intervals were constructed using molecule markers (SSR and Indel) using the F2
secondary segregating population. The QTLs of fiber quality traits, FL, FS, and FM, and
the yield trait LP on these three corresponding intervals were verified. Five DEGs were
identified to have important roles in fiber development as potential candidate genes via
RNA-seq strategy, TM-1 gene expression data analysis, and qRT-PCT verification. This
study provides an experimental foundation for further exploration of these functional
genes to dissect the genetic mechanism of cotton fiber development.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/plants12213737/s1, Table S1: The primer sequence of molecular markers
and qRT-PCR.
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