
Citation: Perez, V.C.; Zhao, H.; Lin,

M.; Kim, J. Occurrence, Function, and

Biosynthesis of the Natural Auxin

Phenylacetic Acid (PAA) in Plants.

Plants 2023, 12, 266. https://doi.org/

10.3390/plants12020266

Academic Editor: Tongda Xu

Received: 19 November 2022

Revised: 14 December 2022

Accepted: 3 January 2023

Published: 6 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Review

Occurrence, Function, and Biosynthesis of the Natural Auxin
Phenylacetic Acid (PAA) in Plants
Veronica C. Perez 1, Haohao Zhao 2 , Makou Lin 1 and Jeongim Kim 1,2,3,*

1 Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611, USA
2 Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
3 Genetic Institute, University of Florida, Gainesville, FL 32611, USA
* Correspondence: jkim6@ufl.edu

Abstract: Auxins are a class of plant hormones playing crucial roles in a plant’s growth, development,
and stress responses. Phenylacetic acid (PAA) is a phenylalanine-derived natural auxin found widely
in plants. Although the auxin activity of PAA in plants was identified several decades ago, PAA
homeostasis and its function remain poorly understood, whereas indole-3-acetic acid (IAA), the most
potent auxin, has been used for most auxin studies. Recent studies have revealed unique features of
PAA distinctive from IAA, and the enzymes and intermediates of the PAA biosynthesis pathway have
been identified. Here, we summarize the occurrence and function of PAA in plants and highlight the
recent progress made in PAA homeostasis, emphasizing PAA biosynthesis and crosstalk between
IAA and PAA homeostasis.
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1. Introduction

Auxins are best known as plant hormones crucial for plant growth, development, and
survival. Several endogenous auxins are found in plants [1–3]. Among them, indole-3-acetic
acid (IAA) has been commonly used for studying auxin’s function and its biosynthesis.
Phenylacetic acid (PAA) is a phenylalanine-derived auxin. Although the auxin activity
of PAA was demonstrated nearly a century ago and has been detected widely in plants,
PAA homeostasis and its function remain poorly understood. Here, we review the oc-
currence and function of PAA and the recent findings on PAA homeostasis, focusing on
PAA biosynthesis.

2. Occurrence of PAA

Auxin activity of PAA was reported in the 1930s, however, PAA was first isolated in
plants in the 1960s. Acidic fractions of aqueous extract from etiolated seedlings of Phaseolus
were shown to promote the growth of oat coleoptile sections, and further analysis identified
that these acidic fractions contained PAA [4]. Subsequently, PAA was detected in various
plants. Interestingly, most organs and species accumulate PAA to significantly higher levels
than IAA [5–7]. In Arabidopsis, the PAA contents range from 200 to 3500 pmol/gFW
depending on the organs, which is higher than IAA in most organs, except silique [7–11]
(Table 1). Other dicots, such as tomato, pea, sunflower, and tobacco accumulate around 600
to 1600 pmol/gFW of PAA in their shoots, which is also several folds greater than their IAA
contents [5,12]. However, the PAA content in Tropaeolum majus (<16 pmol/gFW) is lower
than IAA (>70 pmol/gFW) [13]. Monocots and non-vascular plants accumulate 300 to
5000 pmol/gFW of PAA, similar to other dicots [5,7,11,12,14,15] (Table 1). Taken together,
PAA is widely distributed in the plant kingdom, and overall, PAA accumulates more than
IAA in most plants.

Plants 2023, 12, 266. https://doi.org/10.3390/plants12020266 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants12020266
https://doi.org/10.3390/plants12020266
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0002-2969-9404
https://orcid.org/0000-0002-5618-3948
https://doi.org/10.3390/plants12020266
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants12020266?type=check_update&version=1


Plants 2023, 12, 266 2 of 11

Table 1. Occurrence of PAA in plants, showing plant tissue, PAA, and IAA contents (if available).

Species Name Plant Tissue (PAA Content) Plant Tissue (IAA Content) Reference

Arabidopsis (Arabidopsis thaliana)

Seedling (413 pmol/gFW)
Dry seed (3250 pmol/gFW)

Silique (800 pmol/gFW)
Inflorescence (1900 pmol/gFW)
Cauline leaf (400 pmol/gFW)
Rosette leaf (250 pmol/gFW)

Stem (200 pmol/gFW)
Root (1100 pmol/gFW)

Seedling (49 pmol/gFW)
Dry seed (1950 pmol/gFW)
Silique (2000 pmol/gFW)

Inflorescence (130 pmol/gFW)
Cauline leaf (30 pmol/gFW)
Rosette leaf (33 pmol/gFW)

Stem (50 pmol/gFW)
Root (130 pmol/gFW)

[7–11]

Bean (Phaseolus vulgaris) Shoot N/A [4]

Tomato (Lycopersicon esculentum) Shoot (1616 pmol/gFW) Shoot (211 pmol/gFW) [5,12]

Pea (Pisum sativum)

Shoot (632 pmol/gFW)
Root (347 pmol/gFW)

Cotyledon (451 pmol/gFW)
Epicotyl (427 pmol/gFW)

Shoot (126 pmol/gFW)
Root (115 pmol/gFW)

Cotyledon (13 pmol/gFW)
Epicotyl (46 pmol/gFW)

[5,6,12]

Sunflower (Helianthus annuus) Shoot (1484 pmol/gFW) Shoot (245 pmol/gFW) [5,12]

Tobacco (Nicotiana tabacum) Shoot (1234 pmol/gFW) Shoot (228 pmol/gFW) [5,12]

Cotton (Gossypium hirsutum) Cotyledon N/A [16]

Nasturtium (Tropaeolum majus)

Root (12 pmol/gFW)
Hypocotyl (14 ng/gFW)
Shoot (12 pmol/gFW)

Leaf stalk (13 pmol/gFW)
Older leaf (11 pmol/gFW)

Root (679 pmol/gFW)
Hypocotyl (166 ng/gFW)
Shoot (103 pmol/gFW)

Leaf stalk (74 pmol/gFW)
Older leaf (86 pmol/gFW)

[13]

Sorghum (Sorghum bicolor) Leaf (300 pmol/gFW) N/A [15]

Maize (Zea mays) Shoot (903 pmol/gFW) Shoot (143 pmol/gFW) [5,12]

Barley (Hordeum vulgare) Shoot (514 pmol/gFW)
Young shoot (4353 pmol/gFW)

Shoot (63 pmol/gFW)
Young shoot (30 pmol/gFW) [5,7,12]

Oat (Avena sativa) Young shoot (3860 pmol/gFW) Young shoot (31 pmol/gFW) [7]

Ostrich fern (Matteuccia struthiopteris)

Crozier (2790 pmol/gFW)
Young rachis (1470 pmol/gFW)

Immature pinnae (4860 pmol/gFW);
Mature pinnae (2380 pmol/gFW)
Fertile pinnae (2490 pmol/gFW)

Crozier (119 pmol/gFW)
Young rachis (219 pmol/gFW)

Immature pinnae (161 pmol/gFW)
Mature pinnae (67 pmol/gFW)
Fertile pinnae (70 pmol/gFW)

[14]

Moss (Physcomitrella patens) 1049 pmol/gFW 14 pmol/gFW [7]

Liverwort (Marchantia polymorpha) 469 pmol/gFW 74 pmol/gFW [7]

pmol/gFW is uniformly used as the unit of an approximate amount of PAA. N/A; not available in the same paper.

3. Biological Function of PAA

The auxin activity of PAA was identified through three classical auxin activity tests:
the pea test, cylinder test, and oat bending test [17]. All three tests revealed PAA has less
than 10% of IAA activity [17]. One of the most representative functions of PAA is the
promotion of root growth and development [6,8,13,18,19]. PAA induced the root formation
of tomato, sunflower, marigold, artichoke, buckwheat, dahlia, and tobacco when applied
to the stem [20]. PAA application promoted the formation of adventitious roots of cress
hypocotyls, sugar-beet seedlings, and pea epicotyls [21]. Furthermore, leaf explants of
Ajuga bracteosa on growth media supplemented with PAA increased the frequency of
root induction and biomass [19]. Arabidopsis seedlings treated with PAA increased the
formation of lateral roots, although PAA showed a 10- to 20-fold lower activity than IAA [7].
However, some studies showed stronger activity of PAA than IAA. In pea seedlings, PAA
induced more lateral root primordia and emerged lateral roots and longer lengths of lateral
roots compared to those of IAA [6,18].
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PAA impacts the aerial parts of plants as well [7,11,22,23]. Daily exogenous appli-
cation of PAA on tomato plants for 2 weeks significantly increased tomato height [22].
The PAA application led to epinastic leaves of artichokes [20], stimulated the elongation
of wheat coleoptile and moss gametophore [7,23], and promoted the elongation of the
Phaseolus internode [24]. Arabidopsis plants with increased PAA production showed
elongated hypocotyls and epinastic leaves, similar to those observed in high-IAA Ara-
bidopsis plants [11]. The supplementation of PAA also induced callus formation in tobacco,
sunflower, chickpea, and lentil, but the optimal concentration of PAA for tobacco callus in-
duction was 3–4 times higher than IAA [25,26]. Similar to IAA, PAA application to leafless
cotyledon retarded the petiole abscission in cotton and inhibited ethylene evolution [16].

PAA, itself, has anti-microbial and anti-fungal activities, and the exogenous applica-
tion of PAA enhances tolerance to pathogen infections, whereas increased IAA in plants
enhances susceptibility to pathogens [27–29]. For example, the exogenous application of
PAA on citrus inhibits the incidence of fungus molds caused by Penicillium digitatum and
P. italicum [30]. Herbivore infestation in maize, poplar, and plumeria increases PAA
production [31–33]. The application of PAA in oilseed rape enhances the prevention
of Sclerotinia sclerotiorum, and the in vitro treatment with PAA demonstrated adverse ef-
fects through the disruption of the cell wall and cytoplasm in mycelia [34]. However, any
biological role of PAA in a plant’s defense remains unknown.

The first step of auxin action starts from auxin sensing by the auxin receptors (TIR1
and AFBs), which results in the degradation of transcription repressors Aux/IAAs [35].
Shimizu-Mitao and Kakimoto showed PAA-dependent degradation of Aux/IAA [35].
Interaction of Aux/IAAs with auxin receptors, TIR1 or AFB2, leads to the degradation
of Aux/IAA [35]. They showed that PAA induced Aux/IAA degradation with lower
activity than IAA [35]. Sugawara et al. showed that PAA application rescued the growth
defects of IAA-deficient plant, yuc quadruple mutant (yucQ) [7]. In the same study, a yeast
two-hybrid assay and a pull-down assay revealed that PAA promoted the interaction of
auxin receptors and Aux/IAA in vitro, suggesting that the sensing and signaling modes of
PAA are similar to IAA [7].

It is noteworthy, however, that PAA does not engage in polar auxin transport [7,16,36–38].
The labeled PAA transport assay using pea epicotyls revealed that the transport of PAA
barely occurs in both the basipetal and acropetal directions [36]. PAA applied to the apical
bud of intact pea plants did not move in the long-distance basipetal transport [38]. Auxin
polar transport inhibitor, naphthylphthalamic acid (NPA), inhibited IAA transport, but
NPA did not affect the PAA gradient patterns in cotton, pea, and maize [7,16,37]. Unlike
IAA, PAA did not form concentration gradients in response to the gravitropic stimulation
via active and directional transport in maize [7]. However, PAA inhibited the IAA polar
transport in the internode segments and long-distance movement of the pea apical bud [38].

4. PAA Homeostasis

As auxins regulate a vast array of processes, changes in the content or distribution
of auxins can have profound effects on plant growth and development and, in extreme
cases, can lead to severe dwarfism or sterility [39–42]. Auxin homeostasis refers to the
spatio-temporal distribution of auxin throughout plant tissues and organs, which governs
plant growth and development. Although several processes, including auxin transport,
conjugation, and degradation, influence auxin homeostasis, de novo biosynthesis directly
affects the local concentration of auxins.

4.1. PAA Biosynthesis

The main route of IAA biosynthesis from tryptophan in plants is the YUCCA path-
way [43–52] (Figure 1a). The first step of this pathway is the conversion of tryptophan to
indole-3-pyruvate (IPA) by the enzymes belonging to the Tryptophan Aminotransferase of
Arabidopsis (TAA) family [53–56]. Then, flavin-containing mono-oxygenases belonging
to the YUCCA (YUC) family convert the IPA to IAA [42,55,57–60]. This pathway is also
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believed to contribute towards PAA biosynthesis (Figure 1b), as several studies have shown
that the TAA and YUC enzymes can convert phenylalanine to phenylpyruvate (PPA) and
PPA to PAA in vitro, respectively [7,54,59,61,62]. YUCCA overexpression increases endoge-
nous PAA or PAA conjugate content [7]. However, the TAA and YUC mutants sometimes
show little or no change in the PAA content, despite the significant alterations to the IAA
content. For example, the maize YUC1-deficient mutant de18 has an over 90% reduction
in free and total IAA contents, while the PAA content is not significantly affected, and
the tar2-1 pea mutant displays a near complete loss of free IAA but no change in the PAA
levels [61]. Similarly, in Arabidopsis, the yuc1yuc2yuc6 triple and yuc3yuc5yuc7yuc8yuc9
quintuple mutants have wild-type levels of PAA but 40–50% reductions in the IAA con-
tent [7]. However, the TAA1 deficient mutant wei8-1 displays a 20% and 80% reduction in
PAA and IAA, respectively [7]. These findings suggest that these enzymes may function in
the PAA biosynthesis in plants but may not be major players in the PAA biosynthesis in
some species [35].
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Figure 1. Schematic diagrams of IAA biosynthesis: (a) PAA biosynthesis, (b) and a link between
IAA and PAA homeostasis in plants (c). The pathways only include steps and enzymes that are
demonstrated via genetic evidence. Solid arrows represent single reactions catalyzed by known
enzymes, and dotted arrows represent predicted single or multiple steps. Blue arrows and metabolites
represent pathways and metabolites present only in Brassicales species. IAA, indole-3-acetic acid;
IAA-AA, amino acid-conjugated IAA; IAN, indole-3-acetonitrile; IAOx, indole-3-acetaldoxime; IPA,
indole-3-pyruvate; MeIAA, methyl-conjugated IAA; oxIAA, 2-oxindole-3-acetic acid; oxIAA-AA,
amino acid-conjugated oxIAA; PAA, phenylacetic acid; PAA-AA, amino acid-conjugated PAA; PAOx,
phenylacetaldoxime; Phe, phenylalanine; PPA, phenylpyruvate; Trp, tryptophan; AT, amino trans-
ferase; CYP79, cytochrome P450 mono-oxygenase of the 79 family; DAO, dioxygenase for auxin
oxidation; FMO, flavin-containing mono-oxygenase; GH3, Gretchen Hagen 3 auxin-amido synthetase;
ILR, IAA-Leu Resistant IAA-Amino hydrolase; IAMT, IAA carboxymethyltransferase; NIT, nitri-
lase; PAT, prephenate aminotransferase; PDT, prephenate dehydratase; PPA-AT, phenylpyruvate
aminotransferase; TAA, tryptophan aminotransferase of Arabidopsis; TS, tryptophan synthase; UGT,
UDP-glucuronosyltransferase; YUC, YUCCA family of flavin-containing mono-oxygenase; VAS;
methionine aminotransferase.

In plants and prokaryotes, phenylalanine biosynthesis from prephenate occurs through
two routes: transamination of prephenate to arogenate, which is subsequently decar-
boxylated and dehydrated into phenylalanine, or decarboxylation and dehydration of
prephenate to form phenylpyruvate (PPA), which is converted to phenylalanine through
transamination [63–65] (Figure 1c). Generally, the PPA pathway is more commonly found in
prokaryotes, while the arogenate pathway is the major route of phenylalanine biosynthesis
in plants; however, there is evidence for both pathways existing and making significant
contributions in several plant and bacterial species [63–65]. Thus, the modification of the
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PPA metabolism may impact PAA biosynthesis not only directly by being converted to
PAA but also indirectly by affecting phenylalanine pools in plants (Figure 1c).

Aoi et al. demonstrated that arogenate dehydratase (ADT), the enzyme that catalyzes
the conversion of arogenate to phenylalanine, affects PAA biosynthesis, as the overexpres-
sion or knockout of ADTs result in increased or decreased PAA contents, respectively [10].
As arogenate serves as a precursor of phenylalanine, increased ADT activity results in
increases in phenylalanine-derived metabolites, such as PAA. They also detected changes
in the PPA levels upon the modulation of ADT activity that followed the trends measured
for the PAA content (i.e., ADT overexpression resulted in increased levels of PAA and
PPA) [10], supporting the role of PPA as a precursor of PAA.

Another PAA biosynthesis pathway is the aldoxime pathway, using phenylalanine-
derived aldoxime, phenylacetaldoxime (PAOx), as an intermediate [8,10,11,15,66]. Al-
doximes, such as indole-3-acetaldoxime (IAOx) and PAOx, as well as the aldoximes derived
from other amino acids, are well characterized as precursors of various specialized metabo-
lites, such as glucosinolates, cyanogenic glycosides, and camalexin as well as nitrogenous
volatiles [31,33,67–72]. Several studies have shown that IAA can be made from IAOx in
Brassicales and monocots [11,73–75] (Figure 1a). Similarly, it was shown that PAOx is a
precursor of PAA in Arabidopsis and monocots [8,11,15] (Figure 1b). Arabidopsis plants
overproducing PAOx increase PAA and display altered morphology, such as epinasty leaves
and elongated hypocotyls, similar to those shown in plants with increased IAA [8,11,42].
Maize and sorghum plants fed with labeled PAOx produce labeled PAA [11,15]. These
findings indicate a wider distribution of the aldoxime-derived auxin biosynthesis pathway
throughout the plant kingdom rather than being limited to Brassicales.

The first step of the aldoxime pathway is the production of IAOx or PAOx by the
cytochrome P450 mono-oxygenases of the 79 family (CYP79s) [8,11,15,32,66]. In addition
to the CYP79 enzymes, flavin-containing mono-oxygenases (FMOs) in two fern species
have been shown to catalyze the conversion of phenylalanine to PAOx [76]. Aldoximes
contribute to auxin pools through two routes (Figure 1a,b). In Brassicales plants, both
IAOx and PAOx are precursors of family-specific glucosinolates. Glucosinolates and their
degradation enzyme beta-thiol-glucosidases, known as myrosinases, are stored in separate
cellular and subcellular compartments [77–80]. However, upon herbivore or pathogen
attack, these compartments are compromised, resulting in glucosinolate hydrolysis by
myrosinases and the rapid release of toxic metabolites, such as isothiocyanates, nitriles
and epithionitriles [81–83]. Glucosinolate turnover has also been shown to occur in vivo
without tissue damage or disruption [84–87]. Nitriles, such as indole-3-acetonitrile (IAN)
and benzyl cyanide, are byproducts of glucosinolate degradation. These nitriles can
then be acted upon by nitrilase enzymes to generate IAA and PAA [13,88–92]. On the
other hand, aldoximes can be converted to auxins through the aldoxime-derived auxin
pathway, which is glucosinolate-independent and is present in both the Brassicales and
non-Brassicales species as maize and sorghum [11,15]. A recent study demonstrated that
benzyl cyanide serves as an intermediate of PAOx-derived PAA biosynthesis in maize and
sorghum [15]. Application of benzyl cyanide increases PAA in maize and sorghum, and
both species convert labeled benzyl cyanide to labeled PAA [15], suggesting that nitriles
may be key intermediates in both routes of the aldoxime pathway (Figure 1a,b). Unlike
the YUCCA pathway, the aldoxime-derived auxin pathways do not appear to be the main
route of auxin biosynthesis under normal growth conditions. For example, the Arabidopsis
IAOx deficient mutant, cyp79b2 cyp79b3 (b2b3) double mutant, grows normally under
optimal temperatures [73], and the CYP79A2 gene encoding the PAOx production enzyme
is barely expressed in the vegetative tissue of Arabidopsis ecotype Col-0 [11]. However,
at high temperatures and under salt stress, the b2b3 mutant displays a low auxin growth
phenotype [73,93], suggesting that the aldoxime pathway contributes significantly towards
stress-induced auxin production. Indeed, many CYP79 enzymes have their expression
induced by stressors such as herbivory or by treatment with stress hormones such as
jasmonic acid [31,32,68,72,94]. Given that aldoximes often serve as precursors of defense
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metabolites, the aldoxime pathway may play a role in modulating plant growth during the
defense response.

Aside from PPA, PAOx, and benzyl cyanide, several other metabolites have been
implicated in PAA biosynthesis, although where they fit within the known biosynthetic
pathways is unclear. Several labeled feeding experiments have demonstrated that pheny-
lacetaldehyde (PAAld) is derived from the phenylalanine metabolism and produced along
with labeled PAA [5,95]. PAAld biosynthesis from PPA has been shown to occur in the rose
through the actions of phenylpyruvate decarboxylases [96]. Additionally, in roses as well as
other species, PAAld has been shown to be directly synthesized from phenylalanine by the
action of aromatic aldehyde synthases or aromatic amino acid decarobylases [96–100]. Once
PAAld is synthesized, it can potentially be acted upon by the aldehyde oxidases to generate
PAA, which has been demonstrated to have activity for PAAld in maize [101]. Another
metabolite, 4-phenylbutyric acid (4PBA), was recently shown to display an auxin-like
effect during plant regeneration via conversion to PAA using a mechanism independent
of IBR3-catalyzed oxidation [102]. Further study showing altered PAA contents upon the
removal of intermediate biosynthesis enzymes may reveal the role(s) that these metabolites
play in PAA biosynthesis.

4.2. PAA Inactivation

Another major facet of auxin homeostasis is the conversion of active auxins to inactive
forms. The inactivation of auxin not only supports the formation of auxin gradients and the
maintenance of auxin levels but is also necessary to prevent cytotoxic levels of auxins from
accumulating in cells. IAA inactivation proceeds through two pathways: reversible IAA
conjugation (to glucose, methyl, or amino acids) and irreversible IAA conjugation (to amino
acids) and oxidation, with recent findings demonstrating that amino acid-conjugated IAA
is oxidized and then subsequently hydrolyzed to form oxidized IAA [103,104]. As with
biosynthesis, knowledge of PAA inactivation is limited compared to our understanding of
IAA inactivation. Multiple studies have demonstrated that some Gretchen Hagen 3 IAA-
amido synthetase (GH3) and UDP-glucuronosyltransferase (UGT) enzymes have activity
towards PAA to generate PAA conjugates, such as PAA-asp, PAA-glu, and PAA-glucose,
respectively [7,105–108] (Figure 1b).

4.3. Metabolic Interaction between IAA and PAA

More recent studies have shown a link between IAA and PAA homeostasis. The
homeostasis of IAA and PAA was shown to be maintained through the modulation of auxin
conjugation, with the accumulation of PAA resulting in the induction of GH3 or UGT genes
that preferentially act upon IAA and vice versa [8,9]. Lynch et al. showed that PPA could,
in addition to its previously defined and proposed impacts of PAA biosynthesis, impact
IAA biosynthesis by serving as an amino acceptor in the TAA-catalyzed conversion of
tryptophan to IPA [109]. This interaction not only promotes the production of IAA but may
also impact PAA biosynthesis, as an increased flux through the PPA route of phenylalanine
biosynthesis was shown to decrease steady-state levels of phenylalanine [109] (Figure 1c).
Perez et al. demonstrated that the accumulation of PAA results in the transcriptional
downregulation of genes related to tryptophan and IAA biosynthesis in Arabidopsis [11],
demonstrating a complex regulatory network for maintaining auxin homeostasis.

5. Conclusions

In the past decades, several biochemical and genetic studies have identified key
metabolites, enzymes, and pathways that contribute towards IAA metabolism. While
many questions remain regarding PAA homeostasis, recent studies have greatly expanded
our understanding of how PAA is synthesized and inactivated. The role of PPA as a
metabolite linking together phenylalanine, IAA, and PAA biosynthesis has been supported
by genetic studies and suggests that the PPA-derived PAA biosynthesis is more complex
than the corresponding IAA biosynthetic pathway. Meanwhile, the occurrence of PAOx
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as a PAA precursor in Brassicales and monocots suggests that this hidden pathway may
be distributed widely in the plant kingdom and contribute towards PAA homeostasis
wherever PAOx is produced. Additionally, the identification of PAA-amino acid and PAA-
glucose conjugates within Arabidopsis has provided mechanisms for PAA inactivation,
which may be shared among other species and may employ similar pathways used in IAA
inactivation. Future investigation is needed to reveal other potential PAA biosynthesis and
inactivation pathways, as well as the physiological roles of these pathways.
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