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Abstract: High-temperature stress is the main environmental stress that restricts the growth and
development of woody plants, and the growth and development of woody plants are affected by
high-temperature stress. The influence of high temperature on woody plants varies with the degree
and duration of the high temperature and the species of woody plants. Woody plants have the
mechanism of adapting to high temperature, and the mechanism for activating tolerance in woody
plants mainly counteracts the biochemical and physiological changes induced by stress by regulating
osmotic adjustment substances, antioxidant enzyme activities and transcription control factors. Under
high-temperature stress, woody plants ability to perceive high-temperature stimuli and initiate the
appropriate physiological, biochemical and genomic changes is the key to determining the survival
of woody plants. The gene expression induced by high-temperature stress also greatly improves
tolerance. Changes in the morphological structure, physiology, biochemistry and genomics of woody
plants are usually used as indicators of high-temperature tolerance. In this paper, the effects of high-
temperature stress on seed germination, plant morphology and anatomical structure characteristics,
physiological and biochemical indicators, genomics and other aspects of woody plants are reviewed,
which provides a reference for the study of the heat-tolerance mechanism of woody plants.

Keywords: woody plants; high-temperature stress; physiology and biochemistry; heat-resistant
mechanism; genomics

1. Introduction

Woody plants are important components of ecosystems, usually perennial, with com-
plex root and stem structures, and play an important role in limiting carbon dioxide (CO2)
and other greenhouse gases [1]. Woody plants are also the main biomass resources of
biofuels [2]. Because woody plants are perennial and have a long life cycle, compared to
herbs, they experience extreme abiotic stress in their lives [3]. In recent years, due to the
continuous emission of greenhouse gases, the global temperature has increased year by year.
With the intensification of global climate change, high temperature has become one of the
important environmental factors restricting the growth and development of woody plants.
Each plant species naturally exhibits its own optimal temperature range for growth and
reproduction. When this temperature is higher than the optimal temperature and reaches
a threshold that is detrimental to the growth or survival of the species, we classify this
temperature as high temperature [4]. Of course, different species have different tolerances
to temperature, so the range of high temperatures is also different. At present, most of the
effects of high-temperature stress on plants are aimed at the Gramineae family, such as
Arabidopsis thaliana and crop species, and the research on woody plants is usually limited.
Therefore, how woody plants respond to the extreme environment of global warming and
their response to the climate are our primary concerns [5]. Because of the sensitivity of
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woody plants to environmental changes, it is of great significance to study their physiologi-
cal changes and ecological characteristics in adapting to high-temperature environments to
promote sustainable development and ecological environment protection [6]. In this paper,
the effects of high-temperature stress on woody plants were systematically reviewed from
the aspects of seed germination, plant morphology and anatomical structure, physiological
and biochemical indicators, genomics and so on.

2. Effect of High-Temperature Stress on the Seed Germination of Woody Plants

The seed germination stage is sensitive to the external environment; there are many
factors that affect the seed germination stage, and temperature is one of the main environ-
mental factors that determine seed germination [7]. When the temperature exceeds a certain
limit, the water absorption and oxygen intake of seeds is limited [8], significantly affecting
germination time, slowing the germination rate and reducing the germination potential [9].
This may be because high temperature strengthens seed dormancy, thus, affecting seed
germination. Some woody plant seeds have dormancy mechanisms to ensure that seeds
germinate under suitable environmental conditions; high-temperature stress may interrupt
or change the dormancy state of seeds, resulting in the abnormal germination of seeds [10].
In addition, high-temperature stress can also lead to lipid peroxidation and protein inacti-
vation and affect the enzyme activity of seeds, thus, increasing the seed mortality [11]. To
avoid the negative impact of high-temperature stress on the seed germination and seedling
growth of woody plants, some measures can be taken, such as maintaining appropriate
temperature and humidity conditions at the seed germination stage, providing sufficient
water and nutrients and avoiding exposure to a high-temperature environment.

3. Effects of High-Temperature Stress on the Morphological and Anatomical
Characteristics of Woody Plants
3.1. Effects on Woody Plant Morphology

Plant morphology refers to the characteristics of plants in terms of morphological
structure, which can reflect the growth and physiological state of plants and be used to
better understand and study the growth and development process and ecological character-
istics of plants [12]. Leaves are the main organs of photosynthesis and respiration in plants,
which are extremely sensitive to high temperature, and their growth performance is directly
damaged by heat stress [13]. Its morphological characteristics are an important reference
index for the study of stress resistance in woody plants [14]. Under high-temperature
stress, leaves curl, brown and shrink [15]. The growth rate of the trunk and crown slows
down, and long-term stress leads to short plant morphology, thin branches and decreased
growth ability [16]. Bark cracks and dries, leading to the loss of nutrients and water, and
the strength and stability of the stem are reduced [17]. The accelerated depletion of plant
water under high temperatures is usually accompanied by water stress [18]. Plants nor-
mally lower their body temperature through transpiration but may reduce transpiration
to conserve water under conditions of insufficient water supply, resulting in dehydration
and impaired growth [19]. However, plants activate specific gene expression and signal-
ing pathways when responding to high-temperature and water stress. Sometimes these
signaling pathways overlap; that is, there is an interaction between the high-temperature
signaling pathway and the water signaling pathway, causing the plant to respond jointly to
these two stresses and jointly resist the adverse effects of the plant [20]. The main reason
for these phenomena is that high-temperature stress accompanied by water stress leads to
large amounts of water evaporation, plant damage and reduced enzyme activity. Under
high temperature stress, woody plants change their morphology with temperature changes
to protect themselves. It also shows that high-temperature damages the morphology of
woody plants, and a long-term high-temperature environment adversely affects the growth
and development of woody plants.
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3.2. Effects on Anatomical Structure Characteristics of Woody Plants

The anatomical features of leaves, trunks and roots in woody plants have been re-
ported, but most of them were studied in leaves, which may be related to the sensitivity
of the anatomical features of leaves to abiotic factors [21]. Therefore, the anatomical char-
acteristics of leaves are the main characteristics used to explore the adaptive response of
plants to environmental conditions [22]. The anatomical structure characteristics of woody
plants under high-temperature stress are shown in Table 1. The anatomical structure of
plants is closely related to their growth environment, and different growth environments
have different effects on the anatomical structure of plants, thus, affecting the growth and
survival of plants [23]. Under the stress of a high temperature, woody plants respond in
morphology and internal structure and then adapt to the high-temperature environment to
protect the body from harm.

Table 1. Effects of high-temperature stress on the anatomical structure characteristics of woody plants.

Anatomical Site Change Mechanism References

Leaves
Increase: leaf thickness, cell wall
thickness, stomatal density
Decrease: mesophyll cell volume

Reduce water evaporation and
heating area, improve water
utilization efficiency

[24,25]

Stems Increase: wall thickness, lignincontent
Decrease: wood fiber diameter, length

Smaller hydraulic conductivity,
reducing water loss; enhance
protection and heat dissipation
capabilities

[26,27]

Roots Increase: Number and length of root hairs
Decrease: Cell division

Increase absorption and utilization of
water and nutrients [28,29]

4. Effects of High-Temperature Stress on Physiological and Biochemical Indexes of
Woody Plants

In most cases, some common effects of high temperature on the physiological and
biochemical reactions of woody plants are shown in Figure 1. Many physiological and
biochemical indicators, such as membrane thermal stability, antioxidant enzyme activity,
osmotic regulatory substances and photosynthetic characteristics, are affected. Table 2
shows the similarities and differences in response mechanisms and molecular mechanisms
of different species under high-temperature stress.
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Table 2. Similarities and differences in response mechanisms and molecular mechanisms of different
species under high-temperature stress.

Category Similarities Differences References

Response mechanism

Activating gene expression: Changes in
gene expression occur when plants are
stressed
Accumulation of antioxidant substances:
Stress produces oxidative substances to
neutralize them and reduce oxidative
damage
Regulate water balance: Control water
evaporation by closing or opening stomata
to maintain water balance
Accumulation of resistance substances:
Synthesis of resistance substances, such as
proteins and lipids, in response to stress.
Stomatal regulation: Under high
temperature conditions, plants often close
their stomata to reduce water transpiration

Ecological adaptability: The high
temperature stress response mechanism
of plants is affected by their ecological
environment. Plants may have different
high temperature adaptation strategies
in different ecological environments
Differences in hormone regulation:
Different species may regulate different
types of plant hormones under high
temperature stress. For example, some
species rely on abscisic acid, while
others are more dependent on
gibberellins.

[30–33]

Molecular mechanism

Synthesis of heat stress proteins: HSPs are
usually synthesized in response to high
temperature stress
Antioxidant defense: High temperature
stress triggers oxidative stress, which
increases the activity of antioxidant
enzymes
Gene expression regulation: Respond to
high-temperature stress by adjusting gene
expression, including activation of
heat-stress response genes

Differences in hormone regulation:
Species regulate different types of
phytohormones under heat stress
Signaling pathways: Different plant
species can activate different signaling
pathways or specific stress response
genes under high-temperature stress.

[34–37]

4.1. Influence on Plasma Membrane Permeability

The plasma membrane (PM) forms a physical barrier to close the intracellular com-
partment and mediate direct communication between plants and the environment. The
permeability of the plasma membrane is very important for maintaining plant development
and plant–environment interactions [38]. Studies have shown that high temperatures in-
crease the content of malondialdehyde and reactive oxygen species in woody plants, as well
as the peroxidation of membrane lipids, leading to an increase in the permeability of the
plasma membrane, as well as the increased permeability of cell membranes to ions, small
molecules, and water. The ion balance is disrupted, thereby affecting the structure and
function of the plasma membrane [39]. Malondialdehyde (MDA) is the final decomposition
product of membrane lipid peroxidation, and the MDA content in leaves effectively reflects
the degree of membrane lipid peroxidation under high-temperature stress [40]. There
are reactive oxygen species (ROS) in woody plants at high temperature, such as singlet
oxygen (1O2), superoxide radical (O2

−), hydrogen peroxide (H2O2) and hydroxyl radical
(OH−) [41]. It can easily lead to oxidative stress and damage to the lipid membrane [42].
The study found that as the stress temperature increased, the contents of MDA and H2O2
increased, and carotenoids also accumulated in large quantities. High-temperature stress
changes gene expression in the carotenoid synthesis pathway, and the accumulation of
carotenoids increases antioxidant activity and provides a protective mechanism [43]. Simi-
lar reports were reported in Canarium album [44], Citrus reticulata Blanco [45], and mangrove
forests [46]. As shown in literature, the PM and endoplasmic reticulum (ER) participate
in high-temperature stress reactions in plants, which induce H2O2 production and the
ROS redox signaling pathway. Changes in the physical state of the membrane affect the
membrane proteins and membrane structure, resulting in changes in PM permeability,
which then affect a series of cell reactions [47]. The body mitigates adverse effects through
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adaptive mechanisms, mainly including antioxidant defense, synthesis of thermostable
proteins and membrane lipid regulation [48]. Plants synthesize antioxidant enzymes and
substances to reduce oxidative stress, help protect plasma membrane lipids and proteins
from oxidative damage and slow the increase in permeability [49]. Plants synthesize ther-
moproteins, which help maintain the stability of plasma membrane proteins and prevent
the denaturation and inactivation of other proteins [50]. Plants can synthesize lipids with
greater thermal stability to maintain plasma membrane integrity and fluidity. In addition to
this, osmoregulatory substances interact with plasma membrane permeability. The accumu-
lation of osmoregulatory substances helps maintain the stability of the plasma membrane
and mitigate adverse effects on cells. Changing the permeability of the plasma membrane
affects intracellular material transport and signal transmission, adversely affecting the
normal growth of woody plants [51].

4.2. Influence on Osmotic Adjustment Substances

Woody plants can accumulate some organic or inorganic substances independently
when they are stressed by high-temperature adversity [52]. The main organic substances
involved in osmotic adjustment are soluble sugar, proline (Pro) and soluble protein [53].
Studies have found that high-temperature stress can cause an imbalance of water inside
and outside the cells of woody plants, leading to cell dehydration. The accumulation of
soluble sugar increases the osmotic concentration of cells and attracts water into cells,
thereby alleviating dehydration symptoms. Sugar synthesis and accumulation can also
provide plants with additional carbon sources and energy reserves, helping to regulate
cell permeability [54]. For example, high temperature increases the contents of glucose
and fructose in Cunninghamia lanceolata and Pinus ponderosa, providing a carbon source
and energy to cope with stress, thus, increasing their heat resistance [55]. Moreover, sugar,
as a signal molecule, plays a key role in regulating plant development [56,57]. High
temperature induces an increase in the activity of enzymes related to proline synthesis and
promotes the accumulation of proline. The accumulation of proline helps maintain the
osmotic balance of cells, slow cell dehydration, and maintain cell morphology and function,
thereby improving plant adaptability to high temperatures [58]. For example, in Bruguiera
gymnorrhiza [59] and Ginkgo biloba [60] under high-temperature stress, the proline content
increased obviously, and the activities of metabolic enzymes such as proline synthase
were also improved. Proline is also involved in regulating the redox balance of plants,
inhibiting the accumulation of ROS and improving the heat resistance of plants [61]. High
temperature increases the content of soluble proteins in plant cells, especially inducing
the expression of thermal protein genes and increasing the synthesis of thermal proteins.
These thermoproteins are transcribed and translated into proteins, which then help other
proteins remain stable against damage from osmotic stress [62]. Other studies have found
that high-temperature stress can lead to the degradation and damage of soluble proteins
in woody plants and reduce the content of soluble proteins [54]. Some people think that
different species have different substances that mainly rely on regulating cell osmotic
potential, and different varieties and stress treatments have an impact on the changes
in the osmotic adjustment factors of woody plants [63]. Under high-temperature stress,
woody plants induce the accumulation of osmotic regulatory substances such as soluble
sugar, Pro, and soluble protein in the body, thereby regulating the osmotic pressure of the
internal environment. Osmoregulation also retains water and slows water loss by reducing
transpiration. Accelerating cell wall synthesis increases cell stability, interacts with the
accumulation of osmotic regulatory substances, and maintains the osmotic balance and
stability of the cell structure [64].

4.3. Effect of Antioxidase Activity

Reactive oxygen species (ROS) in plants are mainly eliminated by antioxidant enzymes.
The antioxidant enzymes in woody plants mainly include catalase (CAT), superoxide dis-
mutase (SOD), glutathione peroxidase (GPX), peroxidase (POD) and ascorbate peroxidase
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(APX) [65]. The antioxidant defense mechanism of enzymes is very important for plants
in stress-resistant environments. If antioxidant enzymes are affected, ROS accumulate
excessively, which has adverse effects on plant growth and resistance to adversity [66].
High-temperature stress can increase the activities of antioxidant enzymes, such as SOD,
APX and CAT, which increase with increasing temperature, but their activities tend to
decrease when the temperature exceeds a certain limit. It is considered that the temperature
has exceeded the tolerance threshold, which leads to structural damage and decreases
the activity of antioxidant enzymes [67]. In Rhododendron [68], Cedrus deodara [31] and
Ficus altissima [35], there are similar reports in other woody plants. Increased antioxidant
enzyme activity helps protect woody-plant-cell structures and biochemical molecules from
oxidative stress damage. They also interact with other physiological mechanisms, such
as osmoregulation. Some soluble proteins have antioxidant activity. It can neutralize
reactive oxygen species generated by oxidative stress and adjust the intracellular redox bal-
ance [69], as well as reduce oxidative damage to cell membranes and intracellular organelle
structures. Together, they maintain the stable growth and survival of woody plants under
high-temperature conditions [70]. This shows that woody plants can improve the activity of
antioxidant enzymes, reduce the oxidation of cells and maintain structural stability under
high-temperature stress. However, antioxidant enzymes can only play a limited defensive
role. When the stress pressure of woody plants exceeds the threshold, adversity inhibits
the expression of their enzymes, reduces the activity of antioxidant enzymes, accumulates
oxidized substances in plants and, finally, destroys the cell structure (Figure 2).
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4.4. Effects on Photosynthetic Characteristics

Photosynthesis is very sensitive to temperature, and small temperature fluctuations in
a short time also have an impact on photosynthesis [71]. High-temperature stress directly
affects CO2 assimilation, photochemical reactions and the synthesis of photosynthetic
pigments [72]. The change in chlorophyll content can reflect the stress degree of plants [73].
The results show that high-temperature stress reduces the contents of chlorophyll a and
chlorophyll b in woody plants, reducing the photosynthetic rate. There are differences in
carotenoid content in different tree species [39]. Carotenoids have a strong antioxidant
capacity and can reduce damage to plants under high-temperature stress [74]. High temper-
ature triggers oxidative stress, resulting in excessive ROS production, which damages the
photosynthetic complex and chloroplast membrane and thylakoid membrane and reduces
the activity of enzymes, such as RuBisCo-activated enzyme, whose activity is affected
by the precise spatial conformation of its components [75]. High temperature leads to
the structural change in RuBisCo, which makes its conformation disordered and causes
it to lose its ability to combine with CO2. It also reduces the activities of photosystem
II (PSII) and ATPase, which further affects the efficiency of photosynthesis [76]. High
temperature causes leaf senescence and water loss, and a large number of stomata close,
which further reduces the intracellular CO2 concentration and water evaporation, leading
to a decrease in the photosynthetic rate. The change in chlorophyll fluorescence parameters
can describe the change in photosynthesis, thus, evaluating the response and adaptability
of plants to high temperature [77]. The chlorophyll fluorescence quantum yield (Fv/Fm) of
plants decreased, indicating that the photochemical efficiency of the PSII reaction center
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decreased, which may be caused by incomplete assembly of the photosynthetic pigment
complex and serious damage to the structure and function of the reaction center [78]. It
also led to a decrease in the maximum fluorescence value (Fm), indicating that the PSII
reaction center was destroyed. The electron transfer of photosynthesis was inhibited, and
the actual fluorescence value (Ft) decreased [79]. In addition to the above indicators, it
also leads to the upregulation of chlorophyll fluorescence nonphotochemical quenching
(NPQ) [80]. The efficiency of photosynthesis under high-temperature stress is also related to
the antioxidant system and osmotic regulation. High temperature stimulates woody plants
to increase the activity of antioxidant enzymes. Moreover, it helps remove ROS, reduce
the impact of oxidative stress, and protect the integrity of photosynthetic complexes and
chloroplast membranes, thereby maintaining the normal progress of photosynthesis [67].
Similarly, high temperatures cause the accumulation of soluble proteins, enhance resistance
to oxidative stress, reduce ROS damage to chloroplasts, and coordinate to respond to high
temperature stress [69]. High-temperature stress affects the photosynthetic characteris-
tics of woody plants by affecting the production of light and pigments, decomposing the
generated light and pigments, damaging the photosynthetic reaction center structure and
reducing the activities of enzymes involved in photosynthesis (Figure 3).
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5. Effects of High-Temperature Stress on the Genomics of Woody Plants

High-temperature stress affects the genomics of woody plants, including gene expres-
sion regulation, signal transduction pathways, epigenetic regulation, genome variation
and mutation, and the regulation of heat shock proteins, which leads to changes in the
physiological and biochemical processes of plants [30]. High-temperature stress affects the
expression of transcription factors in woody plants. By regulating the expression level of
stress-responsive genes, alone or together with other transcription factors, the transcription
and translation of genes is affected to improve the heat stress tolerance of plants [81].
The genome-wide expression profile of heat shock transcription factors (HSFs) has been
studied in various species, and their structure and function are complex and diverse;
HSFs are also the most important regulatory transcription factors of woody plants under
high-temperature stress [82,83]. After woody plants were subjected to high-temperature
stress, HSFs were induced significantly and accumulated continuously, thus, activating
the expression of heat shock proteins (HSPs), APX2 and other genes and enhancing heat
tolerance. It also participates in various physiological processes by regulating target genes
related to growth and development, metabolism and abiotic stress and plays a role in
maintaining cell homeostasis [84]. At the same time, HSFs are upregulated by DREB (stress
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response element binding protein) [85]. The expression of HSFA3, HSFA4, HSFA9, HSP90,
SOD and CAT can be induced to improve the heat tolerance of plants [86]. In addition
to HSFs, other transcription factors, such as bHLH, MYB, WRKY and NAC, also play an
important role in the response of plants to high temperature [87], as shown in Table 3.

Table 3. Effects of high-temperature stress on transcription factors in woody plants.

Gene Family Species Gene Symbol Response Reference

HSF

Camellia japonica HSF-TEA

Inducing gene expression, plants accumulate
metabolites and activate different metabolic
pathways and physiological and biochemical
processes.

[88]

Eucalyptus robusta EgHSF
The expression levels of EgHsf24 and EgHsf32
genes increased significantly, thus, adapting
to the high-temperature environment.

[89]

Juglans JrHSF13, JrHSF22

JrHSF promoted the accumulation of HSP,
increased the denaturation temperature of
protein and repaired the damaged protein to
resist high temperature.

[90]

Citrus sinensis CrHHSFB2, CrHSFB5

CrHsfB2 and CrHsfB5 are important
regulators of citric acid content, which
changes during the degradation of citric acid
caused by heat-stress.

[91]

Prunus salicina PmHSF18, PmHSF2
After heat shock, PmHSF18 and PmHSF2
became prominent HSF, and they participate
in the key regulation of heat resistance.

[92]

Calyx glabrous VHSF18,
VHSF8

The transcription levels of VHSF18 and
VHSF8 increased sharply under
high-temperature stress, which played a role
in resisting heat resistance.

[93]

Ziziphus jujuba ZjHSF-2,
ZjHSF-3

High temperature significantly upregulates
the expression levels of ZjHsf-2 and ZjHsf-3
genes, which plays an important role in heat
resistance.

[94]

Populus euphratica PeHSFA2
Poplar plants overexpressing PeHSFA2
perform better than the control group under
severe heat stress

[95]

bHLH Tamarix hispida ThbHLH1,
ThbHLH3

The accumulation of bHLH gene increased
proline level and Ca2+ concentration,
decreased the accumulation of reactive
oxygen species, and improved heat resistance.

[96]

MYB Camellia sinensis CsMYB20, CsMYB21

The transcription factors of CsMYB20 and
CsMYB21 are upregulated and are involved in
recognizing the conserved motifs in tea plants
and inducing the expression of ABA synthesis
reaction genes to resist stress.

[97]

WRKY Osmanthus fragrans DlWRKY

DlWRKY2 reacted strongly to heat stress,
while DlWRKY36 and DlWRKY46 mediated
the expression of salicylic acid synthesis
reaction gene to alleviate stress.

[98]

NAC Haloxylon ammodendron HaNAC3

HaNAC3 can improve the tolerance of
transgenic plants to high-temperature stress
and participate in regulating the downstream
genes and metabolic pathways of
indolebutyric acid and abscisic acid.

[99]
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HSPs are important molecular chaperones that promote other proteins to refold,
stabilize and assemble after being induced by high-temperature stress. At the same time,
the expression of many stress-induced genes is upregulated, such as molecular chaperones,
active oxygen scavenging compounds, enzymes related to antioxidant metabolic reactions
and osmotic adjustment substance synthesis [100]. Under high-temperature stress, plant
HSFs can induce the expression of heat shock proteins (HSPs) (sHSP/HSP20, HSP60, HSP70,
HSP90, HSP100), and five different HSPs cooperate to activate the transcription of HSFs and
activate high-temperature signal transduction. At the same time, as molecular chaperones,
they can assist the correct folding of proteins alone or together, thus, alleviating the damage
caused by high temperature to woody plants [34]. To explore the evolutionary relationship
and conserved domains of members of the heat-stress gene family in woody plants and to
construct gene silencing vectors for agricultural crops will lay a foundation for studying
the cultivation of high-temperature-resistant agricultural varieties and help to increase the
yield of agricultural cash crops.

Epigenetic mechanisms such as DNA methylation, histone modification, histone
variation and miRNA can affect gene expression and stability and reduce the damage
caused by high temperature to plants [101]. DNA methylation involves the addition of a
methyl group (CH3) to the cytosine position of DNA to form 5-methylcytosine, forming
CG, CHG, and CHH (H stands for A, T, or C). It is an epigenetic change and reversible.
The main mechanism of epigenetic modification; plant phenotypic changes induced under
stress can respond to abiotic stress [102]. This process is widely used to cope with heat
stress [103]. The results show that in most cases, after exposure to high temperature,
the overall methylation level of plants is lower than that of control plants [104]. For
example, at 25 ◦C, the methylation rate of poplar is 38.93%, while at 42 ◦C, the methylation
rate is 28.61% [105]. In Zea mays L., CG and CHG, under high temperature stress, the
hypomethylation of genomic DNA occurs in the environment. In Glycine max, DNA
hypomethylation occurs at CHG and CHH sites in root hairs after heat treatment [106]. In
Brassica napus cv., chicks are cultured with heat-stress treatment compared with controls.
Spores for 6 h result in genome-wide DNA hypomethylation, especially in CG and CHG
environments [107]. In Arabidopsis thaliana, DNA methylation during Arabidopsis thaliana
seed development is moderately affected under mild heat stress; however, severe heat
stress causes DNA methylation in the promoters and the genetic regions of germination-
related genes. Significant changes in basalization occurred [108]. The study found that
heat stress induces DNA demethylation in Arabidopsis thaliana genes but not in intergenic
regions [103]. High-temperature stress reduces methylation levels, mainly due to the
inhibition of DNA methylase activity, resulting in reduced DNA methylation levels [109].
In addition, it may also increase the activity of DNA demethylases. DNA demethylases are
enzymes responsible for removing methyl groups from DNA molecules [110]. Therefore,
high temperatures may lead to reduced levels of DNA methylation, in part due to increased
demethylation of the methyl groups. Histone methylation and acetylation have not been
well characterized in woody plants under heat stress. In other species, in Arabidopsis
thaliana, histone methylation occurs mainly at Lys4 (K9), Lys9 (K27), Lys27 (K36), Lys36
(K17), Arg17 (R3) and Arg3 of histone H3 [111]. Compared with MLT stress, H3K9ac
and H3K4me3 levels are higher under HT, which may lead to chromatin relaxation and
thereby activate gene expression [112]. When grapes are exposed to a high temperature of
45 ◦C, the phosphorylation sites and acetyl sites undergo significant changes. Compared
with phosphorylation, acetylation regulates more photosynthesis-related proteins and is
more sensitive to high temperature. Acetylation can balance phosphorylation in terms
of protein activity, and phosphorylation and acetylated proteins work together to affect
the heat tolerance of grapes [113]. Studying epigenetics can help plants cope with high
temperature stress, maintain cell homeostasis, and improve their adaptability. Although
the research has made some progress, further research is still needed to understand the
epigenetic mechanism in different plant species and under different high-temperature
stress conditions to reveal its detailed regulatory network and mechanism of action. These
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studies are of great significance for improving the high-temperature tolerance of plants and
the sustainability of plant production.

6. Summary and Prospect

The effects of high-temperature stress on woody plants were reviewed from the aspects
of seed germination, plant morphology, physiology, biochemistry and genomics. Under
high-temperature stress, the germination rate of plant seeds decreased, and the germination
time was prolonged. Plant leaves are wrinkled and dry, and they fall off. Physiologically
and biochemically, high temperature causes MDA and ROS accumulation and membrane
lipid peroxidation, which leads to the destruction of cell membrane structure and function.
Osmotic regulatory substances accumulate in the body to regulate cell osmotic pressure,
maintain osmotic balance and stabilize cell structure. The activity of antioxidant enzymes
is increased to reduce the oxidation of cells and maintain the stability of the structure. This
will reduce the synthesis of photosynthetic pigments, destroy the cell structure and reduce
the activity of enzymes, which will reduce photosynthetic efficiency. In genomics, changes
in gene expression, DNA structure, protein synthesis and function further affect the growth
and development of woody plants.

At present, many research achievements have been made on the effects of high-
temperature stress on woody plants, but research on the heat resistance of woody plants
has not yet formed a complete system. The future research should focus on the adaptation
mechanism and regulation mechanism of woody plants under high-temperature stress and
improve the tolerance of woody plants to high-temperature stress through gene editing.
At the same time, we should also explore the different responses of different organs to
high-temperature stress and different woody plants to high-temperature stress. Under
the background of climate change, studying the genes related to the heat tolerance of
woody plants is helpful to screen stress-resistant plant varieties and improve the stress-
resistant ability of plants, which will significantly improve their yield and quality when
used in agricultural crops. Exploring and expounding the physiological and molecular
mechanisms of woody plants under high-temperature stress will also help to effectively
select new varieties of woody plants with high-temperature resistance.
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