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Abstract: The MOR (Morphogenesis-related NDR kinase) signaling network, initially identified in
yeast, exhibits evolutionary conservation across eukaryotes and plays indispensable roles in the
normal growth and development of these organisms. However, the functional role of this network and
its associated genes in maize (Zea mays) has remained elusive until now. In this study, we identified a
total of 19 maize MOR signaling network genes, and subsequent co-expression analysis revealed that
12 of these genes exhibited stronger associations with each other, suggesting their potential collective
regulation of maize growth and development. Further analysis revealed significant co-expression
between genes involved in the MOR signaling network and several genes related to cold tolerance.
All MOR signaling network genes exhibited significant co-expression with COLD1 (Chilling tolerance
divergence1), a pivotal gene involved in the perception of cold stimuli, suggesting that COLD1 may
directly transmit cold stress signals to MOR signaling network genes subsequent to the detection of
a cold stimulus. The findings indicated that the MOR signaling network may play a crucial role in
modulating cold tolerance in maize by establishing an intricate relationship with key cold tolerance
genes, such as COLD1. Under low-temperature stress, the expression levels of certain MOR signaling
network genes were influenced, with a significant up-regulation observed in Zm00001d010720 and
a notable down-regulation observed in Zm00001d049496, indicating that cold stress regulated the
MOR signaling network. We identified and analyzed a mutant of Zm00001d010720, which showed a
higher sensitivity to cold stress, thereby implicating its involvement in the regulation of cold stress in
maize. These findings suggested that the relevant components of the MOR signaling network are
also conserved in maize and this signaling network plays a vital role in modulating the cold tolerance
of maize. This study offered valuable genetic resources for enhancing the cold tolerance of maize.

Keywords: maize; MOR signaling network; cold stress; cold tolerance

1. Introduction

The MOR signaling network is indispensable for the proper growth and development
of eukaryotes [1,2]. The signaling pathway, initially discovered in yeast, plays a crucial role
in governing cell morphogenesis, polarity, and cytokinesis in Saccharomyces cerevisiae [3–9].
Mutations in the MOR components of yeast result in cellular demise or impairments in
cellular polarity [6,10]. The MOR signaling network is highly conserved across eukaryotes
and likely plays a pivotal role in the regulation of plant stem cell maintenance as well as
cell polarization [1,2].

The MOR signaling network comprises two protein kinases, KIC1 (Kinase that interacts
with cell division cycle1) and CBK1 (Cell wall biosynthesis kinase1), along with three

Plants 2023, 12, 3639. https://doi.org/10.3390/plants12203639 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants12203639
https://doi.org/10.3390/plants12203639
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://doi.org/10.3390/plants12203639
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants12203639?type=check_update&version=1


Plants 2023, 12, 3639 2 of 12

associated proteins, MOB (Mps one binder), MO25 (Mouse embryo scaffolding protein25)
and TAO3/FRY (Transcriptional activator of OCH1/Furry) [1,6,11,12]. Among them, CBK1
serves as the pivotal component of this regulatory pathway. This protein is a serine-
threonine protein kinase belonging to the NDR (Nuclear Dbf2 Related) kinase family
and exerts its influence on cellular growth and development through phosphorylation
of downstream effector proteins [1,2,13]. The activation of CBK1 is facilitated by MOB,
and its interaction with CBK1 is essential for the regulation of kinase activity [6,8]. KIC1
is a GCK (germinal center kinase) in the Ste20 (sterile 20 protein) kinase family and is a
MAP4K (mitogen-activated protein kinase kinase kinase kinase) which phosphorylates
CBK1, thereby activating its function [12,14]. The protein MO25 functions as an activator for
KIC1, while TAO3/FRY serves as a mediator linking the interaction between KIC1-MO25
and CBK1-MOB, thereby facilitating the phosphorylation of CBK1 by KIC1 [9,12,15].

Cold stress significantly impedes the growth, development, and distribution of plants,
thus, posing a substantial threat to agricultural production [16]. Plants have developed
diverse molecular mechanisms to effectively respond to cold stress, and several key regula-
tory factors in response to this environmental condition have been identified [17–20]. The
perception of cold stimuli involves the cell membranes, calcium channels, and COLD1, a
gene encoding G-protein regulator [18,19,21]. After perceiving the cold stimulus, plants
initiate a diverse array of regulatory networks to induce the expression of COR (Cold
regulated) genes [19]. The CBF/DREB1 (C-repeat binding factor/Dehydration-responsive
element binding factor1)-dependent transcriptional regulatory pathway represents the
central mechanism underlying plant responses to cold stress [22]. The up-regulation of the
CBF/DREB1 gene in response to low temperature triggers the activation of the COR gene’s
expression and subsequent accumulation of protective substances, including osmolytes
and cryoprotective proteins, thus enhancing cold tolerance [22]. ICE1 (Inducer of CBF
expression1) and ICE2 facilitate the expression of CBF/DREB1 genes, thereby positively
regulating cold tolerance [23–25]. The phosphorylation of ICE1 is a critical factor in the
regulation of plant cold tolerance, and under cold stress conditions, the Arabidopsis protein
kinase OST1/SnRK2.6 (Open stomata1/SNF1-related protein kinase2.6) phosphorylates
ICE1 to enhance its transcriptional activity and stability [26]. Moreover, Arabidopsis MPK3
(mitogen-activated protein kinase3) and MPK6 phosphorylate ICE1, thereby attenuating its
protein stability and impairing its target binding activity [27,28]. However, in rice, OsMPK3
exerts a positive regulatory role in enhancing cold resistance by impeding the degradation
of OsICE1 during periods of cold stress [29].

Maize (Zea mays) is globally recognized as one of the most pivotal crops [30–32], with
seed germination and seedling growth being particularly susceptible to cold stress, espe-
cially during the early spring season [33–36]. The growth of maize leaves and seedlings
was adversely affected by the reduced rate of cell division caused by low temperatures [37].
When the temperature drops below −2.2 ◦C for a few minutes and remains below 0 ◦C
for more than 4 h, the stems, leaves, and ears suffer irreparable damage [34]. The for-
mation rate of leaves is decelerated by low temperatures, leading to a reduction in the
overall leaf count [38]. Moreover, the growth of maize roots is also influenced by lower
temperatures [39]. Consequently, exposure to lower temperatures can result in impaired
germination, inhibited seedling growth, and even tissue or whole plant mortality, thereby
potentially leading to crop failure [33,40,41]. Currently, several key genes involved in the
response of maize to cold stress have been identified, such as RR1 (Response regulator 1),
CesA (Cellulose synthase), MPK8, bZIP68 (basic leucine zipper 68), bZIP113, TSAH1 (Tryptophan
synthase A homolog1), DREB1s, and ICE1 [42–46]. The identification of these genes holds
significant implications for enhancing the cold tolerance of maize. However, the current
comprehension regarding cold tolerance-related genes in maize remains incomplete. The
exploration of more cold tolerance-related genes and regulatory mechanisms is of great
significance for the development of cold-tolerant maize varieties. The MOR signaling net-
work is necessary for normal growth and development of eukaryotes, potentially serving
as a pivotal regulator in plant stem cell maintenance and cell polarization [1]. Furthermore,
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the MOR signaling network genes of Arabidopsis exhibit predominant expression in the
shoot apical meristem and inflorescence meristem [1], and these developmental stages of
maize are susceptible to cold stress [33–35]. The MOR signaling network genes potentially
participate in the regulation of cold stress response in maize.

In this study, the genes comprising the MOR signaling network in maize were iden-
tified through sequence similarity searches using known components of Arabidopsis. The
co-expression analysis was employed to ascertain the potential involvement of MOR signal-
ing network genes in the regulation of cold stress in maize. Moreover, utilizing qRT-PCR
(quantitative real-time polymerase chain reaction) analysis, it was ascertained that cold
stress exerts regulatory effects on the expression of genes within the MOR signaling net-
work. Subsequently, a mutant of one of these genes was identified and analyzed, thus
elucidating its pivotal role in governing cold tolerance in maize. The results of this study
will contribute to the elucidation of the regulatory mechanism underlying cold tolerance in
maize and provide valuable gene resources for the breeding of cold-tolerant maize varieties.

2. Results
2.1. Identification of Pivotal Components of Maize MOR Signaling Network

The Arabidopsis MOR signaling network genes were employed to query the maize
genome annotation database using BLASTp, resulting in the identification of a total of
19 maize MOR signaling network genes. Among these genes, only one exhibits homology
to Arabidopsis KIC1 kinase, another one shows homology to TAO3/FRY protein, four share
homology with MO25 protein, six exhibit homology with MOB protein, and seven show
homology with CBK1 protein (Figure 1A; Table S1). These 19 genes together constitute
the MOR signaling network of maize, which may play a crucial role in growth and de-
velopment. To further ascertain whether the identified MOR pathway genes belong to
the same signaling network, we conducted a co-expression analysis among these genes.
The KIC1 coding gene Zm00001d034055; TAO3/FRY coding gene Zm00001d051839; MO25
coding genes Zm00001d006710, Zm00001d021954, and Zm00001d007058; MOB coding genes
Zm00001d049496 and Zm00001d024510; as well as CBK1 coding genes Zm00001d039526,
Zm00001d008791, Zm00001d009940, Zm00001d031040, and Zm00001d010720 exhibit sig-
nificant co-expression with each other (Figure 1B; Table S2). The results of co-expression
analysis unveiled a robust interrelationship among these 12 genes out of the 19 MOR signal-
ing network genes identified in this study, implying their potential collective regulation on
the growth and development of maize. Furthermore, the interactions among these 12 genes
were analyzed utilizing the Pathway Mapping function provided by the MaizeNetome
website (http://minteractome.ncpgr.cn/, accessed on 15 August 2023) [47], unveiling po-
tential interconnections and implying their participation in a common regulatory pathway
(Figure 1C). Therefore, we have chosen these 12 genes as essential components of the maize
MOR signaling network for further examination.

2.2. Co-Expression Analysis of MOR Signaling Network Genes and Cold Tolerance-Related Genes
Revealed the Potential Regulatory Mechanism of Cold Tolerance in Maize

To elucidate the contribution of MOR signaling network genes to cold stress tolerance
in maize, we conducted a co-expression analysis between MOR signaling network genes
and cold tolerance-related genes. The findings revealed a significant co-expression between
genes involved in the MOR signaling network and multiple cold tolerance-related genes
(Figure 2A; Table S3). All MOR signaling network genes showed significant co-expression
with COLD1, a pivotal gene involved in the perception of cold stimuli [18]. These findings
suggested that upon detection of a cold stimulus, COLD1 may directly transmit a signal
of cold stress to genes involved in the MOR signaling network. Furthermore, eight, eight,
seven, and six MOR signaling network genes were significantly co-expressed with bZIP68,
MPK6, CESA4, and ICE2, respectively (Figure 2A; Table S3). These genes have previously
been identified as pivotal regulators of cold tolerance in maize and Arabidopsis [24,44–46].
These results indicated that the MOR signaling network may be involved in the regulation
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of cold tolerance of maize. Moreover, we used the Pathway Mapping function of the
MaizeNetome website (http://minteractome.ncpgr.cn/, accessed on 15 August 2023) [47]
to analyze the interaction between cold tolerance-related genes and CBK1 genes, as CBK1
potentially belongs to the MOR signaling network member that directly governs cold
tolerance-related genes. The potential interaction between CBK1 and these cold tolerance-
related genes further suggests the involvement of the MOR pathway in regulating cold
tolerance (Figure 2B).
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Figure 1. Identification of MOR signaling network genes in maize. (A) Phylogenetic analysis of MOR
signaling network genes in maize and Arabidopsis. A total of 19 maize MOR signaling network genes
were identified. The neighbor-joining algorithm is employed for the assessment of evolutionary
distances. The numbers at the nodes represent the percentage of 1000 bootstraps. (B) Co-expression
analysis of 19 maize MOR signaling network genes. In total. 12 of the genes had stronger correlations.
(C) These 12 genes potentially interact with each other. The network map was generated using the
Pathway Mapping function available on the MaizeNetome website (http://minteractome.ncpgr.cn./,
accessed on 15 August 2023).

2.3. The Expression of Certain MOR Signaling Network Genes in Maize Was Regulated by Cold Stress

We subjected maize B73 seedlings to cold treatment and assessed the expression of
Zm00001d034055, Zm00001d051839, Zm00001d006710, Zm00001d049496, and Zm00001d010720,
following cold stress using qRT-PCR. These five genes encode KIC1, TAO3/FRY, MO25,
MOB, and CBK1, respectively, and represent key components of the MOR pathway. The
results of gene expression analysis revealed a significant up-regulation in the expression of
Zm00001d010720 following cold treatment, as compared to the control, while there was a
significant down-regulation in the expression level of Zm00001d049496 (Figure 3). Further-
more, the expression levels of Zm00001d034055, Zm00001d051839, and Zm00001d006710
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did not show any significant variation following cold treatment compared to the control
(Figure 3). The findings suggested that the expression of some MOR signaling network
genes was regulated by cold stress, potentially contributing to the modulation of cold
tolerance in maize.

Plants 2023, 12, x FOR PEER REVIEW 5 of 13 
 

 

and CBK1 genes, as CBK1 potentially belongs to the MOR signaling network member that 

directly governs cold tolerance-related genes. The potential interaction between CBK1 and 

these cold tolerance-related genes further suggests the involvement of the MOR pathway in 

regulating cold tolerance (Figure 2B). 

 

Figure 2. The MOR signaling network potentially participates in the regulation of cold tolerance in 

maize. (A) MOR signaling network genes and cold tolerance-related genes were significantly co-

expressed. (B) There are potential interactions between CBK1 and genes related to cold tolerance. 

The network map was generated using the Pathway Mapping function available on the 

MaizeNetome website (http://minteractome.ncpgr.cn/, accessed on 15 August 2023). 

2.3. The Expression of Certain MOR Signaling Network Genes in Maize Was Regulated by Cold 

Stress 

We subjected maize B73 seedlings to cold treatment and assessed the expression of 

Zm00001d034055, Zm00001d051839, Zm00001d006710, Zm00001d049496, and 

Zm00001d010720, following cold stress using qRT-PCR. These five genes encode KIC1, 

TAO3/FRY, MO25, MOB, and CBK1, respectively, and represent key components of the 

MOR pathway. The results of gene expression analysis revealed a significant up-regula-

tion in the expression of Zm00001d010720 following cold treatment, as compared to the 

control, while there was a significant down-regulation in the expression level of 

Zm00001d049496 (Figure 3). Furthermore, the expression levels of Zm00001d034055, 

Zm00001d051839, and Zm00001d006710 did not show any significant variation following 

cold treatment compared to the control (Figure 3). The findings suggested that the expres-

sion of some MOR signaling network genes was regulated by cold stress, potentially con-

tributing to the modulation of cold tolerance in maize. 

Figure 2. The MOR signaling network potentially participates in the regulation of cold tolerance
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website (http://minteractome.ncpgr.cn/, accessed on 15 August 2023).
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Figure 3. Cold stimulation regulated the expression of certain genes in maize in the MOR signaling
network. ** significant at p < 0.01 by the Student’s t test.

2.4. The Mutant of zm00001d010720 Exhibited Heightened Susceptibility to Cold Stress

We further identified and analyzed a mutant zm00001d010720, which encodes the CBK1
kinase. The mutation of Zm00001d010720 is a C-to-T substitution in exon 5, which results
in the transformation of a glutamine residue to a premature stop codon, resulting in the
partial deletion of the catalytic domain of kinase in Zm00001d010720, potentially impacting
its protein functionality (Figure 4A). Fourteen-day-old WT (wild type) and zm00001d010720
seedlings were subjected to a 24-h cold treatment at 4 ◦C and then we observed the growth
of the plants after two days of recovery at 25 ◦C. After cold treatment, the zm00001d010720
seedling exhibited wilting and subsequent mortality, whereas the WT seedling displayed
normal growth (Figure 4C,E,G). However, both the WT and zm00001d010720 seedlings
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without cold treatment could grow normally in the same period (Figure 4B,D,F). The results
demonstrated that the mutation in the Zm00001d010720 gene, which encodes CBK1 kinase,
significantly impaired the cold tolerance of maize. This finding suggested that this gene
plays a regulatory role in modulating the response of maize to low-temperature stress.
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Figure 4. The mutant zm00001d010720 showed increased susceptibility to cold stress. (A) Schematic
diagram of Zm00001d010720 gene with indicated mutation sites (top) and protein conserved domains
(bottom). Black boxes represent coding regions, gray boxes represent the 5′ and 3′ untranslated
regions, and lines represent introns. SNP, single-nucleotide polymorphism; AA, amino acids; *, stop
gained. (B) Before cold treatment, the phenotypes of wild type and mutant seedlings in control group.
Scale bar, 1 cm. (C) Before cold treatment, the phenotypes of wild type and mutant seedlings in cold
stress group. Scale bar, 1 cm. (D) The phenotype of wild type and mutant seedlings in control group
after 3 days. Scale bar, 1 cm. (E) The phenotypes of wild type and mutant seedlings after treatment
at 4 ◦C for one day and recovery at 25 ◦C for two days. The mutant seedling displayed wilting and
subsequent mortality. Scale bar, 1 cm. (F) Mutation site analysis of wild type and mutant seedlings in
control group. (G) Mutation site analysis of wild type and mutant seedlings in cold stress group.
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3. Discussion
3.1. Relevant Components of the MOR Signaling Network Exhibit Conservation in Maize

In this study, we identified a total of 19 MOR signaling network genes in maize,
12 of which were more closely related to each other and they may collaborate to govern the
growth and development of maize, suggesting the conservation of MOR signaling network
components in maize (Figure 1; Tables S1 and S2). The MOR signaling pathway was
first discovered in yeast and is necessary for normal growth and development [3–9]. This
signaling pathway has received limited attention in plants and has only been reported in
Arabidopsis [1,2]. The MOR signaling network genes of Arabidopsis are mainly expressed as
the shoot apical meristem and inflorescence meristem, which may play a crucial regulatory
role in plant stem cell maintenance and cell polarization [1]. Currently, the elucidation
of this signaling pathway in maize and its regulatory mechanisms governing plant cold
tolerance remains elusive. However, it is expected that the expression pattern of these genes
in maize will be similar to that observed in Arabidopsis. Additionally, at these developmental
stages, maize is susceptible to cold stress hazards [33–35] and MOR signaling network
genes possess the potential to participate in the regulation of the maize cold stress response.
Furthermore, the functional characterization of these 12 MOR signaling network genes in
maize remains unreported. However, the function of its homologous genes in Arabidopsis
has been partially documented and these genes in maize may also exhibit similar functions
to their counterparts in Arabidopsis. The Arabidopsis KIC1 protein is implicated in the
regulation of cellular polarity, cell proliferation, cell expansion, and antibacterial immune
responses [48–50]. The Arabidopsis TAO3/FRY protein is potentially implicated in the
G-protein signaling pathway and exerts an influence on morphogenesis [51]. Furthermore,
the Arabidopsis MOB protein interacts with KIC1 and CBK1 and is involved in the regulation
of cell proliferation, cell expansion, pollen development and germination, and plant growth
and development [48,52,53]. And, the Arabidopsis CBK1 protein plays a pivotal role in
various aspects of growth and development, including embryogenesis, pollen development,
and germination [53–55]. The findings of these studies suggested that genes involved
in the MOR signaling network may also play a vital role in regulating maize growth
and development.

3.2. The MOR Signaling Network Genes Play a Crucial Role in the Regulation of Cold Tolerance in Maize

Our study revealed significant co-expression between genes related to the MOR sig-
naling network and multiple genes associated with cold tolerance in maize, with all MOR
signaling network genes exhibiting a close relationship to COLD1, a pivotal gene involved
in perceiving cold stimuli (Figure 2A; Table S3). After perceiving the cold stimulus, maize
COLD1 may transmit a signal to the MOR signaling network genes, thereby triggering a
cold tolerance response that is dependent on this specific signaling cascade. COLD1 encodes
the G-protein regulator [18,19,21], and the G-protein signaling pathway represents a crucial
mechanism for transducing extracellular signals into intracellular responses [51]. The
Arabidopsis TAO3/FRY protein exhibits a close association with the G-proteins [51], suggest-
ing that COLD1 may potentially mediate the transmission of cold signals via TAO3/FRY.
Through its interaction with KIC1 and CBK1, TAO3/FRY facilitates the phosphorylation
of CBK1 by KIC1, thereby activating the MOR pathway to regulate growth, development,
and stress response [9,12,15]. KIC1 can induce extracellular ROS (reactive oxygen species)
burst, thereby positively modulating immune responses in Arabidopsis [49]. Furthermore,
ROS also plays a crucial role in the regulation of cold stress response [20]. These results
suggested that KIC1 may play a role in the regulation of cold stress through the modulation
of ROS. In this study, the expression levels of some MOR pathway genes were modulated
in response to cold stress, exhibiting a significant up-regulation in Zm00001d010720 and a
notable down-regulation in Zm00001d049496 (Figure 3), indicating that cold stress regulated
the MOR signaling network. These two genes encode the CBK1 kinase and MOB protein, re-
spectively, which play a crucial role in regulating plant growth and development [48,52–55]
and may modulate the cold tolerance of maize during the seedling. Our further study



Plants 2023, 12, 3639 8 of 12

found that the mutation of Zm00001d010720 rendered maize more susceptible to cold
stress (Figure 4). This observation indicated that the MOR signaling network genes exert a
positive regulatory influence on cold stress in maize. The mutation site of Zm00001d010720
is situated at amino acid position 302 within the protein-coding sequence, resulting in
premature termination of the protein sequence at this site and subsequent deletion of
several crucial protein binding sites, such as active sites and polypeptide substrate binding
sites (Figure S1). In the future, we can identify proteins that interact with this protein of
the WT and zm00001d010720 and subsequently compare their differences to identify key
downstream proteins associated with cold tolerance. Furthermore, we also analyzed up-
stream transcription factors that may regulate the expression of Zm00001d010720. Through
co-expression analysis, we identified 252 transcription factors that exhibited co-expressions
with Zm00001d010720 (Table S4), further using the maize gene expression data from qTeller
(https://qteller.maizegdb.org/, accessed on 13 August 2023). In total, 39 of these tran-
scription factors were identified as having at least twofold changes in expression after
cold stress, and these 39 transcription factors were more likely to act as regulatory genes
upstream of Zm00001d010720 (Table S4). We also used the plant promoter analysis website
Plantpan4.0 (http://plantpan.itps.ncku.edu.tw/plantpan4/index.html, accessed on 13 Au-
gust 2023) to analyze the promoter region of Zm00001d010720 and identified that 8 of these
39 transcription factors may have binding sites in the promoter region of Zm00001d010720
(Figure S2; Table S4). The presence of bZIP68 (Zm00001d050018), a well-documented key
gene associated with maize cold tolerance [46], among these eight identified transcription
factors suggests that Zm00001d010720 plays a pivotal role in the regulatory mechanisms
governing cold tolerance in maize. In conjunction with the above studies, we postulate that
the cold signal is transmitted to the MOR signaling pathway after being sensed by COLD1,
potentially facilitating both KIC1-mediated ROS generation and phosphorylation of ICE2,
ICE3, and other proteins via CBK1 to enhance the cold tolerance of maize (Figure 5).
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Figure 5. A putative model of the MOR signaling network regulating cold tolerance of maize. After
being sensed by COLD1, the cold signal is transmitted to the MOR signaling network, potentially
facilitating KIC1-mediated ROS generation, and phosphorylation of ICE2 and ICE3 via CBK1, thus
enhancing the cold tolerance of maize. CBK1, Cell wall biosynthesis kinase; COLD1, Chilling tolerance
divergence1; ICE2/3, Inducer of C-repeat binding factor expression2/3; KIC1, Kinase that interacts
with cell division cycle1; MOR, Morphogenesis-related NDR kinase; ROS, reactive oxygen species.
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4. Materials and Methods
4.1. Plant Materials

The materials used in this study included maize inbred line B73 (stored within our
laboratory) and an ethylmethane sulfonate (EMS)-mutagenized stop-gained mutant (EMS4-
0ab1d7, zm00001d010720) which were obtained from the Maize EMS-induced Mutant
Database (MEMD; https://elabcaas.cn/memd/public/index.html#/, accessed on 20 Au-
gust 2023) [56].

4.2. Identification of MOR Signaling Network Genes in Maize

The maize genome dataset downloaded from maizeGDB (Maize Genetics and Ge-
nomics Database, https://www.maizegdb.org/, accessed on 13 August 2023) was searched
using BLASTp to identify the MOR signaling network genes, with the query sequences
derived from the MOR signaling network genes in Arabidopsis [1].

4.3. Phylogenetic Analysis

The protein sequences of maize MOR signaling network genes were downloaded
from maizeGDB, and the protein sequence of Arabidopsis MOR signaling network genes
was downloaded from NCBI (National Center for Biotechnology Information, https://
www.ncbi.nlm.nih.gov/, accessed on 13 August 2023). Protein sequences were aligned
using MUSCLE in the MEGA5.1 software (v.5.1.1). The neighbor-joining algorithm was
employed to assess evolutionary distances, while phylogeny testing was performed using
the bootstrap method with 1000 replicates.

4.4. Co-Expression Analysis

The maize gene expression data from qTeller (https://qteller.maizegdb.org/, accessed
on 13 August 2023) was utilized to perform a co-expression analysis of MOR signaling
network genes with each other, as well as the co-expression analysis between MOR sig-
naling network genes and cold tolerance-related genes (COLD1, ICE1, ICE2, ICE3, MPK6,
MPK8, bZIP61, bZIP68, bZIP80, CesA1, CesA4, and CesA5) using SPSS software (v.24.0).
Given the direct manifestation of leaf damage in maize following cold stress [44–46], we
extracted 24 leaf-related expression data from the qTeller for co-expression analysis (Table
S5). Significant co-expression was observed when the Pearson’s correlation coefficient
was ≥0.60 [57].

4.5. RNA Extraction and qRT-PCR Analysis

The seeds of B73 were sown in pots and grown under controlled conditions at a
temperature of 25 ◦C with a photoperiod of 16 h light and 8 h darkness. When the
seedlings were fourteen days old, they were subjected to a cold stress treatment at 4 ◦C
for a duration of 24 h. B73 cold-treated leaves and control leaves were taken, respec-
tively, and 3 biological replicates were collected. All samples were immediately frozen
in liquid nitrogen and stored at −80 ◦C. The total RNA from each sample was extracted
using Trizol reagent (Invitrogen, Carlsbad, CA, USA). The expression of Zm00001d034055,
Zm00001d051839, Zm00001d006710, Zm00001d049496, and Zm00001d010720 in cold stressed
B73 and control was validated using qRT-PCR. The Fast Quant RT Kit (TianGen, Beijing,
China) was used to synthesize the first strand cDNAs. The qRT-PCR was then conducted
using the Bio-Rad iQ5 (Bio-Rad, Hercules, CA, USA) according to the SuperReal PreMix
Plus (SYBR Green) instructions (TianGen, Beijing, China). All reactions were performed
with three technical replicates, and the expression levels were normalized using GAPDH
(Glyceraldehyde-3-phosphate dehydrogenase) as an internal reference. The qRT-PCR primers
are listed in Table S6.

4.6. Identification and Analysis of Mutant zm00001d010720

An EMS-mutagenized stop-gained mutant (EMS4-0ab1d7) of Zm00001d010720 was
obtained from MEMD (https://elabcaas.cn/memd/public/index.html#/, accessed on
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20 August 2023) [56]. The material was grown at the Chongzhou Modern Agricultural
Research and Development Base, Sichuan Agricultural University. The row length was 3 m,
and the row width was 0.6 m with a plant spacing of 0.3 m within rows. The genotypes of
each plant were determined using PCR, and the homozygous mutant seeds were obtained
through self-pollination. The primers are listed in Table S6. The homozygous seeds of
zm00001d010720 and B73 were sown in pots and cultivated under controlled conditions
at a temperature of 25 ◦C, with a photoperiod consisting of 16 h of light followed by 8 h
of darkness. The fourteen-day-old seedlings were treated with cold stress at 4 ◦C for
24 h. After cold stress, the plants recovered at 25 ◦C for 2 days, and then the growth
was observed.

5. Conclusions

In summary, we have successfully identified 19 maize MOR signaling network genes
for the first time and observed that 12 of them exhibit a higher degree of co-expression,
suggesting the conservation of these signaling network components in maize and their
potential significance in maize growth and development. The subsequent analysis revealed
the involvement of MOR signaling network genes in the regulation of cold tolerance.
The expression levels of some MOR pathway genes were regulated under cold stress,
and the mutation in Zm00001d010720, which codes CBK1, confers increased cold stress
sensitivity upon maize. These findings suggested that genes associated with the MOR
signaling network play a pivotal role in modulating cold tolerance in maize. This study
has contributed novel genetic resources to facilitate the development of cold-tolerant
maize varieties.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/plants12203639/s1, Table S1: List of 19 MOR signaling network genes
in maize; Table S2: Co-expression analysis of 19 maize MOR signaling network genes; Table S3: Co-
expression analysis of MOR signaling network genes and cold tolerance-related genes; Table S4: Up-
stream transcription factors analysis of Zm00001d010720; Table S5: Expression data for co-expression
analysis in this study; Table S6: Primers used in this study; Figure S1: Analysis of protein conserved
domain of Zm00001d010720; Figure S2: Promoter analysis of Zm00001d010720.
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