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Abstract: Iron is an essential element required for the growth and survival of nearly all forms of life.
It serves as a catalytic component in multiple enzymatic reactions, such as photosynthesis, respiration,
and DNA replication. However, the excessive accumulation of iron can result in cellular toxicity
due to the production of reactive oxygen species (ROS) through the Fenton reaction. Therefore, to
maintain iron homeostasis, organisms have developed a complex regulatory network at the molecular
level. Besides catalyzing cellular redox reactions, iron also regulates virulence-associated functions in
several microbial pathogens. Hosts and pathogens have evolved sophisticated strategies to compete
against each other over iron resources. Although the role of iron in microbial pathogenesis in animals
has been extensively studied, mechanistic insights into phytopathogenic microbe–plant associations
remain poorly understood. Recent intensive research has provided intriguing insights into the role
of iron in several plant–pathogen interactions. This review aims to describe the recent advances in
understanding the role of iron in the lifestyle and virulence of phytopathogenic microbes, focusing
on bacteria and host immune responses.
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1. Introduction

Iron is accredited as the most abundant element on earth and ranks as the fourth most
abundant element in the earth’s crust. It can exist in various oxidation states, ranging from
−2 to +6. The primordial ocean had an abundance of ferrous iron, but oxygenation of the
earth’s environment led to its oxidation into the ferric form of iron. Iron commonly occurs
in biological systems in either the +3 (ferric) or +2 (ferrous) oxidation states [1]. Ferric iron
is abundant, relatively unreactive, and insoluble, while ferrous iron is scarce, reactive, and
soluble. The stable nucleus, ligand binding property, and ability to catalyze redox reactions
are some of the reasons why iron is an indispensable element in the genesis and evolution
of life [1,2].

Iron is an essential cofactor in cellular redox reactions due to its ability to transition
between ferrous and ferric oxidation states with moderate oxidation potential and its broad
range of ligand-binding capabilities [1,3]. The iron-bound proteins constitute around 50%
of all metalloproteins in living beings. The abundance of iron sulfur proteins with [2Fe-2S]
and [4Fe-4S] clusters in biological redox reactions is considered extremely ancient that
incorporated in life at the early stage of evolution (Figure 1) [4–7]. Iron is abundantly
distributed in various subcellular compartments, such as mitochondria, chloroplasts, lyso-
somes, Golgi complexes, nuclei, and nucleoli [8–11]. Iron metalloproteins play critical
roles in a broad range of cellular and physiological reactions, including erythropoiesis,
respiration, chloroplast/mitochondrial metabolism, host immunity, cell proliferation, and
amino acid and nucleic acid metabolism. Additionally, iron plays a crucial role in regulating
gene expression through various iron-associated transcription factors [12–16].
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Figure 1. Chemical structure of two of the most common iron–sulfur clusters: the 2Fe-2S (A) and
the 4Fe-4S (B) clusters. These iron–sulfur clusters have been present in life since the ancient stages of
evolution. Iron is abundantly present in metalloproteins as part of these iron–sulfur clusters, which
play a crucial role in cellular redox reactions.

The acquisition of iron is imperative for essential subcellular redox reactions in nearly
all forms of life, making the struggle for control over this resource a critical aspect of the
evolutionary battle between microbial pathogens and their hosts. Most research investi-
gating the role of iron in host–microbe interactions has focused on mammalian–pathogen
associations. Hosts have evolved sophisticated strategies for withholding iron to restrict
free-iron availability to colonizing pathogens. The ability to extract iron and adapt to
low-iron environments inside hosts is crucial in determining the survival and virulence
of several bacterial, protozoan, viral, and fungal pathogens on mammals [17–24]. Recent
extensive studies have provided mechanistic insights into the significance of iron home-
ostasis in the virulence of phytopathogenic bacteria, fungi, and viruses on plants. Iron
homeostasis in phytopathogenic microbes is regulated by complex regulatory networks
that are fine-tuned by the involvement of multiple known and unknown factors. Research
suggests a diverse and contrasting regulation of factors associated with iron homeostasis in
closely related phytopathogenic bacteria [25–27]. This review aims to discuss a comprehen-
sive overview of recent advances and understanding regarding the role of iron homeostasis
in the lifestyle and virulence of phytopathogenic microbes. Furthermore, this review de-
scribes research progress on the regulation of iron-dependent plant host responses against
microbial infections.

2. Mechanistic Insights into Phytopathogenic Bacterial Iron Homeostasis and Virulence

Host plants and phytopathogenic microbes have developed sophisticated strategies to
regulate their own iron homeostasis, restricting the availability of this essential element to
other organisms. In this section, we delineate the research advancements concerning vari-
ous strategies employed by phytopathogenic microbes for iron acquisition, and elucidate
their contribution to the expression of virulence.

2.1. Microbial Iron Acquisition and Virulence

Bacteria encountering low iron levels either inside the host or under laboratory condi-
tions typically produce and secrete siderophores, which scavenge ferric iron. Siderophore-
mediated iron uptake is highly efficient, but requires the consumption of energy via
ATP hydrolysis (Figure 2). Siderophores, which means “iron carriers” in Greek, are low-
molecular-weight compounds secreted through exporters that usually belong to the major
facilitator superfamily (MFS), ATP-binding cassette (ABC) superfamily, and resistance–
nodulation–cell division (RND) superfamily transporters. In Escherichia coli, the enter-
obactin siderophore is secreted from the cytoplasm to the periplasm by the major facilitator
EntS and then from the periplasm to the extracellular milieu via TolC, an outer membrane
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exporter of multidrug efflux pumps [28–30]. Siderophores exhibit high affinity to ferric iron
and efficiently chelate iron in iron-depleted host environments or laboratory conditions.
TonB-dependent outer membrane receptors, specific to ferric iron–siderophore complexes,
recognize and internalize them into the periplasmic space with the involvement of the
TonB-ExbBD complex. Further, periplasmic binding proteins (PBPs) deliver the ferric
iron–siderophore complexes to the cognate ABC transporter, which transports them into
the cytoplasm while ATP hydrolysis occurs (Figure 2) [31,32]. Specific porins transport
ferrous iron from the extracellular milieu to the periplasm. The bacterial periplasmic and
secreted β-cyclic glucan has the ability to sequester ferrous iron, which supports growth
under low-iron conditions and protects cells against iron-induced toxicity under iron-
replete conditions [33]. Several bacteria encode the FeoABC transporter for the import of
ferrous iron from the periplasm to the cytoplasm (Figure 2) [34–38]. However, SitABCD in
Salmonella typhimurium, YfeABCD in Yersinia pestis, SfuABC in Serratia marcescens, SitABCD
in Salmonella enterica, and FbpABC in Neisseria gonorrhoeae are involved in ferrous iron
import [39–43]. The FeoABC system is widely distributed among Gram-negative bacte-
ria. Conversely, the SitABCD system is unique to certain pathogens such as Salmonella
typhimurium, and it contributes to their virulence by effectively scavenging iron during
infection. YfeABCD in Yersinia pestis acquires iron from host tissues, vital for pathogenicity.
SfuABC, unique to Serratia marcescens, supports iron uptake from the environment, and
the FbpABC transporter identified in Neisseria gonorrhoeae contributes to the bacterium’s
growth and survival [39–43]. The outer membrane and cytoplasmic ferric reductases are
responsible for reducing ferric iron to ferrous iron and maintaining the equilibrium between
these two common oxidation states of iron (Figure 2) [44–46]. A more detailed understand-
ing of bacterial iron uptake mechanisms can be found in reviews by Andrews et al. (2003),
Krewulak and Vogel (2008), Chu et al. (2010), and Cornelis and Andrews (2010) [47–50]. In
this section, we focus on describing the iron uptake systems and their roles in the virulence
of phytopathogenic bacteria.

The enterobacterium Dickeya dadantii (formerly known as Erwinia chrysanthemi) causes
soft rot disease on a broad host range of plants. Dickeya dadantii produces chrysobactin
and achromobactin, two different types of siderophores that play an essential role in
its full virulence on plants [51,52]. The enterobacterium Dickeya dadantii employs the
type 2 secretion system (T2SS) to secrete the metal-binding protein IbpS, which exhibits
high affinity for ferric and cupric ions. This substrate is essential for the virulence of
Dickeya dadantii on plants and is conserved among numerous phytopathogenic microor-
ganisms and fungi [53]. Erwinia amylovora, the pathogen responsible for the severe fire
blight disease in apple and pear, produces the siderophore desferrioxamine (DFO) to se-
quester iron during the infection process. In addition to its role in supporting virulence
by sequestering iron, DFO also plays a critical role in protecting the bacterium against
the oxidative burst induced by the host plant’s defense response [54]. A recent study
has reported that desferrioxamine (DFO) appears to be a significant virulence factor of
Erwinia amylovora CFBP1430 in the low-iron state of apple flowers that is created after iron
consumption by precolonized microorganisms [55]. Erwinia carotovora subsp. carotovora
also produces the aerobactin and chrysobactin siderophores, but knocking out the genes
encoding either of these siderophores does not affect the bacterium’s ability to macer-
ate the potato tuber or develop aerial stem rot on potato [56,57]. Pseudomonas syringae
pv. tabaci 6605, a foliar bacterial pathogen that causes wildfire disease in tobacco, pro-
duces the siderophore pyoverdine, which serves as a key virulence factor by facilitating
bacterial growth on the host plants [58]. Taguchi and colleagues demonstrated that the
mutants in pyoverdine biosynthesis enzyme–encoding genes exhibit low production of
tabtoxin, extracellular polysaccharide, and quorum-sensing molecule acyl homoserine
lactones (AHLs) but display accelerated swarming ability and increased biosurfactant
production [58]. These studies have indicated that siderophores have a multifaceted role in
the biological functions of phytopathogenic bacteria, extending beyond iron sequestration.
However, in contrast, Pseudomonas syringae pv. phaseolicola 1448a, the causal agent of bean
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halo blight, produces two different types of siderophores, pyoverdine and achromobactin,
yet neither of them appears to contribute to the virulence on bean plants [59]. The xan-
thomonads possess the Xanthomonas siderophore synthesis (xss) gene cluster, which is
conserved in almost all members of the Xanthomonas genus and displays homology with
the pvs gene cluster that encodes vibrioferrin in the Vibrio group of human pathogenic
bacteria [60–62]. The Xanthomonas group of phytopathogens cause disease to approximately
400 plants, including several economically important crops, such as rice, pepper, cabbage,
and tomato [63]. In the members of xanthomonads, the xss gene cluster encodes xan-
thoferrin, an α-hydroxycarboxylate-type siderophore, synthesis enzymes under low-iron
conditions [60,61,64]. Xanthoferrin-mediated iron uptake promotes in planta growth of
X. oryzae pv. oryzicola (causal agent bacterial leaf streak on rice) and X. campestris pv.
campestris (causal agent black rot of crucifers) and is required for optimum virulence on
their respective hosts [61,65]. Conversely, the xss gene cluster of X. oryzae pv. oryzae, a causal
agent of bacterial blight of rice, does not express inside the plant host, and xanthoferrin-
mediated iron uptake is not needed for virulence [60]. However, the feoB gene of X. oryzae
pv. oryzae expresses inside the plant, and FeoB-mediated ferrous iron uptake critically
contributes to the bacterial in planta growth and virulence on rice [60].
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Figure 2. Bacterial iron homeostasis. The ferric and ferrous iron uptake pathways are independent
in nature but markedly interdependent in regulation. Under high intracellular iron, the Holo Fur (Fur–
Fe2+ complex) binds to the regulatory sites of iron uptake genes and turns off their expression. When
intracellular iron levels are low, the Holo Fur releases the Fe2+ iron, and it turns into Apo Fur (Fur
alone). The Apo Fur loses the ability to bind to regulatory sites, which makes the regulatory sites free
from Fur and enables the expression of iron uptake genes. Bacteria synthesize ferric iron-chelating
compounds, siderophores, and release them into the extracellular milieu to sequester ferric iron.
The TonB-dependent outer membrane receptors recognize the Fe3+–siderophore complex, causing a
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conformational change in the plug domain of the receptor’s channel to internalize it. ExbB and
ExbD energize TonB using an electrochemical charge gradient along the cytoplasmic membrane
to release the Fe3+–siderophore complex into the periplasmic space. Further, periplasmic-binding
proteins deliver the complex to the cognate ABC transporter to transport it into the cytoplasm. The
ferrous iron is transported to the periplasm by Fe2+-specific porins. The glucan–Fe2+ complex can
also bring ferrous iron to the periplasmic space. Further, the FeoB complex (FeoABC) transporter
transports the ferrous iron to the cytoplasm. The outer membrane and cytoplasmic ferric reductases
reduce ferric iron to ferrous iron at their respective places. Abbreviations: R = receptor; G = glucan;
PBP = periplasmic-binding protein; EM = extracellular moiety; OM = outer membrane; P = periplasm;
CM = cytoplasmic membrane; C = cytoplasm.

The above research works manifest the importance of siderophore-mediated iron
uptake in the virulence of several phytopathogenic bacteria. Some phytopathogenic bacteria
exhibit no impact on virulence even if the siderophore-encoding genes were knocked out
(Table 1). The mutants in genes associated with siderophore biosynthesis in Agrobacterium
tumefaciens C58, Pseudomonas syringae pv. tomato DC3000, and Ralstonia solanacearum
AW1 displayed virulence proficiency on par with their wild-type strains [66–68]. The
siderophore-mediated iron uptake is an expensive process but highly efficient in nature that
secures the bacterial iron requirements by scavenging iron from iron-depleted environment.
For instance, the chrysobactin produced by Dickeya dadantii outcompetes the plant ferritins
for iron binding in Saintpaulia leaves [69]. The phytopathogenic bacteria have evolved
with multiple iron uptake systems that confer an adaptive advantage to the pathogenic
lifestyle in various host conditions. Apparently, the availability of iron inside the host and
the tissue habitat of phytopathogens determine the requirement of siderophores during in
planta bacterial growth and virulence. The two closely related xanthomonads, Xanthomonas
oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola, share the common host rice but
colonize the xylem vessel and mesophyll apoplast, respectively. The lifestyle in different
habitats and the iron constituents could be attributed to the requirement of ferrous uptake
through the FeoB transport system and siderophore-mediated ferric-iron uptake for the
optimum virulence of Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola,
respectively. Pseudomonas syringae pv. tomato DC3000 has shown the ability to access iron
from ferric citrate, but it does not contribute to pathogenicity [67].

Table 1. Iron-chelating compounds produced by different phytopathogenic bacteria, along with their
respective roles in promoting virulence.

S. No. Phytopathogenic Bacteria Iron Chelator Role in Virulence Reference

01. Dickeya dadantii
(syn. Erwinia chrysanthemi)

Chrysobactin,
achromobactin

Required for
optimum virulence [51,52]

02. Dickeya dadantii IbpS Required for
optimum virulence [53]

03. Erwinia amylovora Desferrioxamine
(DFO)

Required for
optimum virulence [54]

04. Erwinia carotovora subsp.
carotovora

Aerobactin,
Chrysobactin

Not required for
virulence [56,57,70]

05. Pseudomonas syringae pv.
tabaci 6605 Pyoverdine Required for

optimum virulence [58]

06. Pseudomonas syringae pv.
phaseolicola 1448a

Pyoverdine,
achromobactin

Not required for
virulence [59]

07. Pseudomonas syringae pv.
syringae B301D Pyoverdine Not required for

virulence [71]

08. Pseudomonas syringae pv.
tomato DC3000

Pyoverdine,
yersiniabactin

Not required for
virulence [67]
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Table 1. Cont.

S. No. Phytopathogenic Bacteria Iron Chelator Role in Virulence Reference

09. Xanthomonas campestris pv.
campestris 8004 Xanthoferrin Required for

optimum virulence [61]

10. Xanthomonas oryzae pv.
oryzae BXO1 Xanthoferrin Not required for

virulence [60,64]

11. Xanthomonas oryzae pv.
oryzicola BXOR1 Xanthoferrin Required for

optimum virulence [64,65]

12. Xanthomonas campestris pv.
campestris 8004

Cyclic
β-(1,2)-glucans

Required for
optimum virulence [33]

13. Agrobacterium tumefaciens
C58

Unknown iron
chelator

Not required for
virulence [66]

14. Agrobacterium tumefaciens
strain B6 Agrobactin Not required for

virulence [72]

15. Ralstonia solanacearum
AW1 Staphyloferrin B Not required for

virulence [68]

2.2. Phytopathogenic Microbial Iron Storage and Virulence

As described in the introduction section, iron constitutes an essential part of several
metalloproteins, including proteins containing iron–sulfur (Fe-S) clusters (Figure 1). Phy-
topathogenic bacteria, such as Dickeya dadantii, encode SufABCDSE, which is involved in
the biosynthesis of Fe–S clusters under oxidative stress and contributes to virulence [73,74].
However, bacteria also widely encode specific iron storage proteins, bacterioferritin (Bfr),
and bacterial ferritin (Ftn), to maintain cellular iron homeostasis. Both Bfrs and Ftns as-
semble from 24 identical or similar subunits of ~19 kDa into spherical structures (~120 Å
diameter) of ~450 kDa with a large hollow center (~80 Å inner diameter) [75,76]. The hollow
center stores around 2000 iron atoms in the form of ferric-hydroxyphosphate core [75].
Despite being similar in fold and quaternary structure, bacterial Ftns and Bfrs vary in heme
content (only Bfr contains heme), composition, electrostatic properties of the pores, and
binding affinity of a few crucial residues [75,76]. In Dickeya dadantii, bfr and ftnA encode the
iron storage proteins bacterioferritin and bacterial ferritins, respectively [77]. Interestingly,
the bfr mutant did not show a difference in growth under low iron or intracellular iron
content but exhibited delayed appearance maceration symptoms on the host plant [77].
However, knocking out ftnA in Dickeya dadantii resulted in impaired growth under low
iron, more sensitivity to oxidative stress, and reduced virulence on African violets [77].
Bacterioferritin-mediated iron storage in the phytopathogen Agrobacterium tumefaciens is
required for tolerance against H2O2 exposure, maintaining intracellular iron at an optimum
level, growth under low iron, and full virulence on the host plant [78]. The triple deletion
of bacterioferritin-like protein encoding genes (∆yciE ∆yciF ∆XC_3754) in an operon of
Xanthomonas campestris pv. campestris 8004 resulted in lower intracellular iron content than
the wild-type strain [14].

2.3. Transcription Regulation of Phytopathogenic Microbial Iron Homeostasis and Virulence

Iron homeostasis in numerous bacterial species is tightly regulated through the iron-
responsive transcriptional regulator, ferric uptake regulator (Fur), whose function is de-
pendent on the availability of Fe2+. The Fur dimer and its corepressor Fe2+ form the
holo–Fur complex in high iron conditions, which binds to the conserved fur-box located
upstream of target genes, including those encoding siderophore biosynthesis and iron
uptake proteins, to actively suppress gene expression. In contrast, during low-iron con-
ditions, Fe2+ dissociates from Fur, resulting in the formation of apo-Fur, which in turn
dissociates from the promoter regions of target genes. This dissociation of apo-Fur enables
RNA polymerase to interact with the promoter and initiate gene expression (Figure 2).
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The mutant strain of Dickeya dadantii lacking functional Fur exhibited growth deficiencies
in both minimal and rich media, yet did not exhibit a discernible difference in growth
under low-iron conditions [79]. Furthermore, Franza et al. demonstrated that the fur
mutant of Dickeya dadantii displays the constitutive expression of high-affinity iron trans-
port systems and reduced virulence on African violet [79]. The fur mutant strain of
Xanthomonas oryzae pv. oryzae demonstrated a heightened sensitivity to the metalloan-
tibiotic streptonigrin, implying an elevated intracellular iron concentration. Additionally,
this strain exhibited suboptimal growth on nutrient-rich media, reduced catalase activ-
ity, hypersensitivity to hydrogen peroxide, and decreased virulence on rice [80]. The fur
mutant strain of Xanthomonas campestris pv. campestris similarly displays an increased
intracellular iron content, constitutive overproduction of siderophores, upregulated ex-
pression of iron transport genes, heightened tolerance to peroxide toxicity, and decreased
virulence on the host plant [81]. In conjunction with reduced swarming motility, the fur
mutant strain of Pseudomonas syringae pv. tabaci 11,528 displays constitutive production
of siderophores, virulence deficiency, diminished production of tabtoxin, and reduced
quantities of the quorum-sensing molecule N-acyl homoserine lactones, in addition to
its already-characterized slow-growth phenotype [82]. The regulatory interdependence
between iron and quorum sensing is governed in an atypical manner among the group of
phytopathogenic bacteria known as xanthomonads, as elucidated in a recent review by
Pandey and Chatterjee [25].

The Xanthomonas iron-binding regulator (XibR) binds to Fe3+ iron and regulates
the production of siderophores, motility, and chemotaxis in Xanthomonas campestris pv.
campestris [14]. The XibR encoding gene is conserved across xanthomonads, and homologs
are also present in Pseudoxanthomonas dokdonensis, Bordetella bronchiseptica, and Lysobacter
sp. URHA0019. Under iron-replete conditions, XibR binds to the promoter region of
genes involved in siderophore synthesis, thereby repressing their expression. XibR plays a
positive regulatory role in iron storage and uptake, as well as in chemotaxis and motility,
while negatively regulating siderophore production. It is required for optimal virulence on
the host plant [14]. The two-component system VgrS/VgrR in Xanthomonas campestris pv.
campestris senses iron and facilitates bacterial adaptation under low-iron conditions [83].
The membrane-bound histidine kinase receptor VgrS and its cognate sensor VgrR respond
to periplasmic and intracellular iron levels, respectively. Wang et al. further reported
that lowering the iron level in the periplasmic regions leads to VgrS autophosphorylation.
Subsequently, phosphotransfer occurs to VgrR, which directly or indirectly affects sev-
eral factors involved in iron uptake, signal transduction, detoxification, cell division, and
cellular metabolism [83].

2.4. sRNA-Mediated Regulation of Microbial Iron Homeostasis

Small RNAs (sRNAs), which are 50–400 nucleotides in length, play a crucial role as
post-transcriptional regulators in prokaryotes. They are required for the fine regulation of
various cellular processes, such as carbon metabolism, iron homeostasis, stress responses,
motility, chemotaxis, biofilm formation, quorum sensing, and virulence. Through short
base pairings, sRNAs fine-tune the stability and translation efficiency of target mRNAs.
One extensively studied sRNA is RyhB in E. coli, which contributes to maintaining cellular
iron homeostasis by regulating multiple iron utilization and transport genes [84,85]. The
sRNAs regulate virulence-associated functions and stress response in phytopathogenic
bacteria, such as Pseudomonas, Xanthomonas, Agrobacterium, and Pectobacterium [86–90].
The sRNA DsRNA-Xoo4 of Xanthomonas oryzae pv. oryzae [91] and sX13 of Xanthomonas
campestris pv. vesicatoria [92,93] regulate the expression of TonB. However, further extensive
investigations are required to fully understand the regulation of iron homeostasis by sRNAs
in phytopathogenic microbes.
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3. Interplay between Iron Homeostasis and Plant Immune Response

Iron is an essentially required element for several vital cellular processes of plants.
Plants employ two different strategies to uptake the iron through the roots. One in nongrass
plants (e.g., Arabidopsis thaliana), iron starvation activates a cascade of signaling reaction
to release protons and phenolics in rhizosphere, which lowers the pH and solubilizes
ferric iron. The ferric reductases, such as ferric reduction oxidase 2 (FRO2) and ferric
chelate reductase (FCR), reduce ferric iron to ferrous iron, which is further transported
inside the roots through a specific transporter (IRT1). Another strategy in grass plants
(e.g., barley, rice), iron starvation induces the synthesis and release of the iron-chelating
compounds phytosiderophores (e.g., mugineic acid) in rhizosphere. Phytosiderophore–
Ferric iron complexes are transported inside the root cells by specific transporters, such as
YS1 and YSL. Further, iron is distributed to the sink tissues and utilized in the formation of
enzyme cofactors, etc., or stored in vacuoles or complexed with ferritins. The mechanisms
and regulations of iron homeostasis in plants have been extensively reviewed in recent
years [94–99]. Here, we focus the discussion on recent advances in the understanding of
plant iron homeostasis in the context of microbial infections and plant host responses.

3.1. Bacterial Effectors Influencing Plant Iron Homeostasis

Initially, host plants detect the microbial/pathogen-associated molecular patterns
(MAMPs/PAMPs) common to many classes of microbes/pathogens to trigger PAMP-
triggered immunity (PTI). Then the pathogens inject effectors in host plants to suppress
the PTI that facilitates the successful disease development (Figure 3) [100]. The phy-
topathogenic bacterium Pseudomonas syringae pv. tomato DC3000 delivers an effector,
AvrRps4, inside the plants and interacts with the plant iron sensor protein BRUTUS [101].
The E3 ligase BRUTUS (BTS) is an iron sensor of plants that suppresses iron deficiency
response by the ubiquitin-mediated degradation of the PYE-like (PYEL) proteins IAA-
LEUCINE RESISTANT3 (ILR3), bHLH105 (basic helix–loop–helix family protein), and
bHLH115 through ubiquitin-mediated degradation [102,103]. The PYE-like (PYEL) pro-
teins IAA-LEUCINE RESISTANT3 (ILR3), bHLH105, and bHLH115 are known to be
induced under iron-deficient conditions and improve the iron level of plants [102,104].
The Pseudomonas syringae pv. tomato DC3000 effector AvrRps4 interacts with BRUTUS and
induces iron accumulation in Arabidopsis thaliana, which potentially facilitates bacterial iron
uptake and proliferation [101].

The evidence suggests that the microbial siderophores act as effector and induce plant
immunity along with manipulating the host iron homeostasis [105–107]. The application
of iron-free achromobactin and chrysobactin activates the salicylic-acid-mediated signal-
ing pathway in Arabidopsis thaliana [105]. Earlier, Dellagi and colleagues demonstrated
that the siderophore null mutant strain of Dickeya dadantii displays a compromised ex-
pression of the ferritin-encoding AtFer1 gene in Arabidopsis thaliana [106]. Further, they
showed that the infiltration of iron-free chrysobactin and desferrioxamine siderophores to
Arabidopsis thaliana strongly increased AtFer1 expression. The ferritin accumulation during
Dickeya dadantii infection appeared to be a siderophore-triggered basal defense mecha-
nism in the host plant [106]. In another study, desferrioxamine siderophore infiltration in
Arabidopsis thaliana resulted in the induced expression of the set of defense-related genes,
accumulation of salicylic acid and jasmonic acid in leaves, and significantly higher callose
deposition [107]. Several studies provided clear evidence of the modulation of host plant
immune responses by siderophores. However, the potential external membrane recep-
tors or internal receptors and the consequent cascade of reactions to induce host immune
response needs more extensive investigations.
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limit the availability of iron for bacterial pathogens by transporting iron into the vacuole and seques-
tering it into ferritins. This results in low-iron conditions for bacteria, which trigger the induced
expression of iron uptake genes and siderophore biosynthesis to obtain iron from the iron-depleted
host environment. Low-iron conditions also induce bacterial motility and chemotaxis, as well as
the expression of virulence genes, T3SS, and effectors. However, the response to low iron varies
among bacterial pathogens. PAMP-induced PTI and effector-triggered ETI can cause the HR, which
restricts bacterial growth. The siderophore pseudobactin has also been reported as a potential PAMP
in Arabidopsis. Excess iron generates ROS via Fenton’s reaction, which triggers programmed cell
death at low levels and necrosis at a threshold level.

3.2. Plant Immune Response Influencing Microbial Iron Homeostasis

Microbial pathogens have evolved diverse strategies to manipulate host iron homeosta-
sis for their own iron acquisition, which in turn has driven the evolution of intricate mecha-
nisms in plants that target microbial iron homeostasis. The expression of the sigma factor,
pvdS, responsible for regulating the biosynthesis of pyoverdine siderophores and support-
ing the in planta growth of Pseudomonas syringae pv. tomato DC3000, was found to be sup-
pressed as a result of an AvrRpt2-triggered ETI response [108]. Among six clusters of host-
genotype-dependent DEGs identified in the AvrRpt2 of Pseudomonas syringae pv. tomato
DC3000, the siderophore biosynthesis genes were induced within Arabidopsis thaliana but
suppressed by the activation of both PTI and ETI [108]. The bacterial genes that are impli-
cated in the iron acquisition pathway demonstrate the highest levels of expression in planta
at 6 h postinoculation, followed by a substantial reduction in expression at 48 h postinocu-
lation. Despite this decrease, the expression levels at 48 h postinoculation remain higher
than those observed during in vitro growth conditions [109]. The findings suggest that
the PTI and ETI responses in Arabidopsis thaliana can suppress the expression of iron star-
vation genes in the phytopathogenic bacterium Pseudomonas syringae pv. tomato DC3000.
However, despite this inhibition, the bacteria retain the capacity to express these genes to a
certain extent in order to acquire the necessary iron for a successful disease development.

As discussed in the previous sections, microbial pathogens and host plants undergo
a complex and dynamic competition for the acquisition of iron resources. The plant
host actively seeks to sequester iron, limiting its availability to the invading microbial
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pathogens, with the ultimate goal of curbing their growth and survival. This intricate
strategy constitutes a critical component of the host response, which helps to thwart the
pathogenic challenge posed by phytopathogenic microorganisms. Plants have a natural
mechanism to store iron, which involves encoding ferritin proteins. Ferritin serves as
an iron storage protein in plants, and its expression is regulated by various internal and
external factors. Multiple studies have demonstrated the upregulation of genes encoding
ferritin proteins in various plant species as a result of pathogenic attacks, including but
not limited to Arabidopsis thaliana in response to Dickeya dadantii [106] and potato against
Streptomyces scabiei infestations [110]. The plants have developed an intricate system of reg-
ulation for the expression of ferritin, a protein that stores iron, which is precisely controlled
during bacterial infections to potentially impact the bacterial iron homeostasis [111]. The
ethylene response factor109 (erf109) mutations in Arabidopsis thaliana caused significant
changes in gene expression, with an increased expression of genes related to iron home-
ostasis (bHLH38, bHLH39, bHLH101, NAS4, and FER1) and a decreased expression of
defense-related genes (CML37, WRKY40, ERF13, and EXO70B2), while erf109 leaves showed
elevated iron levels in both iron-sufficient and iron-deficient conditions, suggesting a po-
tential involvement of ERF109 in regulating iron metabolism [112]. The natural resistance-
associated macrophage protein (NRAMP) metal ion transporter plays a crucial role in the
innate immunity of animal macrophages targeted by intracellular bacterial pathogens [113].
Segond et al. reported that AtNRAMP3, a homolog of NRAMP in Arabidopsis, is expressed
at higher levels in leaves infected with the bacterial pathogens Pseudomonas syringae and
Erwinia chrysanthemi [114]. They showed, using single and double mutants of nramp3 and
nramp4 and ectopically expressing either of them, that AtNRAMP3 and, up to some extent,
AtNRAMP4 contribute to the resistance against Erwinia chrysanthemi infection [114]. The
susceptibility of the nramp3nramp4 double mutant is linked to reduced levels of ROS and
the iron storage protein AtFER1 ferritin, which is known to provide resistance against
microbial infections in Arabidopsis [114].

3.3. Iron Availability Influencing Microbial Pathogenicity and Plant Immune Response

The indispensable role of iron in plant–phytopathogenic microbe interactions is fur-
ther supported by the visible expression of virulence functions by microbes and the
resulting immune responses mounted by the host, both of which are closely linked to
the levels of iron available in their respective environments. For instance, iron-deficient
Arabidopsis thaliana exhibits reduced symptom severity, bacterial fitness, and the expres-
sion of bacterial pectate lyase-encoding genes when challenged with the bacterial phy-
topathogen Dickeya dadantii [115]. The reduced symptoms and bacterial fitness observed
in iron-deficient plants also extended to the necrotrophic fungus Botrytis cinerea. The
authors demonstrated that the plant’s iron status can influence the outcome of an infec-
tion by affecting both the pathogen’s virulence and the plant’s defense response [115].
The wild-type Arabidopsis Col-0 plants with iron deficiency exhibit heightened resistance
to infections caused by pathogens with various lifestyles, including the necrotrophic
fungus Botrytis cinerea, the hemibiotrophic bacterium Pseudomonas syringae pv. tomato
DC3000, and the obligate biotrophic oomycete Hyaloperonospora arabidopsidis [116]. The
iron-deficiency-induced systemic response provides defense against pathogenic infection
by the involvement of ethylene and salicylic acid signaling pathways. Disturbance in iron
homeostasis within the plant, through either inducing iron starvation stress or subjecting
it to other nonhomeostatic conditions, is found to have a profound effect on the plant’s
immune system. In fact, such disturbances act as a trigger, priming the plant’s immune sys-
tem for an enhanced defense response [116].The deposition of ferritin, which is recognized
for its ability to capture iron and minimize the iron availability, in the foliage of genetically
modified tobacco displayed resistance to necrotic injury that resulted from viral (tobacco
necrosis virus) and fungal (Alternaria alternata, Botrytis cinerea) infections [117].

On the contrary, certain phytopathogenic bacterial species possess the capacity to
detect suboptimal concentrations of iron within host plants, which elicits the activation
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of virulence-associated mechanisms facilitating the efficacious establishment of the infec-
tion. In response to the limited iron availability, Xanthomonas campestris pv. campestris
displays an induced expression of multiple virulence factors, including the type 3 secre-
tion system (T3SS) and type 3 effectors (T3E), which could be repressed by exogenous
iron supplementation [118]. AN exogenous supplementation of iron at a concentration
of 100 µM FeS4 was observed to exert a significant suppressive effect on the disease de-
velopment ability of Xanthomonas campestris pv. campestris on cabbage plants, while a
complete abrogation of symptom development was achieved with a relatively high iron
supplementation (250 µM FeS4). Interestingly, this modulation of pathogenicity was not
accompanied by any significant impact on the in planta bacterial population dynamics,
indicating that iron availability may specifically regulate virulence-associated functions
rather than bacterial fitness in the plant host [118]. Interestingly, the Xanthomonas oryzae
pv. oryzicola pathovars also exhibit an induced expression of hrp genes under in vitro low
iron, albeit to a lesser extent in comparison with Xanthomonas campestris pv. campestris.
However, Xanthomonas oryzae pv. oryzae fails to demonstrate any significant induction
of hrp gene expression under in vitro low iron [118]. The results of the study indicate
that different pathogenic bacteria belonging to the same group can adapt in various ways,
depending on the host plant and tissue habitat they infect, as well as the extent of iron
availability in their environment. This diversity in adaptation highlights the complexity
of interactions between bacterial pathogens and their plant hosts, as well as the impor-
tance of available iron in shaping these interactions. A recent study demonstrated that
the application of bioengineered chitosan–iron nanocomposites can effectively mitigate
the severity of Xanthomonas oryzae pv. oryzae caused bacterial leaf blight disease in rice,
primarily attributable to their capacity to modulate the expression of host defense genes
and cellular physiology, as well as their inhibitory effects on bacterial proliferation [119].

3.4. Ferroptotic Cell Death (FCD)

Recent studies suggest that iron, acting as a catalyst, triggers the initiation of ferropto-
sis, a nonapoptotic programmed cell death pathway, through the generation of reactive
oxygen species (ROS), particularly lipid peroxides. This phenomenon was initially iden-
tified in animals and has also been reported in plants as a response to heat stress and
pathogenic interactions [120–122]. During an incompatible interaction between rice plants
and the avirulent strain Magnaporthe oryzae INA 168, a notable elevation in intracellular
ferric iron and ROS accumulation is observed. This surge in ferric iron and ROS levels
subsequently triggers FCD, leading to the inhibition of pathogen growth. Conversely, in
a compatible interaction with the virulent strain Magnaporthe oryzae PO6-6, there is no
significant increase in iron accumulation within the rice plants, thereby facilitating the
efficient growth and proliferation of the pathogen [121]. Remarkably, rice ferric iron storage
protein ferritin 2 (OsFER2) plays a crucial role in iron–ROS–mediated FCD as a defense
response against avirulent strain Magnaporthe oryzae INA 168 infection [123]. Furthermore,
a recent study involving iTRAQ-based quantitative proteomics analysis and the use of iron
chelators has indicated the occurrence of ferroptosis-like cell death in Nicotiana benthamiana
plants infected with the highly virulent tobacco mosaic virus mutant 24A+UPD [124].

4. Future Perspectives

Under both biotic and abiotic stress, the health of plants can be further compromised
due to the production of ROS, triggered by excess intracellular iron via Fenton’s reaction
and consequent oxidative burst. The dynamic evolutionary interplay between microbes
and plants underscores the central role of iron in the struggle for survival and highlights
the importance of understanding the molecular mechanisms underlying host–pathogen
interactions. However, research on the role of iron in plant–phytopathogenic microbe
interactions lags far behind that of animal host–pathogenic microbe associations. Recent
studies have highlighted the potential of iron as a therapeutic tool to improve plant health
under pathogenic attack. For example, the application of iron-containing bioengineered
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nanoparticles has been shown to alleviate bacterial leaf blight disease in rice, while direct
administration of iron can completely shut down the expression of virulence genes in
Xanthomonas campestris pv. campestris and suppress symptom appearance on cabbage,
demonstrating the therapeutic potential of iron [118,119]. Alternatively, the occurrence of
low iron levels and the subsequent iron deficiency response actually stimulates the host’s
defense against pathogen attacks. Recent studies have provided a clearer understanding
of induced systemic resistance (ISR), a phenomenon whereby microbes present in the
rhizosphere trigger a response to iron deficiency within plant roots. This response plays a
vital role in enhancing plant defense mechanisms, thereby bolstering their ability to combat
various pathogenic infections [125,126]. The rhizobacterium Pseudomonas simiae WCS417,
which colonizes the roots of plants, exerts a stimulating effect on plant growth and confers
enhanced resistance against a range of diseases. In the model plant Arabidopsis thaliana,
WCS417 elicits a root response similar to that observed during iron (Fe) starvation, thereby
activating specific genes involved in the response to iron deficiency, namely, MYB72 and
IRT1. Even under normal iron conditions, WCS417 transiently induces an iron deficiency
response in the roots, resulting in an increase in both the total iron content and the fresh
weight of the shoots. The induction of the iron deficiency response in the roots by WCS417
is governed by a signaling mechanism from the shoots to the roots, which operates inde-
pendently of the iron status of the leaves and the phloem-specific iron transporter -opt3
gene [126]. These studies indicate the potential for further research in the field of biofertil-
izers, with a focus on considering the iron content in the rhizosphere. Such research could
lead to advancements in horticultural practices and disease management strategies, offering
potential improvements in crop yield and health. The regulation of iron homeostasis in host
organisms and phytopathogenic microbes must be carefully leveraged to achieve optimal
outcomes in therapeutic applications. The interaction between microbial virulence and host
defense responses, particularly in the context of iron homeostasis regulation, demonstrates
significant diversity and objectively varies in different cases. Hence, the research should
consider that fine-tuning the manipulation of iron homeostasis for therapeutic purposes
is also crucial while taking into account the multiple roles of iron during host–microbe
interactions. In addition to the availability of in planta free iron for microbial pathogens,
iron plays a dual role by generating ROS as a host defense response and low-iron-induced
signaling for ISR to boost immunity against pathogenic infections. The exotic disease
Huanglongbing (HLB) of citrus, caused by the bacterium Candidatus Liberibacter asiaticus,
has caused severe damage to the Florida citrus industry [127,128]. Recent studies have
demonstrated that Candidatus Liberibacter asiaticus lacks any virulence factors that can
directly cause HLB symptoms; rather, the disease results from phloem cell death and necro-
sis due to excessive ROS generation resulting from an overreaction of the plant’s immune
response to bacterial infection [129,130]. The potential involvement of iron in the generation
of ROS in this pathosystem highlights the need for further investigation to determine the
extent of iron’s role. Such research may enable the development of remedial interventions
that manipulate host iron levels for potential therapeutic benefit. To date, investigations
into the contribution of iron to virulence have focused primarily on a limited subset of
microbial phytopathogens, including Dickeya dadantii, Erwinia spp., Pseudomonas spp., and
Xanthomonas spp. However, additional investigations are required not only to acquire a
thorough comprehension of the molecular mechanisms underlying iron homeostasis and
its role in virulence in these organisms but also in relatively less explored pathosystems,
such as Candidatus Liberibacter asiaticus, Phytoplasma, Pectobacterium, among others.

5. Conclusions

Iron is a crucial component of plant nutrition, but its excess can generate ROS and
induce stress. Plant–microbe interactions are shaped by their strategies to access and
regulate iron resources. Various studies have demonstrated the importance of iron in
regulating the virulence of phytopathogenic microbes and the defense responses of host
plants. Both pathogens and plants evolved mechanisms to manipulate each other’s iron
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homeostasis to gain advantages in the virulence war. Recent research has shown that
manipulating iron levels can be a therapeutic approach for disease management. To
develop effective disease management strategies and engineer disease-resistant plants, it is
necessary to gain a detailed understanding of the involvement of iron in plant–microbe
interactions. Biotechnological approaches for manipulating iron levels in plants may
prove useful in safeguarding them against abiotic and biotic stresses. These approaches
have significant potential to contribute to sustainable agricultural practices, which are
increasingly important given the changing climate and growing global population.
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