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Abstract: Ageratum conyzoides (A. conyzoides) is commonly found or intentionally planted in citrus
orchards due to its ability to provide habitat and breeding grounds for the natural enemies of citrus
pests. This study aims to expand from a switching Huanglongbing model by incorporating the
effects of A. conyzoides, vector preferences for settling, and pesticide application intervals on disease
transmission. Additionally, we establish the basic reproduction numberR0 and its calculation for a
general switching compartmental epidemic model. Theoretical findings demonstrate that the basic
reproduction number serves as a threshold parameter to characterize the dynamics of the models:
ifR0 < 1, the disease will disappear, whereas ifR0 > 1, it will spread. Numerical results indicate
that the recruitment rate of A. conyzoides not only affects the spread speed of Huanglongbing but
also leads to paradoxical effects. Specifically, in cases of high infection rates, a low recruitment rate
of A. conyzoides can result in a decrease, rather than an increase, in the basic reproduction number.
Conversely, a high recruitment rate can accelerate the spread of Huanglongbing. Furthermore, we
show how different vector bias and pesticide spraying periods affect the basic reproduction number.

Keywords: Huanglongbing; Ageratum conyzoides; mathematical model; basic reproduction number;
transmission; paradoxical effect

1. Introduction

Huanglongbing (HLB) or citrus green disease is the most prevalent, dangerous, and
devastating disease for citrus almost worldwide. The Asian citrus psyllid (ACP, Diaphorina
citri Kuwayama) is a principal vector transmitting the bacterium, commonly known as
Candidatus Liberibacter asiaticus (Las) [1,2] in a persistent, circulative, and propagative
manner. Because there is no known available cure for HLB [3], disease prevention is more
crucial than treatment controlling in HLB-endemic regions [4]. Currently, prevention of
HLB has focused primarily on effective control of the ACP to further reduce the spread of
pathogens [5].

The citrus psyllid belongs to the family Psyllidae of the order Hemiptera and is an im-
portant pest during the new shoot period of plants in the Rutaceae family, mainly including
Citrus reticulata Blanco, Citrus maxima Merr., Citrus sinensis Osbeck, and Murraya paniculata
Jack [6,7]. Historically, biologists have limited the host range of the citrus psyllid to plants
in the Rutaceae family. The current monitoring and control of ACPs and HLB disease is
also limited to Rutaceae plants. However, recent research has shown that ACPs can inhabit
and feed on non-host plants outside of the Rutaceae family [8]. These non-Rutaceae plants
can serve as temporary refuges for ACPs, and create conditions for their long-distance
migration and spread, which subsequently affects the accurate monitoring and effective
control of ACPs and HLB disease [9]. Field investigations have found that, without human
interference, adult ACPs could stay for long periods of time on common weeds in citrus
orchards, such as Ageratum conyzoides, Eupatorium catarium, and Datura [10]. It was reported
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in [9] that the longest survival time of adult ACPs on A. conyzoides was 48 days at an
average temperature of 35 ◦C under adverse conditions such as pesticide application or
citrus death.

A. conyzoides, a weed belonging to the Asteraceae family, is commonly found in citrus
orchards and their surrounding areas. A certain amount of A. conyzoides is intentionally
retained or planted in citrus orchards to provide habitat and breeding sites for citrus mites,
the natural enemies of pests. However, A. conyzoides can interfere with the efficacy of pesti-
cide control of ACPs and significantly impact the development of psyllid populations [11].
Firstly, A. conyzoides serves as a host plant of ACPs, providing them with necessary food and
habitats for reproduction and survival. The abundance of A. conyzoides in citrus orchards
attracts and nurtures ACPs, leading to increased density and distribution range. Secondly,
A. conyzoides creates a protective environment that shields ACPs from pesticide spraying.
ACPs seek refuge within weeds, making it more challenging for them to be affected by
pest control practices. Experimental results [9] demonstrate that, after spray treatment of
1.8% Avermectin EC 90 mg/L, the adult ACP mortality rate reached 79.49% without A.
conyzoides, whereas in the presence of A. conyzoides, the adult mortality rate dropped to
42.76%, which shows the clear impact of A. conyzoides on ACP control.

Currently, pesticide spraying is an essential component of ACP control and has been
considered one of the most effective methods for controlling ACPs. Different pesticides have
different persistence periods, which depend on factors such as their chemical composition,
application method, and environmental conditions. Pesticides used to control citrus psyllids
typically have durations of effectiveness ranging from a few days to a few weeks. To
ensure continuous control of ACPs, the pesticides often require frequent applications. The
pesticide application interval consists of two phases: the effectiveness period and the
non-effectiveness period. Field experiment results [9] indicated that the selection ratio of
adult ACP was 26.73% for A. conyzoides during the effectiveness period, and then there
was only 1.24% during the non-effectiveness period. Adult ACPs exhibit different settling
preferences on citrus trees and A. conyzoides during the effectiveness and non-effectiveness
periods of pesticides.

Mathematical models have played an important role in understanding the epidemiol-
ogy of vector-transmitted plant pathogens, in particular viral pathogens [12–15]. Mathemat-
ical models of HLB disease has mainly focused on comprehensive control measures [16,17],
incubation or latent period [18,19], pesticide resistance of ACPs [20], and climatic fac-
tors [12,21,22]. However, the effect of the new host selection mechanism on the population
of ACPs and spread of HLB is absent. To assess the risk of the spread of the host spectrum
of “citrus psyllid - HLB”, we propose a general switching dynamic model to investigate
the interference of A. conyzoides on the ACP population and HLB transmission. We then
define the basic reproduction number R0 and present the analytical results for calculating
the number from the general switching compartmental epidemic model. We then derive
the implicit expression for the basic reproduction number of the HLB switching model.
The threshold dynamics will be discussed in terms of the basic reproduction number to
evaluate the impact of several key factors, including the recruitment of A. conyzoides, vector
preferences for hosts and weeds, and pesticide application intervals, on the development
of the ACP population and HLB transmission. The dynamical analysis and simulations of
our models will yield some new insights into the comprehensive control of ACPs and the
effective containment of HLB, and also provide some useful guidance to orchard managers
on the quantity of A. conyzoides essential to retain and level of pesticide spraying.

2. Methods
2.1. Model Formulation

The persistence period of pesticides refers to the duration required for pesticides to
exhibit their insecticide fungicidal or herbicidal effects in crops or soil, It is important to
note that each pesticide has a special persistence period. During the persistence period
of the pesticide, some adult ACPs in an orchard would leave citrus trees and land and
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settle on A. conyzoides. However, after the pesticide becomes ineffective, the vast majority
of ACPs would quickly return to their host plants. In this section, we aim to establish a
switching Huanglongbing epidemic model that describes the interaction among host plants
(citrus trees), non-host plants (A. conyzoides weeds), and vectors (ACPs). This model takes
into account the changes in settling preferences of ACPs on both host and non-host plants
under different periods.

Our study focuses on a whole citrus orchard. We denote Nh as the total number of
citrus trees, which is further divided into susceptible (healthy) trees Sh and infected trees Ih.
Let Nv be the total number of ACPs, which is divided into susceptible and infected ACPs
in the citrus trees Xc and Yc, and susceptible and infected ACPs in the A. conyzoides Xw
and Yw, respectively. Let W be the number of A. conyzoides in the orchard. The model in
Figure 1 describes the dynamic of ACPs A. conyzoides and trees with three different types of
reservoirs. In order to explore how the pathogen is transmitted between trees and ACPs,
we provide some details and assumptions of the model with equations.

citrus hI
hIKh   K

cYhS1
hI

ACP Xc

hS

Yc

Xw Yw

A.conyzoides

hIh

hI
cYcd

wYwdwXwd

 K
hIcX2

wYiq wXiq 
*1

*

W
W

cXip


 *1

*

W
W

cYip




cXcd

hSh

Figure 1. Schematic diagram of the modeling interaction of HLB transmission in citrus trees, A.
conyzoides, and ACP populations. Trees are either susceptible or infected. Adult psyllids are either
susceptible or infected. Blue, yellow and red arrows show the transitions between compartments.
Blue and yellow dashed arrows show the necessary interactions between trees and psyllids to
obtain transmission.

We assume that all newly planted citrus trees are susceptible, and the immediate
replanted measure is implemented in the orchard; therefore, Nh remains a constant denoted
by K. We know that ACPs only lay eggs and reproduce on citrus trees, and Λv is the
constant recruitment rate for ACPs.

The healthy trees would be inoculated by the viruliferous ACPs on the trees, and the
non-viruliferous ACPs on the trees would acquire the virus from infected trees. The forms
we adopt for the overall rate at which uninfected trees become infected and the overall rate
at which non-viruliferous ACPs on the trees become viruliferous would be

β1ShYc

Nh
and

β2Xc Ih
Nh

,

respectively, where β1 is the probability that a susceptible citrus tree becomes infected from
contact with viruliferous ACPs, β2 is the probability that a non-viruliferous ACPs becomes
viruliferous from contact with an infected citrus tree.

We consider the case that the total number of citrus trees remains a constant, and the
diffusion rate of ACP from A. conyzoides to trees is assumed to be constant δ. However, as
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we know, the dispersal rate of ACPs from citrus trees to A. conyzoides would increase with
the increase in the number of weeds. We adopt the saturated dispersal forms [23,24]

δαW
1 + α1W

,

where α represents the contribution of individuals to population growth, while α1 represents
the inhibitory effect of resource scarcity on population growth. δ is the diffusion rate
of ACPs.

Currently, spraying pesticides to kill ACPs is still the most effective method to control
HLB disease. Each pesticide has a certain persistence period. Assuming the effectiveness
period is T1, and the non-effectiveness period is T2, then T = T1 + T2 is the pesticide
application interval. Simply, we assume the pesticide is applied at time point kT (k ∈ Z+, Z+

denotes a non-negative integer set); therefore, (kT, kT + T1] is the duration of effectiveness,
and (kT + T1, (k + 1)T] is the duration of non-effectiveness. θ is the killing rate of ACPs in
the duration of effectiveness.

The behavior of ACPs is governed by the parameters p1 and q1 which refer to the
settling bias from host to weed and from weed to host, respectively, in the duration of
effectiveness of the pesticide (kT, kT + T1]. Further, in the duration of non-effectiveness
(kT + T1, (k + 1)T], the parameters of the settling bias denote p2 and q2.

With the above assumptions, we establish a multi-host switching HLB model:

dSh
dt

= µhNh + γIh −
β1ShYc

Nh
− µhSh,

dIh
dt

=
β1ShYc

Nh
− µh Ih − γIh,

dW
dt

= Λw − µwW,

dXc

dt
= ΛV −

β2Xc Ih
Nh

− p1δXc
αW

1 + α1W
+ q1δXw − dcXc − θXc,

dYc

dt
=

β2Xc Ih
Nh

− p1δYc
αW

1 + α1W
+ q1δYw − dcYc − θYc,

dXw

dt
= p1δXc

αW
1 + α1W

− q1δXw − dwXw,

dYw

dt
= p1δYc

αW
1 + α1W

− q1δYw − dwYw,

for t ∈ (kT, kT + T1], (1)

and

dSh
dt

= µhNh + γIh −
β1ShYc

Nh
− µhSh,

dIh
dt

=
β1ShYc

Nh
− µh Ih − γIh,

dW
dt

= Λw − µwW,

dXc

dt
= ΛV −

β2Xc Ih
Nh

− p2δXc
αW

1 + α1W
+ q2δXw − dcXc,

dYc

dt
=

β2Xc Ih
Nh

− p2δYc
αW

1 + α1W
+ q2δYw − dcYc,

dXw

dt
= p2δXc

αW
1 + α1W

− q2δXw − dwXw,

dYw

dt
= p2δYc

αW
1 + α1W

− q2δYw − dwYw,

for t ∈ (kT + T1, (k + 1)T], (2)
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where µh denotes the natural death rate of citrus trees, γ denotes the rouging rate of citrus
trees, µw is the mortality rate of A. conyzoides, and dc and dw are the natural death rate
of ACPs in the trees and A. conyzoides, respectively. All parameters and its biological
interpretation of model (1) and (2) are summarized in Table 1.

Table 1. Summary of the multi-host switching HLB model and its parameters (1) and (2).

Variable Description

β1 Probability that a susceptible citrus tree becomes infected
from contact with ACPs infected virus

β2 Probability that a susceptible ACP becomes
infected from contact with an infected citrus tree

Λw Constant recruitment rate for A. conyzoides
Λv Constant recruitment rate of ACPs
µh Natural mortality of citrus trees
µw Mortality rate of A. conyzoides
γ Rouging rate of infected trees
dc Natural mortality of ACPs in citrus tree
dw Natural mortality of ACPs in weeds
δ Diffusion rate of ACPs
p1 Bias parameter of ACPs from tree to A. conyzoides

in the duration of effectiveness
q1 Bias parameter of ACPs from A. conyzoides to tree

in the duration of non-effectiveness
p2 Bias parameter of ACPs from tree to A. conyzoides

in the duration of effectiveness
q2 Bias parameter of ACPs from A. conyzoides to tree

in the duration of non-effectiveness
α Growth rate parameter of A. conyzoides population

α1 Saturation effect parameter
θ Killing rate of pesticide

It follows from the third equation of model (1) and (2) that

lim
t→∞

W(t) =
Λw

µw

.
= W∗.

This allows us to solve system (1) and (2) by studying the limit system:

dSh
dt

= µhK + γIh −
β1ShYc

K
− µhSh,

dIh
dt

=
β1ShYc

K
− µh Ih − γIh,

dXc

dt
= ΛV −

β2Xc Ih
K

− p1δXc
αW∗

1 + α1W∗
+ q1δXw − dcXc − θXc,

dYc

dt
=

β2Xc Ih
K

− p1δYc
αW∗

1 + α1W∗
+ q1δYw − dcYc − θYc,

dXw

dt
= p1δXc

αW∗

1 + α1W∗
− q1δXw − dwXw,

dYw

dt
= p1δYc

αW∗

1 + α1W∗
− q1δYw − dwYw,

for t ∈ (kT, kT + T1], (3)

and
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dSh
dt

= µhK + γIh −
β1ShYc

K
− µhSh,

dIh
dt

=
β1ShYc

K
− µh Ih − γIh,

dXc

dt
= ΛV −

β2Xc Ih
K

− p2δXc
αW∗

1 + α1W∗
+ q2δXw − dcXc,

dYc

dt
=

β2Xc Ih
K

− p2δYc
αW∗

1 + α1W∗
+ q2δYw − dcYc,

dXw

dt
= p2δXc

αW∗

1 + α1W∗
− q2δXw − dwXw,

dYw

dt
= p2δYc

αW∗

1 + α1W∗
− q2δYw − dwYw,

for t ∈ (kT + T1, (k + 1)T], (4)

with initial conditions

Sh(0) > 0, Ih(0) ≥ 0, Xc(0) ≥ 0, Yc(0) ≥ 0, Xw(0) ≥ 0, Yw(0) ≥ 0. (5)

2.2. Model Parameters

The parameter estimation of the model is crucial for the study of epidemics. Here,
11 parameters are set to realistic values found in the literature. However, due to a lack
of data on the vector bias for plants in the Asteraceae and non-Asteraceae families, certain
parameters in Table 2 are assigned assumed values. It is important to note that during the
period when the pesticide is effective, some ACPs spread from citrus trees to A. conyzoides,
while ACPs on A. conyzoides hardly spread to citrus trees. However, during the period
when the pesticide is ineffective, the situation is reversed. As a result, we assume the
preference parameters for plants in the Asteraceae family (citrus trees) and non-Asteraceae
fmily (A. conyzoides) are p2 = 0 and q1 = 0.

Table 2. Parameter values for the multi-host switching HLB model (1) and (2).

Parameter Baseline Values Unit Reference

K 2000 - [25]
β1 0.00494 day−1 [26]
β2 0.00226 day−1 [26]
Λv 924 day−1 [21]
Λw 3 day−1 Assumed
µh 0.00011 day−1 [27]
µw 0.00274 day−1 [28]
γ 0.001 day−1 [29]
dc 0.0222 day−1 [30]
dw 0.0333 day−1 [10]
δ 0.02 day−1 Assumed
p1 3 day−1 Assumed
p2 0 day−1 Assumed
q1 0 day−1 Assumed
q2 10 day−1 Assumed
α1 0.00003 day−1 Assumed
α 0.0015 day−1 [31]
θ 0.1454 day−1 [10]

3. Analytical Results

Prior to delving the analysis of system (3) and (4), it is necessary to introduce some
notations and establish key finndings for the linear switching system in a periodic environ-
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ment. Define R+ = {x ∈ R | x ≥ 0}, Rn
+ = {x ∈ Rn | xi ≥ 0, i = 1, 2, ..., n}. Let r(B) be the

spectral radius of matrix B.

3.1. Some Results for Linear Switching System

Consider the following linear switching periodic system:

dx(t)
dt

= Akx(t), t ∈ (tk−1, tk], (6)

where x = (x1, x2, · · · , xn) ∈ Rn, Ak ∈ Rn×n, q is a fixed positive integer such that
Ak+q = Ak, tk − tk−1 = Tk with Tk+q = Tk, and then T = ∑

q
k=1 Tk is the period of

switch system.
Denote

ΦAk (T) :=
q

∏
k=1

exp(Aq−k+1Tq−k+1). (7)

It is important to note that system (6) can be considered the special case of system (5)
in [22]. While there is no pulse present, it degenerates to the system (6) in this paper.
According to Lemma 1 in [22], we have the following results.

Lemma 1. If η = (1/T) ln r(ΦAk (T)), then there exists a positive T-periodic vector function ν(t)
such that exp(ηt)ν(t) is a solution of the linear T-periodic switching system (6).

Lemma 2. If r(ΦAk (T)) < 1, then the trivial solution of system (6) is asymptotically stable.

3.2. Basic Reproduction Number for General Periodic Switching System

The basic reproduction number, R0, is the number of newly infected plants that arise
from one infected plant in a whole susceptible plant population [32]. In the last few decades,
R0 has become a fundamental parameter in mathematical epidemiology and has been
widely applied in the study of the dynamics of animal and plant epidemics [33,34]. In
classical epidemic models, the basic reproduction number serves as a threshold determinant.
It is a common case that a disease dies out if the basic reproduction number, R0 , is less
than 1, and the disease persists whenever R0 is greater than 1.

For autonomous continuous-time epidemic models, the calculation of the basic re-
production number is typically performed using the next-generation matrix method, in-
troduced by van den Driessche and Watmough [35]. However, for non-autonomous
systems [36], impulsive systems [37], and impulsive and switching systems [22], corre-
sponding explicit formulae have been developed to calculate the basic reproduction number
using the linear operator method.

To calculate the basic reproduction number for the switching system (3) and (4), it is
necessary to first examine a general switching system in a periodic environment:

dx(t)
dt

= f k(x), for t ∈ (tk−1, tk], (8)

where f k : Rn
+ → Rn, f k+q = f k, tk − tk−1 = Tk with Tk+q = Tk, and then T = ∑

q
k=1 Tk is

the period of the switch system. Note that system (8) is the special case of system (9) in [22].
The basic reproduction number is derived by following the linear operator method as

presented in [22]. Following the notation from Gao et al. [22], the first m compartments
x1, x2, · · · , xm denote the infected individuals; xm+1, x2, · · · , xn the uninfected individuals;
Xs represents the set of all disease-free state, i.e., Xs = {x ∈ Rn

+ | xi = 0, i = 1, · · · , m}; and
X = (x1, x2, · · · , xm), Y = (xm+1, x2, · · · , xn).

We can rewrite system (8) as:

dx(t)
dt

= F k(x(t))− V k(x(t)), for t ∈ (tk−1,tk
]. (9)



Plants 2023, 12, 3659 8 of 21

where F k(x) are the newly infected rates, V k(x) = V k−(x)− V k+(x) represent the set
transfer rates out of compartments, here V k+(x) are the input rates of individuals by
other means, and V k−(x) are the rates of transfer of individuals out of compartments.
Thus, f k(x) = F k(x) − V k(x). We assume that system (9) has a disease-free periodic
solution x∗(t).

Denote

Fk(t) =

(
∂F k

i (x∗(t))
∂xj

)
1≤i,j≤m

and Vk(t) =

(
∂F k

i (x∗(t))
∂xj

)
1≤i,j≤m

. (10)

We make the following assumptions, which share the same biological meanings as
those by Gao et al. [22].

Hypothesis 1. If xi ≥ 0, then the function F k
i (x), V k−

i (x) and V k+
i (x) are nonnegative and

continuous on Rn
+ and continuously differential with respect to x for i = 1, · · · , n.

Hypothesis 2. If xi = 0, then V k−
i (x) = 0. Particularly, if x ∈ Xs, then V k−

i (x) = 0 for
i = 1, · · · , m.

Hypothesis 3. F k
i (x) = 0 for i = m + 1, · · · , n.

Hypothesis 4. If x ∈ Xs, then F k
i (x) = V k+

i (x) = 0 for i = 1, · · · , m.

Hypothesis 5. r(ΦMk (T)) < 1, where ΦMk (T) = ∏
q
k=1 exp(Mq−k+1Tq−k+1), and ΦMk (t) is

the fundamental solution matrix of the following system:

dz(t)
dt

= Mk(t)z(t),

where

Mk(t) =

(
∂ f k

i (x∗(t))
∂xj

)
m+1≤i,j≤n

. (11)

Hypothesis 6. r(Φ−Vk (T)) < 1.
Further, let Y(t, s) (t > s) be the evolution operator of the following linear switching system:

dy(t)
dt

= −Vk(t)y(t), for t ∈ (tk−1, tk]. (12)

Similar to the notation and definition of [22], we define the so-called next infection operator L,

Lφ(t) =
∫ t

−∞
Y(t, s)F(s)φ(s)ds =

∫ +∞

0
Y(t, t− a)F(t− a)φ(t− a)da, ∀t ∈ R+, (13)

where φ(s) is a T-periodic function from R to Rm
+ and denotes the initial distribution of infections

individuals, and F(t) = Fk(t) for t ∈ (tk−1, tk]. Now, we define the basic reproduction number R0
for system (9) as:

R0 = r(L). (14)

In order to calculate the implicit expression R0 by numerical simulation, we consider the auxiliary
T-periodic switching system:

dU(t)
dt

=

(
−Vk(t) +

Fk(t)
λ

)
U(t). (15)
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where λ ∈ (0, ∞). Set U(t, s, λ) (t ≥ s) to be the evolution operator of system (15), then
U(T, 0, λ) = Φ(Fk/λ)−Vk

(T). According to Lemmas 3 and 4 of [22], the following results can
be yielded.

Lemma 3. Assuming that (H1)–(H6) hold, then the following statements are valid:

(i) If r(Φ(Fk/λ)−Vk
(T)) = 1 has a positive solution λ0, then λ0 is an eigenvalue of L, and

so R0 > 0.

(ii) If R0 > 0, then λ = R0 is the unique solution of r(Φ(Fk/λ)−Vk
(T)) = 1.

(iii) R0 = 0 if and only if r(Φ(Fk/λ)−Vk
(T)) < 1 for all λ > 0.

In view of the results of Lemma 3, we have that R0 for the periodic switching system (8)
is the solution of algebraic equation r(Φ((Fk/λ)−Vk)

(T)) = 1.

Lemma 4. Assuming that (H1)–(H6) hold, then the following statements are valid for system (9):

(i) R0 = 1 if and only if r(Φ(Fk−Vk)
(T)) = 1.

(ii) R0 > 1 if and only if r(Φ(Fk−Vk)
(T)) > 1.

(iii) R0 < 1 if and only if r(Φ(Fk−Vk)
(T)) < 1.

It follows from Lemma 4 that the disease-free periodic solution x∗(t) of system (9) is
asymptotically stable if R0 < 1 and unstable if R0 > 1.

To proof our main result, we state the Spectral Mapping Theorem (see Theorem 1.4
in [38]) which will be essential to our proof.

Lemma 5. Let g(t) be a polynomial with complex coefficients, and let the eigenvalues of n× n
matrix A be λ1, λ2, · · · , λn. Then, the eigenvalues of g(A) are f (λ1), f (λ2), · · · , f (λn).

3.3. Dynamics of Switching Model (3) and (4)
3.3.1. Non-negativity and Boundedness

Let

Ω =

{
(Sh, Ih, Xc, Yc, Xw, Yw) ∈ R6

+ | Sh + Ih = K, Xc + Yc + Xw + Yw ≤
Λv

dmin

}
,

where dmin = min{dc, dw, θ}. In the following, we will show that switching system (3) and
(4) is well posed in Ω.

Lemma 6. The feasible region Ω is positively invariant and attracts all solutions of system (3) and (4).

Proof. Let ξ(t) = (Sh(t), Ih(t), Xh(t), Yh(t), Xw(t), Yw(t)) be any solution of switching
system (3) and (4) with initial conditions (5). We first show the non-negativity of solutions.
Set t1 = sup{t > 0 | ξ(s) > 0, for s ∈ [0, t)}. Obviously, t1 > 0. It follows from the first
equation of (3) and (4) that

dSh
dt

= µhK + γIh −
β1ShYc

K
− µhSh. (16)

Denote λh(t) =
β1Yc

K , then (16) becomes

dSh
dt

= µhK + γIh − λh(t)Sh − µhSh,
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which can be re-written as

d
dt

{
Sh(t) exp

(∫ t

0
λh(s)ds + µht

)}
= (µhK + γIh) exp

(∫ t

0
λh(s)ds + µht

)
.

Thus,

Sh(t1) exp
(∫ t1

0
λh(s)ds + µht1

)
− Sh(0)

=
∫ t1

0
(µhK + γIh(ζ)) · exp

(∫ ζ

0
λh(s)ds + µhζ

)
dζ.

Consequently,

Sh(t1) = Sh(0) exp
(
−
∫ t1

0
λh(s)ds + µht1

)
+ exp

(
−
∫ t1

0
λh(s)ds + µht1

) ∫ t1

0
(µhK + γIh(ζ)) · exp

(∫ ζ

0
λh(s)ds + µhζ

)
dζ

> 0.

Similarly, it can be proven that ξ(t) ≥ 0 for all t > 0.
Next, we need to show the boundedness of the solutions. Set Nv = Xc +Yc + Xw +Yw.

Adding the last four equations of (3) and (4), we have

dNv

dt
≤ Λh − dminNv,

which implies that Nv ≤
Λh

dmin
for all t ≥ 0. Therefore, the region Ω is positively invariant

with respect to the switching system (3) and (4).

The results of Lemma 6 show that it is sufficient to study the dynamic properties of
the switching system (3) and (4) in Ω, which we present in the following subsections.

3.3.2. Threshold Dynamics

In this subsection, we will explore the threshold condition which leads to the extinction
and persistence of the disease for the switching system (3) and (4).

Note that the switching system (3) and (4) is the special case of the general switching
system (8), in which x = (Ih, Yc, Yw, Sh, W, Xc, Xw)T , q = 2, t2k = kT, t2k+1 = kT + T1,
f k+2(x) = f k(x). Thus,

f 2k(x) =



β1ShYc
K − µh Ih − γIh

β2Xc Ih
K − p1δYc

αW∗
1+α1W∗ + q1δYw − dcYc − θYc

p1δYc
αW∗

1+α1W∗ − q1δYw − dwYw

µhK + γIh −
β1ShYc

K − µhSh

ΛV − β2Xc Ih
K − p1δXc

αW∗
1+α1W∗ + q1δXw − dcXc − θXc

p1δXc
αW∗

1+α1W∗ − q1δXw − dwXw


(17)
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and

f 2k+1(x) =



β1ShYc
K − µh Ih − γIh

β2Xc Ih
K − p2δYc

αW∗
1+α1W∗ + q2δYw − dcYc

p2δYc
αW∗

1+α1W∗ − q2δYw − dwYw

µhK + γIh −
β1ShYc

K − µhSh

ΛV − β2Xc Ih
K − p2δXc

αW∗
1+α1W∗ + q2δXw − dcXc

p2δXc
αW∗

1+α1W∗ − q2δXw − dwXw


(18)

It is easy to see that the switch system (3) and (4) has a unique disease-free periodic
solution x∗(t) = (K, X∗c (t), 0, X∗w(t), 0).

By (10) and (11), we can calculate Fk, V2k, V2k+1, M2k, and M2k+1 of the switch
system (3) and (4), which are represented as the following form:

Fk =

 0 β1 0

β2 0 0

0 0 0

, V2k =

 µh + γ 0 0

0 dc + θ + p1δ αW∗
1+α1W∗ −q1δ

0 −p1δ αW∗
1+α1W∗ dw + q1δ

,

V2k+1 =

 µh + γ 0 0

0 dc + p2δ αW∗
1+α1W∗ −q2δ

0 −p2δ αW∗
1+α1W∗ dw + q2δ

,

M2k =

 −µ1 0 0

0 −p1δ αW∗
1+α1W∗ − dc − θ q1δ

0 p1δ αW∗
1+α1W∗ −q1δ− dw

,

M2k+1 =

 −µ1 0 0

0 −p2δ αW∗
1+α1W∗ − dc q2δ

0 p2δ αW∗
1+α1W∗ −q2δ− dw

.

In order to derive the basic reproductive number of system (3) and (4), we need to show
that Assumptions (H1)–(H6) hold. The mathematical details can be found in Appendix A.

Theorem 1. If R0 < 1, then the disease-free periodic solution x∗(t) of system (3) and (4) is globally
asymptotically stable, whereas it is unstable if R0 > 1.

The proof of Theorem 1 is shown in Appendix B. Similar to the proof of Theorem 4.1
of [22], we can obtain the uniform persistence of system (3) and (4).

Theorem 2. If R0 > 1, then the disease is uniformly persistent for system (3) and (4), that is,
there is a positive constant ε > 0, such that lim inft→∞ Ih(t) > ε, lim inft→∞ Yc(t) > ε, and
lim inft→∞ Yw(t) > ε.

Theorems 1 and 2 demonstrate that R0 is a sharp threshold value which determines
whether the disease dies out or not. If R0 < 1, then the disease will be controlled, whereas
if R0 > 1, the disease will be endemic.

4. Numerical Simulation

In this section, we present numerical simulations of the system (3) and (4) to support
our analytical results, and determine the optimal number of A. conyzoides retained in the
orchard and the best period of pesticide spraying.
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4.1. Theory Verification

Figure 2a–f are the time dynamics of the compartmental population (Sh, Ih, Xc Yc,
Xw and Yw) with Λw = 1 and Λw = 9. If Λw = 1, then the basic reproduction number
takes the valve R0 = 0.9432 < 1 by numerical computation. According to Theorem 1, the
disease-free periodic solution of the switching system (3) and (4) is globally asymptotically
stable. Thus, the disease will die out. Further, if we fix Λw = 9, then R0 = 1.0286 > 1. By
Theorem 2, we know that the disease is uniformly permanent. A numerical simulation of
the above results can be seen in Figure 2.
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Figure 2. Time series of solutions for switching system (3) and (4), (a) Sh, (b) Ih, (c) Xc, (d) Yc,
(e) Xw, (f) Yw with Λw = 1 and Λw = 9, showing the disease will be extinct eventually when
R0 = 0.9432 (blue), and the disease is permanent when R0 = 1.0286 (red).

4.2. Sensitive Analysis

Note that several fundamental parameters including the recruitment of A. conyzoides
(Λw), the preference parameters (p1, q2), and the timing of pesticide application (T1, T2)
play a significant role in our model. By considering pulse parameters, we are able to
investigate the quantity of weed introductions, the settling preference of ACPs, and the
pesticide spraying period affecting the transmission of the disease. These factors are crucial
in understanding the dynamics and control strategy of the disease within the context of
our model.
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To illustrate that the evolution of disease transmission evolves with increasing numbers
of A. conyzoides, we have plotted the basic reproduction numbers in Figure 3 for different
infection rates (β1, β2), which reveal some important issues related to HLB outbreaks. When
the infection rates (β1 and β2) are low, the basic reproduction number (R0) monotonically
increases with the parameter Λw (see Figure 3a). However, when the infection rates reach
certain values, the basic reproduction number first decreases monotonically with parameter
Λw and then increases monotonically (see Figure 3b–d). We can observe that R0 is more
sensitive when the parameter Λw is smaller.
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Figure 3. The basic reproduction number vs. changes in the constant recruitment rate for A. conyzoides
Λw and different infection rates, (a) β1 = 0.00494, β2 = 0.00226, (b) β1 = 0.01482, β2 = 0.00226,
(c) β1 = 0.00494, β2 = 0.00678, (d) β1 = 0.01482, β2 = 0.00678.

Next, we examine the responses of the basic reproduction number when pairs of vector
preference parameters are simultaneously altered. Figure 4 illustrates that the value of R0
increases as the landing preference parameter p1 increases or as q2 decreases. The threshold
in Figure 3a represents the combination of landing preference parameters between citrus
trees and weeds at which R0 equals one.

From the plot, we can observe that when p1 is less than 1.633, R0 remains below one for
all values of q2. Conversely, when p1 exceeds 6.122, R0 surpasses one for q2 values up to 20.
This implies that during the period of pesticide effectiveness, if only a small proportion
of Asian citrus psyllids diffuse from citrus trees to weeds, the spread of Huanglongbing
can be controlled. However, if the proportion is large enough, even with a high diffusion
preference parameter from weeds to citrus trees, the disease will persist. Therefore, the
landing preference parameter p1 from citrus trees to weeds plays a crucial role in the control
of Huanglongbing.

Figure 5 displays the paired effects of simultaneously varying T1 and T2 on the basic
reproduction number R0, with a fixed value of β2 = 0.00226. As T2 increases, R0 also
increases. Conversely, as T1 increases, R0 decreases. The red line represents the threshold
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value where R0 equals 1, while the different colors indicate increasing values of R0 from 0
to 3 in increments of 0.5 (ranging from blue to yellow).
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Figure 4. Contour plots of basic reproduction number R0 with respect to preference parameters p1

and q2, showing that the values of R0 increases as p1 increases or as q2 decreases.
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Figure 5. Contour plots of basic reproduction number R0 vs. T1 and T2 showing the paired effects
of the periods of effectiveness and ineffectiveness of the pesticide (the red line shows the threshold
value where R0 = 1). Different colors indicate increasing values of R0 from 0 to 3 in increments of
0.5 (ranging from blue to yellow).

We observe that there is a rapid increase in R0 as T2 increases for very small values
of T1. However, for larger values of T1, there is little change in R0 as T2 increases. Field
experiments have indicated that when spraying 1.8% Avermectin EC at a concentration of
90 mg/L on citrus branches, the pesticide has a persistent duration of 11 days [10]. From
Figure 5, we can deduce that if T1 is set to 11 and T2 is less than 18, then R0 remains below 1.
Therefore, to effectively control the spread of the disease, the period of spraying Avermectin
should be extended to 29 days.

In Figure 6, violin plots were employed to visualize the distribution and probability
density of the total number of the ACP population under different recruitment rates and
infection rates. Violin plots combine the features of density plots and box plots, providing
information about the median, quartiles, outliers, and density distribution of the data.

From the violin plots in Figure 6a,b, it is evident that the median values of the respec-
tive data distributions increase with higher recruitment rates for Ageratum conyzoides (Λw).
This indicates that increasing the recruitment rate of the weed has a greater impact on the
number of ACPs.

However, when considering the influence of outliers, it can be observed that the
infection rates of the disease have a minimal impact on the population of ACPs. This
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suggests that the variability in the number of the ACP population due to infection rates is
relatively small compared to the influence of other factors such as weed recruitment rates.

In Figure 6a, when the infection rate is low, comparing the medians reveals that the
rate of change in the number of ACPs increases with a higher recruitment rate of Ageratum
conyzoides (Λw). However, in Figure 6b, when the infection rate is high, the rate of change
in the number of ACPs decreases with a higher recruitment rate.

Furthermore, when comparing the two violin plots, it can be observed that when the
recruitment rate is low (Λw = 3), the median value of ACPs is higher with high infection
rates compared to low infection rates. Conversely, when the recruitment rate is high
(Λw = 9), the opposite trend is observed. In this case, the median value of ACPs is higher
with low infection rates compared to high infection rates. Additionally, the concentration
distribution of the ACP population is more clustered around the median value when the
recruitment rate is high and the infection rate is low.

0 3 9

w

10000

20000

30000

40000

N
v

(a)

0 3 9

w

10000

20000

30000

40000

N
v

(b)

Figure 6. Violin Plots of total number of psyllids Nv for three different constant recruitment rates
Λw with different infection rates, (a) β1 = 0.00494, β2 = 0.00226, (b) β1 = 0.01482, β2 = 0.00678.
Showing that increasing the recruitment rate of the weed has a greater impact on the number of ACP.

In the past, farmers would extensively introduce A. conyzoides, a weed that produces
pollen that serves as an alternative food source for natural enemy predatory mites. This
practice was implemented as part of integrated pest management strategies in citrus
orchards. The presence of A. conyzoides helped to effectively maintain continuous control
on citrus pest mites.

By introducing A. conyzoides, farmers aimed to provide a supplementary food source
for predatory mites, which are natural enemies of citrus pest mites. This approach was
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considered beneficial as it promoted the presence and activity of predatory mites, which in
turn helped to control the population of citrus pest mites. This integrated pest management
approach aimed to reduce reliance on chemical pesticides and promote a more sustainable
and environmentally friendly method of pest control in citrus orchards.

A. conyzoides, while beneficial for ecological control of predatory mites in citrus
orchards, can potentially interfere with the effectiveness of pesticide control against
ACPs [10,39]. To assess the impact of A. conyzoides on the population of ACPs and the
spread of citrus HLB under pesticide control conditions, a switching differential model was
established in the study.

The study also developed the theory of the basic reproduction ratio, R0, for a class of
periodic switching systems. It was proven that R0 serves as a threshold parameter for the
stability of the disease-free periodic solution of the system. Furthermore, the theory of R0
was applied to the switching HLB model, resulting in a threshold-type result in relation
to R0.

This threshold result provides valuable insights into the dynamics of the disease
and the impact of A. conyzoides on the spread of HLB in the presence of pesticide control
measures. By understanding the threshold value of R0, researchers and policymakers
can make informed decisions regarding disease management strategies and the role of A.
conyzoides in controlling ACP populations and HLB spread in citrus orchards.

In this paper, we have developed the theory of the basic reproduction ratio, R0, for a
specific class of periodic switching systems. It has been demonstrated that R0 serves as a
threshold parameter for determining the stability of the disease-free periodic solution of
the system described in Equations (4) and (5).

Furthermore, the theory of R0 has been applied to a multi-host switching model for
HLB. We have presented a threshold-type result in relation to R0, and it has been proven
that when R0 is less than 1, the disease will eventually die out.

This threshold result is significant as it provides a quantitative measure for assessing
the potential spread and control of HLB. By determining the critical value of R0, researchers
and policymakers can evaluate the effectiveness of disease control strategies and make
informed decisions to prevent and manage the spread of HLB.

Furthermore, the numerical results obtained in our study have yielded valuable
insights into the transmission dynamics of Huanglongbing (HLB) and have shed light on
key factors that impact disease control measures.

One important aspect we have investigated is the influence of the quantity of weed
introductions on the transmission of HLB. Our numerical findings have revealed that in
scenarios with low infection rates, it is more feasible to control the spread of the disease in
orchards by minimizing the presence or introduction of weeds. This suggests that reducing
or eliminating weeds can be an effective strategy for disease control in such cases.

However, interestingly, our results have also shown that in scenarios with high in-
fection rates, a moderate amount of weeds can actually be beneficial for disease control.
This implies that in certain situations, the presence of weeds can play a role in suppressing
the spread of HLB. These findings highlight the complex interplay between weed popu-
lations and disease dynamics, emphasizing the need for a nuanced approach to disease
management strategies.

Overall, our numerical results provide valuable insights into the transmission dynam-
ics of HLB and offer guidance on the optimal management of weeds in order to effectively
control the spread of the disease in citrus orchards.

Secondly, our study has also examined the responses of the basic reproduction number
(R0) to alterations in pairs of vector preference parameters. Our findings have revealed that
as the selection preference parameter (p1) increased or the diffusion preference parameter
(q2) decreased, R0 also increased. The threshold parameter combination between citrus
trees and weeds, which results in R0 being equal to one, played a significant role in
disease control.
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These results indicate that during the persistence of pesticides, if only a small propor-
tion of Asian citrus psyllids (ACPs) diffuse from citrus trees to weeds, the spread of HLB
can be controlled. However, when the proportion is large enough, the disease will become
permanent, even if the diffusion preference parameter from weeds to citrus trees is high.
Therefore, the landing preference parameter from citrus trees to weeds, p1, plays a key role
in HLB control. This suggests that reducing the spread of ACPs from citrus trees to weeds
is beneficial for controlling the population size of ACPs and the transmission of HLB.

Based on these findings, several measures can be taken for effective control of ACP
population size and HLB transmission: (i) Choose the appropriate timing for pesticide
application: timely spraying of pesticides during the early stages of citrus trees being in-
fested by ACPs can prevent the pests from spreading to weeds and avoid their transmission
between citrus trees and weeds. (ii) Spray pesticides to the lower canopy: direct pesticide
application to the lower parts of citrus trees can minimize pesticide contact with weeds on
the ground. (iii) Implement integrated pest management strategies: in addition to pesticide
application, combining other control methods such as traps and biological control can
comprehensively control the spread of ACPs.

In conclusion, by choosing the right timing for pesticide application, spraying pesti-
cides to the appropriate locations, and implementing integrated pest management strate-
gies, the spread of ACPs from citrus trees to weeds can be effectively reduced, leading to
effective control of the population size of ACPs and the transmission of HLB.

Thirdly, our study investigated the paired effects of varying T1 and T2 simultaneously
on the basic reproduction number R0, with fixed values of β2. The results, as shown in
Figure 5, indicate that as T2 increases, R0 also increases. Conversely, as T1 increases, R0
decreases. The results illustrate that for very small T1, there is a rapid rise in R0 as T2
increases. However, for large T1, there is little change in R0 as T2 increases. Based on our
analysis, we have determined that the optimal spraying period for Avermectin is 29 days.

These findings provide important insights into the optimal timing and frequency of
pesticide application for effective control of ACPs and HLB transmission. By understanding
the paired effects of T1 and T2 on R0, farmers and policymakers can make informed
decisions regarding the timing and frequency of pesticide treatments to effectively manage
ACP populations and control the spread of HLB in citrus orchards.

Fourth, in our study, we have investigated the role of the ACP as a vector for the
transmission of HLB disease. ACPs transmit the HLB pathogen to citrus trees through
their feeding activities, specifically by injecting the pathogen into the trees. The rate at
which the psyllid bites and feeds on the trees directly affects the basic reproduction number
(R0), which represents the number of healthy trees that can be infected by each infected
psyllid. Therefore, the biting rate, or infection rate, of the psyllid plays a crucial role in the
transmission dynamics of HLB.

To explore this further, we have utilized violin plots to display the relationship be-
tween weed recruitment rates, infection rates, and the population growth of ACPs in citrus
orchards. Our results have revealed that weeds present in citrus orchards have a significant
influence on the population dynamics of ACPs. The presence of weeds can provide addi-
tional food sources and breeding grounds for the psyllids, leading to increased population
sizes. On the other hand, the infection intensity, or the level of HLB disease in the psyllid
population, has a minimal effect on the overall population size of the psyllids.

These findings highlight the importance of considering the role of weeds in citrus
orchards when developing strategies for controlling ACP populations and managing the
spread of HLB. Efforts to control weeds and minimize their presence in orchards can help
reduce the availability of food and breeding sites for ACPs, ultimately leading to a decrease
in their population sizes. This, in turn, can contribute to the control of HLB transmission.

Overall, our study emphasizes the significance of understanding the relationship
between weed recruitment rates, infection rates, and the population growth of ACPs in
citrus orchards. By considering these factors, researchers and policymakers can develop
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targeted and effective strategies for managing ACP populations and controlling the spread
of HLB disease.

5. Conclusions

Our study focuses on the theory of the basic reproduction number, R0, for periodic
switching systems and its application to the switching HLB model. It is proven that R0
serves as a threshold parameter for the stability of the disease-free periodic solution of the
system. The threshold result provides insights into the dynamics of the disease and the
impact of A. conyzoides on the spread of HLB in the presence of pesticide control measures.
Understanding the threshold value of R0 helps in making informed decisions regarding
disease management strategies and the role of A. conyzoides in controlling ACP populations
and HLB spread in citrus orchards. The study also investigates the influence of weed
introductions on the transmission of HLB and finds that reducing or eliminating weeds can
be an effective strategy for disease control in scenarios with low infection rates.

In summary, the study highlights the interplay between recruitment rates, infection
rates, and their impact on the basic reproduction number of the disease. It further em-
phasizes the importance of carefully considering the duration and period of pesticide
application to effectively control disease spread, while also shedding light on the rela-
tionship between weed recruitment rates, infection rates, and the population growth of
ACPs in citrus orchards. To achieve effective control of ACPs and HLB, the following
measures should be considered: (i) Choose the appropriate timing for pesticide applica-
tion: timely spraying of pesticides during the early stages of citrus trees being infested by
citrus psyllids can prevent the pests from spreading to weeds and avoid their transmission
between citrus trees and weeds. (ii) Spray pesticides to the lower canopy: spray pesticides
to the lower parts of citrus trees, minimizing pesticide contact with weeds on the ground.
(iii) Implement integrated pest management strategies: in addition to pesticide application,
other control methods such as traps and biological control should also be combined to
comprehensively control the spread of ACPs.
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Appendix A. Validity of Assumptions (H1) to (H6) for System (3) and (4)

Since the testable Assumptions (H1) to (H4) are evidently valid. In the following, we
only show that Assumptions (H5) and (H6) hold.

By simple calculation, we obtain that one eigenvalue of M2k and M2k+1 is −µ1, which
is negative, the others are the roots of the following quadratic polynomial equations,
respectively,

λ2 +

(
q1δ +

p1δαW∗

1 + α1W∗
+ θ + dc + dw

)
λ + θdw + dcdw + θq1δ + dcq1δ +

p1δdwαW∗

1 + α1W∗
= 0. (A1)

According to the Routh–Hurwitz criterion, Equation (A1) has two negative character-
istic roots λ1 and λ2. Further, by applying Lemma 5, we know that r(exp(M2kT1)) =
max{e−µ1T2 , eλ1T2 , eλ2T2} < 1.
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Similarly, we can obtain that r(exp(M2k+1T2)) = max{e−µ1T2 , eλ̄1T2 , eλ̄2T2} < 1, where
−µ1, λ̄1 and λ̄2 are the negative characteristic roots of M2k+1.

Thus, r(ΦMk (T)) = r(exp(M1T2) exp(M0T1)) < 1, Assumption (H5) holds.
Using a similar method, it can be proven r(Φ−Vk (T)) = r(exp(−V1T2) exp(−V0T1)) < 1,

assumption (H6) holds.

Appendix B. Proof of Theorem 1

By Lemma 4, we have that the unique disease-free periodic solution x∗(t) is unstable
if R0 > 1, and x∗(t) is locally stable if R0 > 1. Therefore, we only need to show the global
attractivity of x∗(t) provided that R0 < 1.

It follows from Lemma 4 that R0 < 1 is equivalent to r(ΦFk−Vk (T)) < 1. Thus, we can
choose a sufficiently small ε > 0 such that

r(ΦFk−Vk+Mε(T)) < 1, (A2)

where

Mε =

 0 β1ε
K 0

β2ε
K 0 0
0 0 0

.

From system (3) and (4), we have that
dXc

dt
≤ ΛV − p1δXc

αW∗

1 + α1W∗
+ q1δXw − dcXc − θXc,

dXw

dt
= p1δXc

αW∗

1 + α1W∗
− q1δXw − dwXw,

for t ∈ (kT, kT + T1],

and 
dXc

dt
≤ ΛV − p2δXc

αW∗

1 + α1W∗
+ q2δXw − dcXc,

dXw

dt
= p2δXc

αW∗

1 + α1W∗
− q2δXw − dwXw,

for t ∈ (kT + T1, (k + 1)T].

By comparison theorem in differential equations, for the above mentioned ε, we have that
there exists a k1 > 0 such that

Xc ≤ X∗c + ε, Xw ≤ X∗w + ε, for t > k1T. (A3)

According to switching system (3) and (4) and inequality (A3), we can get that for k > k1,



dIh
dt
≤ β1Yc − µh Ih − γIh,

dYc

dt
≤ β2(X∗c + ε)Ih

K
− p1δYc

αW∗

1 + α1W∗
+ q1δYw − dcYc − θYc,

dYw

dt
= p1δYc

αW∗

1 + α1W∗
− q1δYw − dwYw,

for t ∈ (kT, kT + T1],

and

dIh
dt
≤ β1Yc − µh Ih − γIh,

dYc

dt
≤ β2(X∗c + ε)Ih

K
− p2δYc

αW∗

1 + α1W∗
+ q2δYw − dcYc,

dYw

dt
= p2δYc

αW∗

1 + α1W∗
− q2δYw − dwYw,

for t ∈ (kT + T1, (k + 1)T].
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Consider the following comparison switching system:

d J̄(t)
dt

=

{
(Fk −V2k + Mε) J̄(t) for t ∈ (kT, kT + T1],

(Fk −V2k+1 + Mε) J̄(t) for t ∈ (kT + T1, (k + 1)T],
(A4)

where J̄(t) = ( Īh(t), Ȳc(t), Ȳw(t))T .
According to Lemma 1 and (A2), there exists a positive T-periodic vector function

ν1(t) such that J̄(t) = exp(ξt)ν(t) is a solution of the switching system (A4), where ξ =
ln r(ΦFk−Vk+Mε(T)) < 0. So J̄(t) → 0, as t → ∞, that is, limt→∞ Īh(t) = 0, limt→∞ Ȳc(t) =
0 and limt→∞ Ȳw(t) = 0. In view of the comparison theorem in differential equations
and the nonnegativity of solutions, we have limt→∞ Ih(t) = 0, limt→∞ Yc(t) = 0 and
limt→∞ Yw(t) = 0. By the theory of asymptotically autonomous semiflows [40], we can get

lim
t→+∞

Sh(t) = K, lim
t→+∞

Xc(t) = X∗c (t), lim
t→+∞

Xw(t) = X∗w(t).

Therefore, the disease-free periodic solution X∗(t) is globally asymptotically stable.
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