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Abstract: Tomato (Solanum lycopersicum) fruits are derived from fertilized ovaries formed during
flower development. Thus, fruit morphology is tightly linked to carpel number and identity. The
SUPERMAN (SUP) gene is a key transcription repressor to define the stamen–carpel boundary and
to control floral meristem determinacy. Despite SUP functions having been characterized in a few
plant species, its functions have not yet been explored in tomato. In this study, we identified and
characterized a fascinated and multi-locule fruit (fmf ) mutant in Solanum pimpinellifolium background
harboring a nonsense mutation in the coding sequence of a zinc finger gene orthologous to SUP. The
fmf mutant produces supersex flowers containing increased numbers of stamens and carpels and sets
malformed seedless fruits with complete flowers frequently formed on the distal end. fmf alleles in
cultivated tomato background created by CRISPR-Cas9 showed similar floral and fruit phenotypes.
Our results provide insight into the functional conservation and diversification of SUP members in
different species. We also speculate the FMF gene may be a potential target for yield improvement in
tomato by genetic engineering.

Keywords: tomato (Solanum lycopersicum); Solanum pimpinellifolium; fruit morphology; flower
development; locule number; SUPERMAN

1. Introduction

Tomato is one of major vegetable fruit crops cultivated worldwide, providing a rich
resource of nutrients for human diets. As a typical type of fleshy fruit, tomato fruits develop
from fertilized ovaries undergoing substantial post-fertilization growth, but many features
of fruit morphology are defined during flower development. For example, the elongated
and pear fruit shapes found in some cultivars are mainly defined by ovary shape before
fertilization. Indeed, the two major fruit shape genes SUN and OVATE set ovary shape [1,2].
In cultivated tomato, the fruits have multiple locules derived from carpels. Thus, the locule
number is largely attributed to the number of carpels formed during flower development,
which is mainly controlled by LOCULE NUMBER (LC, ortholog of WUS) and FASCIATED
(FAS, ortholog of CLV3) [3–6].

The bisexual tomato flower, like most angiosperm flowers, consists of four distinctive
whorls of floral organs: sepals in the outmost whorl, petals in the second whorl, and
stamens and carpels in the respective third and fourth whorls. The number of individ-
ual floral organs are varied among cultivated tomato accessions, but the wild ancestor
S. pimpinellifolium flower has five sepals, five petals, five stamens fused at the base to form
a cone-like structure, and a single pistil formed by two fused carpels [7]. The number and
position of floral organs in each whorl is governed by floral homeotic genes and cadastral
genes controlling floral organ boundary [8,9]. SUPERMAN (SUP) is the first identified
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boundary gene playing a crucial role in maintaining the boundary between stamen and
carpel whorls in Arabidopsis flowers because the typic floral phenotype observed in sup
mutants is the increased number of stamens at the expense of carpels [10,11]. The extra
stamens in sup mutants likely resulted from an identity change in some whorl 4 cells,
through which their fate was changed from female to male [12]. SUP encodes a transcrip-
tion factor containing a C2H2 type zinc finger DNA binding domain and an EAR-like
repressor domain [11,13,14]. Its specific expression at the boundary between whorl 3 and
4 prevents the expression of APETALA3 (AP3) and PISTILLATA (PI) reaching the central
region of the floral meristem [11,12].

Characterization of SUP orthologs in a few plant species, including rice (Oryza sativa),
Petunia hybrida, and Medicago truncatula, has revealed functional conservation and diver-
gence. The sup mutants of Petunia hybrida (phsup1) also show an increased stamen number
at the expense of carpels, but form extra tissues connecting the inner three whorls [15]. Rice
small reproductive organs (sro) harboring a mutation in a SUP-like gene does not show defects
in floral organ number and organ identity, instead the mutant has smaller stamens and pis-
tils [16]. Mutations in the Medicago SUPERMAN (MtSUP) gene cause an increased number
of the inner three whorls and more flowers formed on individual inflorescence, indicating
the MtSUP gains novel functions in the legume species [17]. It has been proposed that the
transcriptional divergences detected in the flowers between Arabidopsis and Medicago un-
derlie the functional diversification [18]. Similarly, this kind of expression divergence may
be also applicable to the rice SUP ortholog, since SRO is specifically expressed in stamen
filaments, not at the stamen–carpel boundary [16]. Because SUP orthologs have been only
characterized in a few plant species, it remains to determine whether expression divergence
explains the evolution of SUP functions. Nevertheless, the phenotypic variations observed
in these sup mutants highlight the need to explore the functions of SUP orthologs in more
plant species.

As shape and size are important fruit quality traits in tomato [19–22], understanding
how key regulatory genes control the number of floral organs, especially the carpel number,
not only sheds new light on gene conservation and diversification but also provides new
strategies for breeding new varieties to meet the increasing demand for diverse fruit quality.
In this study, we report the characterization of FMF, orthologous to SUP, regulating floral
organ number, and ovary development in tomato.

2. Results
2.1. Phenotypic Analysis of the Fmf Mutant

Through screening for mutants showing fruit phenotypes including shape and size, we
identified one such mutant in an Ethyl Methane Sulphonate (EMS)-mutagenized S. pimpinelli-
folium (accession LA1781) population. The mutant named fasciated and multi-locule fruit (fmf )
had abnormal fruit morphology. The fmf mutant also exhibited abnormal flower development.
Compared with the wild type (LA1781), fmf flowers had apparently normal sepals and petals,
but its stamen cones were cracked and styles often split and shorter (Figure 1A–H). Dissection
of floral organs revealed that fmf flowers had more than five stamens, in contrast to the five
stamens constantly observed in the wild type flower (Figure 1I,J). fmf carpels had either unfused
multiple ovaries connected at the base or multiple styles failed to be fused together at the distal
end (Figure 1K–P). fmf ovaries contained multiple locules (carpels) and in most cases without
ovule developed (Figure 1Q–V). Quantification of floral organs at anthesis showed that the
numbers of stamens and carpels had significantly increased in fmf, on average 8.9 stamens and
6.2 carpels were formed (Figure 1W). fmf styles were dramatically shortened (Figure 1X). In
addition, fmf mutation had a weak impact on inflorescence development: fmf inflorescences
were shorter, containing slightly fewer flowers (Supplemental Figure S1).

Though fmf set fruits poorly (Supplemental Figure S1A), multiple-locule partheno-
carpic fruits were formed occasionally (Figure 2A–D). Strikingly, complete flowers were
often formed at the distal ends of these seedless fmf fruits (Figure 2E). To test the function-
ality of fmf stamens and carpels, we either pollinated fmf pistils with wild type pollens or
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wild type pistils with fmf pollens. fmf flowers pollinated with wild type pollens produced
seedless fruits, whereas wild type plants produced seeded fruits when pollinated with fmf
pollens (Figure 2F,G). These results suggest that fmf is female-sterile but male-fertile.
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Figure 1. Floral phenotypes of fmf and wild type. (A–D) Unopened (A,C) and anthesis (B,D) flowers 
of the fmf mutant (C,D) and wild type ((A,B), LA1781). (E–H) Anther cones of wild type (E) and fmf 
(F–H). (I,J) Dissected anthers from a single flower of wild type (I) or fmf (J). (K–P) Dissected carpels 
of wild type (K) and fmf (L–P). (Q–V) Transversely spliced ovaries of wild type (Q) and fmf (R–V). 
(W) Quantification of the numbers of floral organs of wild type and fmf. (X) Style length of wild type 
and fmf. Measurements in (W,X) were conducted on 100 flowers from 10 plants for each genotype. 
Data represent means ± SD. p values were calculated using Student’s t-test. Scale bar: 5 mm (A–D), 
500 mm (E–V). 
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Figure 1. Floral phenotypes of fmf and wild type. (A–D) Unopened (A,C) and anthesis (B,D) flowers
of the fmf mutant (C,D) and wild type ((A,B), LA1781). (E–H) Anther cones of wild type (E) and fmf
(F–H). (I,J) Dissected anthers from a single flower of wild type (I) or fmf (J). (K–P) Dissected carpels
of wild type (K) and fmf (L–P). (Q–V) Transversely spliced ovaries of wild type (Q) and fmf (R–V).
(W) Quantification of the numbers of floral organs of wild type and fmf. (X) Style length of wild type
and fmf. Measurements in (W,X) were conducted on 100 flowers from 10 plants for each genotype.
Data represent means ± SD. p values were calculated using Student’s t-test. Scale bar: 5 mm (A–D),
500 mm (E–V).
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wild type (A) and fmf (B). (C,D) Transversely sliced fruits of wild type (C) and fmf (D). (E) A repre-
sentative fmf fruit showing extra flowers developed on the distal parts of the fruit. (F) Images of 
parthenocarpic fruits developed from fmf flowers pollinated with wild type pollens. (G) Seeded 
fruits developed from wild type flowers pollinated with fmf pollens. Scale bar, 1 cm. 

We further investigated the development of fmf flowers by histological analysis and 
scanning electronic microscopy (SEM). Histological analysis revealed that the fmf muta-
tion did not affect sepal and petal formation (Figure 3A–E). The first noticeable difference 
between wild type and fmf flowers was observed after stamen primordia were formed, 
which meant that in fmf flowers an additional whorl of stamen primordia was developed 
in between the third and fourth whorls (Figure 3C,F). Later, fmf flowers developed more 
carpels (Figure 3G–L). In the center of the fmf flowers, there were often flower structures 
(Figure 3J). SEM analysis also confirmed that the timing and position of sepal and petal 
primordia were not impacted by fmf mutation (Figure 4A–D), while extra stamen and car-
pel primordia were developed afterward (Figure 4E–H). When wild type flowers reached 
anthesis stage, their pistils were almost closed, like a closed mouth (Figure 4I,J). In con-
trast, the pistils failed to be enclosed in fmf flowers (Figure 4K,L). Within the fmf flowers, 
new complete flower-like structures were also observed (Figure 4K). These results indicate 
that mutation in the FMF gene mainly affects the development of the two innermost 
whorls, stamens, and carpels. 

Figure 2. Fruit development of fmf and wild type. (A,B) Representative images of mature fruits
of wild type (A) and fmf (B). (C,D) Transversely sliced fruits of wild type (C) and fmf (D). (E) A
representative fmf fruit showing extra flowers developed on the distal parts of the fruit. (F) Images
of parthenocarpic fruits developed from fmf flowers pollinated with wild type pollens. (G) Seeded
fruits developed from wild type flowers pollinated with fmf pollens. Scale bar, 1 cm.

We further investigated the development of fmf flowers by histological analysis and
scanning electronic microscopy (SEM). Histological analysis revealed that the fmf mutation
did not affect sepal and petal formation (Figure 3A–E). The first noticeable difference
between wild type and fmf flowers was observed after stamen primordia were formed,
which meant that in fmf flowers an additional whorl of stamen primordia was developed
in between the third and fourth whorls (Figure 3C,F). Later, fmf flowers developed more
carpels (Figure 3G–L). In the center of the fmf flowers, there were often flower structures
(Figure 3J). SEM analysis also confirmed that the timing and position of sepal and petal
primordia were not impacted by fmf mutation (Figure 4A–D), while extra stamen and carpel
primordia were developed afterward (Figure 4E–H). When wild type flowers reached
anthesis stage, their pistils were almost closed, like a closed mouth (Figure 4I,J). In contrast,
the pistils failed to be enclosed in fmf flowers (Figure 4K,L). Within the fmf flowers, new
complete flower-like structures were also observed (Figure 4K). These results indicate that
mutation in the FMF gene mainly affects the development of the two innermost whorls,
stamens, and carpels.

2.2. Molecular Cloning of the FMF Gene

To identify the causal mutation underlying the fmf phenotypes, we generated an F2
population by crossing the fmf mutant to cv. Moneymaker (LA2706). Rough mapping
was conducted by BSA-seq using pooled genomic DNA isolated from wild type and fmf
plants. The FMF locus was placed on a region around 66 Mb on chromosome 9 (ITAG4.0)
showing maximal difference in the SNP index (Figure 5A). Then, we performed fine map-
ping using 384 fmf plants from the segregation population. Using Indel markers, the FMF
locus was further narrowed down to an 83.85 kb interval between markers xps2515 and
xps2452. The interval contains four annotated genes: Solyc09g089580, Solyc09g089590,
Solyc09g089600, and Solyc09g089610, which encode 2-oxoglutarate (2OG) and the Fe(II)-
dependent oxygenase superfamily protein, transcriptional regulator TAC1, the zinc finger
protein, and the ethylene receptor-like protein (ETR6), respectively (Figure 5B). After se-
quencing the four candidate genes, the fmf mutant only contains a nonsense mutation in
Solyc09g089590, which the cytosine at position 306 of the coding sequence was changed
to adenine and the mutation introduced a stop codon after translation of 101 amino acids
(102S*). Solyc09g089590 is a putative C2H2-type transcription factor containing transcrip-
tion repression domain—the EAR-motif [13,14]. The deduced fmf protein was truncated,
lacking the C-terminal containing the EAR-motif, suggesting that the fmf mutation may
impair its transcription in regulation activity.
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buds at the stages when sepal (A), petal (B), and stamen (C) was formed, respectively. (D–F) Parafilm
sections of fmf flower buds at stages similar to wild type showing in (A–C). (G–I) Parafilm sections
of mature wild type flowers (one day before anthesis). (J–L) Parafilm sections of mature fmf flowers.
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at sepal initiation stage. (C,D) Flower buds of wild type (C) and fmf (D) in which petal primordia 
initiated. (E,F) Second whorl of stamen primordia formed in fmf flower buds. (G,H) Carpel fusion 
just started in wild type (G) and fmf (H) flower buds. Multi-carpels were observed in fmf, contrasting 
to two carpels in wild type. (I–L) Overview of mature wild type (I,K) and fmf (K,L) flowers and close 
examination of their stigma (J,L). The white boxes in (I,K) indicate stigma parts observed in (J,L) 
and the red arrow in (K) points to a flower-like tissue developed within the fmf flower. se, sepal; pe, 
petal., st, stamen; ca, carpel; st’, extra stamen. Scale bar: 20 µm (A–H), 100 µm (I,K), 10 µm (J,L). 
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Figure 4. SEM analysis of fmf and wild type flowers. (A,B) Flower buds of wild type (A) and fmf
(B) at sepal initiation stage. (C,D) Flower buds of wild type (C) and fmf (D) in which petal primordia
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initiated. (E,F) Second whorl of stamen primordia formed in fmf flower buds. (G,H) Carpel fusion
just started in wild type (G) and fmf (H) flower buds. Multi-carpels were observed in fmf, contrasting
to two carpels in wild type. (I–L) Overview of mature wild type (I,K) and fmf (K,L) flowers and close
examination of their stigma (J,L). The white boxes in (I,K) indicate stigma parts observed in (J,L)
and the red arrow in (K) points to a flower-like tissue developed within the fmf flower. se, sepal; pe,
petal., st, stamen; ca, carpel; st’, extra stamen. Scale bar: 20 µm (A–H), 100 µm (I,K), 10 µm (J,L).
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Figure 5. Cloning of the FMF gene. (A) SNP index of bulked DNA samples of wild type and fmf plants
from a F2 population derived from a cross between fmf (in LA1781 background) and Moneymaker
(LA2706). The graph shows that maximal SNP deviation between fmf and wild type was detected
around 67 Mb on chromosome 9. (B) Fine mapping of the FMF locus. The numbers beneath the
markers with the names starting with xps are the numbers of recombinants. FMF was placed on an
interval of 83.85 kb region containing four predicted genes. (C) Phylogenetic tree of FMF and its close
homologs in tomato and Arabidopsis. The tree was generated using MEGA7 with bootstrap of 1000.
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Sequence and phylogenetic analysis of Solyc09g089590 and its close homologs from tomato
and other species showed that Solyc09g089590 shares the highest similarity (e-value = 2 × 10−24)
and is grouped with Arabidopsis SUP and Petunia PhSUP1. SUP is thought to function as a
cadastral gene to maintain the floral organ boundaries, in which its mutation causes formation
of extra stamens at the expense of carpels [10]. Given fmf shows similar stamen phenotype with
Arabidopsis sup mutants, Solyc09g089590 is likely orthologous to SUP and the missense mutation
in this gene is responsible for the observed fmf floral morphology. However, tomato likely have
a paralog Solyc06g053720 close to SUP; it also shares the highest sequence identity with SUP
(e-value = 2 × 10−25). Moreover, on the inferred phylogenetic tree, Solyc09g089590/FMF was not
grouped with Arabidopsis TELOMERASE ACTIVATOR1 (TAC1), suggesting that it is unlikely
orthologous to TAC1 as annotated by international tomato genome sequencing project (version
ITAG4.0).

2.3. Creation of New fmf Alleles by CRISPR-Cas9

To further confirm that Solyc09g089590 underlies the FMF locus, we generated Solyc09g089590
mutants in Moneymaker background by CRISPR-Cas9. We obtained two different alleles fmf-
cr2 and fmf-cr4 that showed Solyc09g089590 was successfully edited; fmf-cr2 had 4 bp deletion
(+182~+185 start from start codon ATG) and fmf-cr4 had 9 bp deletion (+175~+183) (Supplemental
Figure S2A). The deletion in fmf-cr2 introduced premature translation stop codon after 63 amino
acids, which disrupted the conserved C2H2 zinc finger DNA binding domain encoding by
Solyc09g089590. The fmf-cr4 mutation resulted in loss of the first three amino acids of the invariant
QALGGH motif in the C2H2 domain, which also likely disrupted this functional domain. fmf-cr2
and fmf-cr4 showed identical flower phenotype (Supplemental Figure S2B–D, Figure 6). Thus, a
more detailed phenotypic analysis was conducted just on the fmf-cr2 allele. Like the fmf mutant in
LA1781 background, fmf-cr2 in Moneymaker background also had increased numbers of stamens
and carpels, shorter and unfused styles (Figure 6A–S). fmf-cr2 was also male fertile and set seedless
fruits, but unlike fmf fruits in LA1781 background, fmf-cr2 fruits only had cracks, no extra flower
structure was formed in the fruits (Figure 6T–X), suggesting that mutations in the FMF gene have
different impacts on cell proliferation and differentiation in whorl 4 between cultivated tomato
and its wild relatives. Nevertheless, both in LA1781 and Moneymaker backgrounds, mutations in
the FMF gene caused very similar defects in stamen and carpel development.

2.4. FMF Expression during Flower Development

We investigated FMF expression in developing flowers of wild type by in situ hy-
bridization. FMF transcripts were detected in stamen and carpel primordia at the early
flower stage, then in stamens when all floral organs were formed (Figure 7A–D). FMF was
also expressed weakly in petals and carpels, but not in sepals. Because WUS is a crucial
regulator of floral meristem identity and its ortholog SlWUS controls locule number in
tomato [3,6,23], we also compared its expression in wild type and fmf flowers. Compared
with wild type, SlWUS expression was much stronger in stamen and carpel primordia of
fmf flowers (Figure 7E,F).
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flowers of the fmf-cr2 mutant (B) and wild type ((A) Moneymaker). (C–E) Anther cones of wild type
(C) and fmf-cr2 (D,E). (F,G) Dissected anthers from a single flower of wild type (F) or fmf-cr2 (G).
(H–L) Dissected carpels of wild type (H) and fmf-cr2 (I–L). (M–Q) Transversely spliced ovaries of
wild type (M) and fmf (N–Q). (R) Quantification of the numbers of floral organs of wild type and
fmf. (S) Style length of wild type and fmf. Measurements in (R,S) were conducted on 40 flowers from
4 plants for each genotype. Data represent means ± SD. p values were calculated using Student’s
t-test. (T–W) Mature fruits of wild type (T,U) and fmf-cr2 (V,W). No seed was observed in fmf-cr2
fruits. (X) Seeded fruits developed from wild type flowers pollinated with fmf-cr2 pollens. Scale bar:
1 cm (A–E,T–X), 1 mm (F–L), 500 µm (M–Q).
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Figure 7. FMF expression in wild type flowers. (A–D) FMF expression wild type flowers revealed
by in situ hybridization. (A,B) Flower sections were probed by FMF sense probe. (C,D) Flower
sections were probed by FMF antisense probe. (E) SlWUS expression in wild type flowers. (F) SlWUS
expression in fmf flowers. Scale bar, 100 µm.

3. Discussion

In many cases, the fruit develops from the ovary after fertilization. Thus, flower
development has considerable impact on fruit morphology. For example, SUN, OVATE,
LC/SlWUS, and FAS/SlCLV3 control tomato fruit shape and size through their early actions
on ovary development [1–4,6,23,24]. In this study, we identified FMF that is likely ortholo-
gous to the Arabidopsis SUP gene controlling tomato fruit morphology. The fmf mutant
identified in EMS-mutagenized S. pimpinellifolium LA1781populations and the fmf-cr mu-
tants in S. lycopersicum cv. Moneymaker created by CRISPR-Cas9 showed almost identical
flower and fruit phenotypes except no flower structures were observed in the fmf-cr fruits
(Figures 1, 2 and 6). All fmf mutants contained more stamens and carpels, shorter and
often unfused styles, and fewer if not absent ovules. Moreover, the fmf mutants produced
functional pollens. These morphological features make the FMF gene a potential target for
genetic manipulation to create desirable fruit traits in tomato and other Solanaceous crops,
i.e., creating weak sup alleles to increase locule number.

Different sup alleles exhibit a wide spectrum of flower abnormality in Arabidopsis
and M. truncatula, ranging from superman to superwoman to supersex [8,17,18,25–28].
Compared with the sup mutants identified in other plant species, fmf mutants only had
supersex phenotype-producing bisexual flowers with more stamens and carpels, sharing
higher similarity with Arabidopsis sup-5 and M. truncatula mtsup-2 [8,17]. No fmf flower
showed superman (having extra stamens and carpelloid carpels) or superwoman (bisexual
flowers with all stamens on a single whorl and an indeterminate whorl 4) morphology
as observed in some alleles of Arabidopsis and M. truncatula sup mutants. Similarly,
low spectrum of phenotypic variations was also detected in the rice sro mutant and the
sup mutants of P. hybrida [15,16]. The differences in phenotypic variations observed in
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allelic sup mutants across plant species imply that SUP regulation may be integrated into
species–specific genetic networks controlling floral development.

Characterization of sup mutants in several plant species including Arabidopsis, M.
truncatula, P. hybrida, and rice has revealed the conservation and diversification of SUP
functions across plant species [8,10–12,15–17,25,27–42]. fmf, sup, phsup1 and mtsup mutants
have increased numbers of stamens and/or carpels in their respective flowers. Therefore,
the four eudicot species have conserved SUP functions in regulation of floral organ numbers.
However, rice rso flowers have reduced-size stamens and carpels but no changes in the
number and identity of floral organs [16], suggesting that SUP functions are not well
conserved between eudicots and monocots. It is also possible that SRO is not the true
ortholog of Arabidopsis SUP because it is grouped with RABBIT EAR (RBE), a close
homolog of SUP, though their relationship is not well supported by phylogenetic analysis.
SUP belongs to a subclade of the zinc finger protein family, containing a single C2H2 zinc
finger DNA binding domain and an EAR-repressor domain. It is notable that members
in this subclade share low sequence similarity in the regions beyond the two domains
as indicated by their phylogenetic relationships (Figure 5C). However, FMF is closer to
Petunia PhSUP1 and Arabidopsis SUP, providing additional evidence to support that FMF
is orthologous to SUP.

The differences in flower phenotypes among sup mutants of the five species may
be explained by different spatiotemporal expression patterns of SUP orthologs. FMF is
expressed in whorl 2 and 3 at early stage and mainly expressed in stamens at late stage. SUP
is expressed on the two sides of the stamen–carpel boundary [10–12,27,31,32]. However,
such an expression pattern is not observed for SRO, MtSUP, and PhSUP1 [15–17]. For
example, MtSUP is expressed in carpel primordia and the common primordia where petals
and stamens developed later, and SRO is specifically expressed in stamen filaments.

fmf mutants have a distinctive floral phenotype not observed in any other sup mu-
tants: complete flowers formed in the fmf ovaries/fruits in the genetic background of S.
pimpinellifolium LA1781 (Figures 2 and 6). Such a phenotype indicates that floral meristem
is not terminated in a timely manner in fmf flowers. It remains to further explore whether
additional genetic components are involved and what caused the incomplete penetration
in the cultivar Moneymaker. Given WUS is required for floral meristem identity [43], we
speculate that the SlWUS activity in LA1781 and Moneymaker flowers may be somewhat
different because the increased locule number in cultivated tomato is highly associated
with DNA variations in the SlWUS gene. In addition, FMF mutations also slightly affected
inflorescence length and the number of flowers formed on individual inflorescence. Never-
theless, our results from characterization of the FMF gene in tomato reveal an undescribed
SUP function.

4. Materials and Methods
4.1. Materials and Plant Growth Conditions

S. pimpinellifolium accession LA1781 and cultivated tomato cv. Moneymaker (LA2706)
were grown in phytotrons or plastic greenhouse. When grown in phytotron, plant pots
in blonde peat (Pindstrup Mosebrug A/S, Ryomgaard, Denmark) were grown under the
condition of temperatures of 18 to 25 ◦C with a relative humidity of 70–80% and illuminated
by 150 mE·m−2·s−1 light intensity for 16 h. Plants grown in a plastic greenhouse were
under natural solar radiation, and the during the growth season (late March to middle of
July) the temperature ranged from 15 to 29 ◦C and relative humidity from 32 to 90%.

4.2. Bulked-Segregant Analysis-Seq (BSA-Seq) and Map-Based Cloning

After examination of fruit morphology, individual fmf plants segregating in a F2 pop-
ulation derived from a cross between fmf (pollen donor) and Moneymaker were sampled
for DNA extraction using method previously described [2].

For BSA-seq, additional sampling was conducted, which leaves from around 100
plants for each genotype were pooled for the mutant and wild type before DNA extraction.
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The two pooled DNA samples were sequenced by Hiseq 2500 (Illumina). Raw reads
were quality checked by fastqc (version v0.11.9, http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/, accessed on 7 September 2019), followed by the removal of low-
quality reads and adaptor sequences by Trimmomatic (version 0.39, accessed on 22 February
2021) [44]. The processed clean reads were mapped to the tomato reference genome
ITAG4.0 downloaded from Sol Genomics Network (https://solgenomics.net/, accessed on
22 February 2021) using BWA-MEM (version BWA-0.7.17, 15 August 2021) [45]. Mapping
results were sorted by samtools faidx (version 1.13, accessed on 9 August 2021) [46]. We
used the functions AddOrReplaceReadGroups, MarkDuplicates, BamIndexStats in the
Picard software (release 1.119. http://broadinstitute.github.io/picard/, accessed on 16
January 2022) to further remove duplicates and index the mapped reads. SNPs were called
using the HaplotypeCaller program in GATK (v4.2.4.0, accessed on 16 January 2022) with
following parameters: -stand-call-conf 30 --native-pair-hmm-threads 15 -mbq 20 [47]. The
SNP index was then calculated for each allele as described previously [48]. Sliding window
analysis on SNP-index plots was carried out with 1 Mb window size and 10 kb increment
and the plot graph was draw by ggplot2 (https://github.com/tidyverse/ggplot2, accessed
on 20 February 2022).

After rough mapping, fine mapping was focused on an 8.14 Mb region (60.28–68.42 Mb) using
developed Indel and CAPS markers. Marker information can be found in Supplemental Table S1.

4.3. Generation of fmf-cr Mutants by CRISPR-Cas9

The design of target oligoes and vector construction were previously described [48].
Briefly, target oligoes containing AAATCAGCTCAAGCTCTTGG (start at 166 after ATG)
were designed using the online tool CRISPR-P (http://cbi.hzau.edu.cn/crispr/, accessed
on 6 March 2022) [49]. Oligoes after annealing were cloned into the psgR-Cas9-At vector
and further assembled into pCambia1300 [50]. The agrobacterium tumefaciens strain
GV3101 harboring the plasmid was used for plant transformation using Moneymaker
cotyledons as explants according to the method previously described [51].

4.4. Phylogenetic Analysis of FMF Homologs

Homologous proteins of Arabidopsis SUP and tomato FMF were identified by BlastP
using FMF protein sequence as query on Araport11 protein sequences of Arabidopsis
(TAIR, https://www.arabidopsis.org/, accessed on 7 December 2022) and ITAG4.0 protein
sequences of tomato (SGN, https://solgenomics.net/, accessed on 7 December 2022). The
sequences of SUP orthologs in Petunia, rice, and Medicago were retrieved from NCBI
(https://www.ncbi.nlm.nih.gov/protein/, accessed on 7 December 2022). Phylogenetic
analysis was conducted using the MEGA7.0 software [52]. The original phylogenetic tree
was constructed using the neighbor-joining method and then the bootstrap consensus tree
was inferred from 1000 replicates.

4.5. Microscopy

Flower buds at different developmental stages were collected and fixed in FAA fixative
solution at 4 °C overnight. The samples were dehydrated through ethanol series (50%
–70%–85%–95%–100%). For histological analysis, the flower samples were embedded in
Paraplast® (P3558, Sigma-Aldrich, St. Louis, MO, USA) and 10 µm sections were made
by a Leica microtome using a Leica microtome (Leica) and were briefly stained by 0.05%
toluidine blue. For SEM analysis, the flower samples after dehydration were subjected to
critical point drying in liquid nitrogen and coated with gold, then were examined under an
electronic microscope (Zeiss Merlin Compact, Oberkochen, Germany).

4.6. In Situ Hybridization

Flower buds were fixed in FAA overnight at 4 °C and embedded in Paraplast (Sigma-
Aldrich, St. Louis, MO, USA) after dehydration. The samples were then sliced into 8 µm
sections using a microtome (Leica, Wetzlar, Germany). After dewaxing and rehydration, the

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://solgenomics.net/
http://broadinstitute.github.io/picard/
https://github.com/tidyverse/ggplot2
http://cbi.hzau.edu.cn/crispr/
https://www.arabidopsis.org/
https://solgenomics.net/
https://www.ncbi.nlm.nih.gov/protein/
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sections were probed by digoxigenin-labeled sense and antisense riboprobes as previously
described [53].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12183341/s1, Figure S1: Inflorescence phenotype of fmf
and wild type; Figure S2: Generations of fmf mutants by CRISPR-CAS9; Table S1: Primers used in
this study.
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