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Abstract: Monoterpenes are volatile organic compounds that play important roles in atmospheric
chemistry, plant physiology, communication, and defense. This review compiles the monoterpene
emission flux data reported for different regions and plant species and highlights the role of abiotic
environmental factors in controlling the emissions of biogenic monoterpenes and their emission fluxes
for terrestrial plant species (including seasonal variations). Previous studies have demonstrated the
role and importance of ambient air temperature and light in controlling monoterpene emissions,
likely contributing to higher monoterpene emissions during the summer season in temperate regions.
In addition to light and temperature dependence, other important environmental variables such as
carbon dioxide (CO2), ozone (O3), soil moisture, and nutrient availability are also known to influence
monoterpene emissions rates, but the information available is still limited. Throughout the paper, we
identify knowledge gaps and provide recommendations for future studies.
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1. Introduction

All terrestrial plants emit biogenic volatile organic compounds (BVOCs), relatively
small chain hydrocarbon compounds that have lower boiling points and evaporate easily.
These compounds play an important role in atmospheric chemistry [1], plant
physiology [2], plant defense and competition [3–6], and communication between plants
and other organisms [7–9].

Monoterpenes are the second most dominant group of BVOCs after isoprene, with an
estimated global annual emission rate of 107.5 Tg C yr−1 contributing ~12% to the global
BVOC budget [10]. Monoterpenes are generally derived from the condensation of two
isoprene (C5H8) units and include a variety of well-known compounds including pinene,
linalool, and limonene among others [11]. Biosynthesis of monoterpenes is catalyzed by
monoterpene synthases (cyclases), which convert the universal precursor geranyl diphos-
phate (GDP) to the parent structures of the various monoterpene groups. De novo synthesis
is light-dependent and can occur in the cytosol through the mevalonic pathway (MEV) or
in the chloroplast, through the methylerythritol phosphate (MEP) pathway [11,12].
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Different plant species will have different enzymes leading to the formation of specific
monoterpenes (monoterpene synthases), leading to a huge diversity of these plant natural
products across the plant kingdom [11,12]. For instance, α-pinene and β-pinene make
up most monoterpene emissions from oaks and conifers [13–16], while E-β-ocimene is
commonly released by plants of the Salicaceae family [17–19]. Although a wide spectrum of
monoterpenes is emitted by tree species [2,20], considerable emissions of some compounds
(e.g., α-pinene and β-pinene, ∆3-carene, limonene, etc.) are also reported from Poaceae
species as well as from rice, maize, bamboo, and other grasses [21–26]. Besides the emission
of monoterpenes from the tree and grass species, over the last two decades there has been in-
creasing work investigating monoterpene emissions in other crops [27,28], and horticultural
species [29–34], as well as ornamental plants and invasive alien species [27,28,35,36].

The emission of BVOCs varies in time and intensity in response to abiotic factors such
as temperature, light intensity, CO2, O3,and O2 concentrations, but the exact mechanisms
behind these responses are not yet fully understood [19,37]. However, monoterpene
emissions have been reported to have distinct dependencies on light and temperature
compared to those reported for other BVOCs. This is attributed to the ability of some plants
to store them and their high solubility in water (such as linalool) [38–40]. Terpenes can
be produced de novo and released immediately or stored in non-specific internal pools or
specialized endogenous and exogenous structures such as resin secretory structures and
glandular trichomes [41–43].

The emissions of stored monoterpenes are mainly temperature dependent, while the
non-stored monoterpenes are believed to be dependent on both temperature and light [41].
Moreover, the stored monoterpene emissions are also influenced by other factors such as
humidity, diffusion resistance, cell wall, membrane thickness, and pool storage size [43–46].
In the next sections, we provide an overview of the abiotic environmental factors affecting
monoterpene emissions, including putative mechanisms, and identify knowledge gaps to
be addressed by future research.

2. Environmental Factors Controlling Biogenic Monoterpene Emission

Abiotic drivers, such as temperature, light, humidity, CO2 concentration, soil nu-
trients, etc., have been reported to influence monoterpene emissions from various plant
species [27,47–51]. A summary of these factors and their impact on monoterpene produc-
tion and emission are shown in Figure 1.
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2.1. Temperature

Temperature is one of the most important abiotic drivers controlling monoterpene
emission from plants [52–55]. It is well established that the variation in ambient temperature
leads to the variations in monoterpene emissions from different plants [56]. Pioneer
studies in coniferous plants (in boreal forests), already described monoterpene storage
and noted that emissions increased with the rise in ambient temperature [57–59]. More
recently, other investigators have confirmed those results, i.e., the response of monoterpene
emission is positively correlated with temperature in coniferous plants [60–62]. However,
the investigators have been unable to fully grasp the mechanism responsible for the release
from plant storage. Therefore, further research in this area is needed to entirely understand
the mechanisms behind monoterpene emissions.

On the other hand, de novo synthesized monoterpene emissions have been better char-
acterized or parameterized. The de novo-based mechanism shows the highest emissions at
the optimum temperature ranges of 37–40 ◦C [63]. For instance, Song et al. [64] have de-
scribed the de novo monoterpene emission from Quercus ilex L. as a function of temperature.
The highest emission rate of monoterpenes (5–25 µg g−1 h−1) were measured at ~40 ◦C
and then gradual declines as temperature rises above 45 ◦C were noted. The decrease
at very high temperatures could be due to enzyme (monoterpene synthase) inactivation
during biosynthesis, raising their vapor pressure and decreasing the resistance of emission
pathways [65–67]. Typically, the emission rate of monoterpenes is determined to increase
exponentially with increasing temperature. This can be explained by the monoterpene
storage pool linking the emissions to monoterpene volatility and Henry’s law constant [55].

Monoterpene emission can also be influenced by thermal stress/heat stress (when
plants are exposed to a high temperature that affects some physiological processes) [68].
Due to heat stress, stomata open and monoterpenes are likely to be released into the atmo-
sphere immediately after their synthesis from non-storage tissues [69]. Brilli et al. [70] sug-
gested that heat stress induces monoterpene emissions rather than isoprene. Whereas, sig-
nificant increase in monoterpene emissions have been reported in storage pools of conifers
such as Scots pine and Norway spruce [71], tomato (Solanum lycopersicum L.) [72–74]. The
non-storage pools for monoterpenes from Mediterranean species like European beech and
Palestine oak (Quercus calliprinos L.) showed a decline of de novo monoterpene emission
under heat stress.

Apart from heat stress, the monoterpene emissions are also altered during and after
cold stress. The cold stress effect was found to be antagonistic to the heat stress for monoter-
pene emission in the case of Solanum lycopersicum plants [74]. Overall, the studies clearly
indicate that the monoterpene emissions under thermal stress conditions depend on the
plant species and its ability to store monoterpenes, but also on the experimental setup [56].

2.2. Sunlight

Sunlight has been reported to be another important factor, which can govern the BVOC
emission pattern from different plant species [67,75–78]. The light-dependent emissions
of BVOCs from light-grown plants show a particularly strong response compared to the
shade-grown plants [53,79–81].

At present, there are only a few studies, which have carried out the experiments
demonstrating the effect of light intensity on monoterpene emissions for some specific
plant species [2,57,82,83]. However, Tingey et al. [65] had reported the influence of the light
in the monoterpene emissions based on field experiments under ambient light regimes, but
a direct dependence on light was not conclusively established. Temperature and radiation
are the most important drivers for photosynthesis and thus for the provision of energy as
well as BVOC precursor compounds [84]. Thus, all de novo emissions somehow depend
on these two influences in combination. We distinguish these from emissions linked to the
release from specific storage structures mainly by passive diffusion, which have a direct
dependency on temperature but not on light [65].
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The above canopy and branch level measurement-based studies reveal that the non-
storage (de novo) monoterpene emissions are strongly light dependent [16,50,60,83,85–88].
For example, for a set value of photosynthetic photon flux density (PPDF) at
1000 µmol m−2 s−1, the monoterpene emission from Quercus phillyreoides A. Gray increased
slowly and reached a constant after ~2 h. However, for lower values of PPDF and a constant
temperature of 25 ◦C, the monoterpene emission rate started to decrease at a steady state
within 20 min [86].

The evergreen oak Q. coccifera L. widespread in Mediterranean shrublands, was found
to show light-dependent emissions of more than 50 BVOC species except for green leaf
volatiles (GLVs) [71]. Among them, about 90% were non-oxygenated monoterpenes, and
the rest were oxygenated monoterpenes and sesquiterpenes. The investigators have con-
structed the light-dependent curves for different isoprenoids, i.e., non-oxygenated monoter-
penes, oxygenated monoterpenes, and sesquiterpenes. At a constant temperature of 30 ◦C,
emissions of isoprenoids increased as PPFDs increased from 600 to 1500 µmol m−2 s−1.
However, non-oxygenated monoterpene emission rates decreased at the higher PPFD
values beyond 1500 µmol m−2 s−1 (up to saturation level). In this study, isoprenoid emis-
sions were not or hardly detected at night confirming the light-dependent emissions from
Q. coccifera L.

Researchers were able to derive the light-dependent photosynthesis and emission rate
curves of monoterpenes for Cecropia sciadophylla (a common pioneer tree species in the
Amazon Basin) at a constant leaf temperature of 30 ◦C [88]. A maximum total monoter-
pene emission rate of 35.8 nmol m−2 s−1 was observed at a maximum photosynthetically
active radiation (PAR) of 2000 µmol m−2 s−1 and a leaf temperature of 30 ◦C. Among
monoterpenes, trans-β-ocimene had a maximum emission rate of 24.5 nmol m−2 s−1 and a
maximum photosynthesis rate of 19.0 µmol m−2 s−1. The other light-dependent monoter-
penes include cis-β-ocimene (6.8 nmol m−2 s−1), α-pinene (1.5 nmol m−2 s−1), β-pinene
(0.5 nmol m−2 s−1), β-myrcene (0.23 nmol m−2 s−1), and sabinene (0.16 nmol m−2 s−1).

In three dominant coniferous tree species (Cryptomeria japonica (Thunb. ex L.f.) D.Don,
Chamaecyparis obtusa (Siebold and Zucc.) Endl. and Pinus densiflora (Siebold and Zucc.))
found in Japan, Nishimura et al. [83] have reported the strong light-dependent emissions
of dominant monoterpene species. For C. japonica, the emission rates of α-Pinene, β-Pinene,
and α-Phellandrene accounted for 61%; for C. obtusa, α-Pinene, β-Pinene, and D-Limonene
accounted for 63%; and for P. densiflora, α-Pinene, β-Pinene, and β-Myrcene accounted
for 95% of the total monoterpene. Similarly, emissions of α-pinene, sabinene, β-pinene,
myrcene, and limonene from Q. ilex L. are strongly affected by light intensity and leaf
temperature [75,79,89–91]. Despite knowledge about the light intensity-monoterpene
correlation, the effect of light on the emissions from non-woody plant species needs
further investigation.

Besides PAR, the sun also emits ultraviolet 100–400 nm (UV) and infrared (IR) radi-
ation 780 nm and 1 mm, which may also influence monoterpene emissions. And there
is an increasing body of evidence suggesting that UV radiation can significantly impact
monoterpene emissions [92–94]. The effect of IR has not been extensively explored and
requires further investigation.

2.3. Other Factors

In addition to temperature and light, other factors such as soil moisture, nutrients,
humidity, O3, and CO2 concentrations can affect the monoterpene emissions, but studies
on these aspects are scarce [95–101].

Soil moisture alters the de novo emission of monoterpene from some plants (European
beech, Holm oak, Scots pine, and Norway spruce), whose emission is also known to be
highly dependent on temperature and light intensity (PAR) [46]. The volumetric water
content of the soil has been used as a reference quantity to parameterize the dependence of
monoterpene emissions on soil moisture and to characterize the severity of the drought. It
has been found that monoterpene emissions increase during mild drought and decrease
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during severe drought [46]. Mu et al. [98] studied the effect of soil moisture (i.e., drought) on
isoprenoid emission from the two dominant Mediterranean species: Erica multiflora L. in a
Garraf shrubland and Q. ilex L. in a Prades forest in Catalonia (Spain). Drought and control
plots were classified on the basis of the covering and non-covering of transparent and
waterproof plastic curtains over the plants and soil during rain for four seasons. When they
were compared with controls, the drought conditions decreased soil moisture by ranging
between 1.3% in the winter mornings and 14.7% at midday in E. multiflora L. (in a Garraf
shrubland). Similarly, in Q. ilex L. (in a Prades forest), the soil moisture decreases between
21.0% in the winter mornings and 48.8% at midday. Isoprene, limonene, and α-pinene were
the most dominant terpenes found in E. multiflora L. (limonene and α-pinene accounted for a
significant portion of 80–84% of total emissions), while isoprene was not recorded in the case
of Q. ilex L. Compound α-pinene increased 39.7% in winter mornings and 68.0% limonene
increased at midday during drought treatments when compared to control treatments
in Q. ilex L. A similar pattern was observed in the case of E. multiflora L., though having
different emission values. The authors noted that the differences in emission rates between
control treatments and drought conditions could be due to soil moisture variability.

The overall evidence is non-conclusive, with some studies reporting that drought has a
positive effect on plant monoterpenoid emissions [102–104], but some reports contradict this
(i.e., monoterpene emissions decrease dramatically under high drought conditions) [105–107].
It is conceivable that the intensity and duration of drought will have different impacts, as
well as the drought-tolerance of the plant species. Therefore, more research is needed to
explore this in depth.

The ambient air O3 concentration is a critical factor for controlling the VOC emissions
from the plants. However, little is known about the impact of elevated ozone concentra-
tions (long-term exposure) on the release of BVOCs [108]. Several studies report that the
BVOC emissions from ozone-stressed plants are orders of magnitude higher than those
from non-stressed plants [98,109–111]. However, studies exist showing no effect, e.g.,
Mochizuki et al. [112] reported that elevated O3 had no effect on the monoterpene of the
hybrid larch F1 (Larix gmelinii var. japonica L. kaempferi).

Recently, Miyama et al. [108] reported that the monoterpene emission rate of ozone-
exposed plants (C. japonica) was higher than that of non-exposed plants. They found
that the basal emission rate of three clones of C. japonica (C. japonica ‘Donden’, C. japonica
‘Kawazu’, and C. japonica ‘Yakushima’) increased with long-exposure of O3. In the cases
of ozone exposed cultivars ‘Donden’ and ‘Yakushima’, the composition of monoterpene
compounds did not show significant differences with the non-exposed ones. However,
the composition ratio of sabinene was increased from 25% to 75% in cultivar ‘Kawazu’,
among others [108]. According to Mochizuki et al. [109], ozone-exposed plants stimulate
monoterpene emission more than non-ozone-exposed plants. Hence, these studies revealed
that the emissions of monoterpene with exposure to O3 are likely species-specific.

The effects of ambient CO2 concentration on monoterpene emissions of some domi-
nant Indian tropical plants were examined by Malik et al. [39]. The results suggested no
statistically significant effect on monoterpene emissions. However, one of the common
species, i.e., Eucalyptus globulus Labill., showed a significant positive correlation (r = 0.69)
with the ambient CO2 concentration in the summer season [39]. In another study, monoter-
pene emissions from Cryptomeria japonica clone saplings grown under control, ambient,
elevated CO2, and at varying soil water content (SWC) concentrations were measured [96].
The results indicated that elevated concentrations of CO2 under control significantly affect
the emissions of monoterpene from Cryptomeria japonica.

In contrast, a negative correlation between the monoterpene emissions and CO2
concentration has been reported for several plants [110–112]. When monoterpene emissions
from Q. ilex species were measured under elevated CO2 concentrations [106], the emissions
of the three most abundantly emitted monoterpenes (α-pinene, sabinene, and β-pinene)
were inhibited by approximately 68%. However, the emission of minor compounds, i.e.,
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limonene, was found to be increased at elevated CO2. Therefore, it is necessary to evaluate
the dependence of different monoterpenes under varying CO2 concentrations.

The role of nutrient availability in regulating monoterpene emissions is less known.
However, Fernández-Martnez [113] studied the isoprenoids (both isoprene and monoter-
pene) emissions in response to foliar nitrogen (N) and phosphorus (P) concentrations for
113 plant species and found differences in monoterpene emissions in association with
different nutrients. This is an interesting finding, suggesting the possibility that N and
P might be good predictors for inducing isoprenoid emissions. Thus, further studies are
required to elucidate the role of other individual nutrients on monoterpene emissions.

We acknowledge that other factors, such as water vapor concentration (humidity) and
aerosol compounds, could also influence the monoterpene emission patterns, but there is
limited information available and therefore these are not considered in this review.

3. Seasonal Influences and Mechanisms Underlying Emission Patterns

In recent decades, many efforts have been made to explore the seasonality in emission
rates of monoterpenes from different plant species in temperate latitudes [47,114–119]. This
includes the complexity of interacting environmental factors. Previous studies in different
plant species or even the same plant species in different regions revealed the significant
seasonal variations of monoterpene emission [47,116,120–124]

As an example, we provide a summary (non-exhaustive) of some seasonal studies
conducted on conifer species in temperate regions, showing differences in seasonal monoter-
pene emission patterns (Table 1). These reports often show increased emissions during
warmer times of the year, particularly in late spring to mid-summer.

Table 1. Normalized emissions (β-Factor) for monoterpenes released from different conifer species
during different seasons, with temperature ranges (if provided). The β-Factor is a normalized value
of emission given a standard temperature of 30 ◦C, following Guenther et al. [52].

Plant Species β-Factor (K−1) Season
Temperature
Range (◦C) Ref

Pinus densiflora 0.18 Spring Not given [117]
0.14 Summer
0.06 Fall
0.05 Winter

Pinus rigida 0.07 Spring 22–42 [125]
0.04 Summer 23–40
0.03 Fall 10–22
0.08 Winter 11–15

Larix leptolepis 0.14 Spring Not given [49]
0.14 Summer
0.07 Fall
n/a Winter

Pinus koraiensis 0.26 Spring 23–45 [125]
0.09 Summer 26–35
0.18 Fall 18–29
0.08 Winter 5–18

Pinus sylvestris 1 0.13 Early Spring Not given [120]
0.08 Late spring
0.15 Summer

Pinus sylvestris 2 0.10 Spring Not given [120]
0.18 Early Summer
0.08 Late Summer
0.11 Autumn

Chamaecyparis obtusa 0.08–0.35 Winter Not given [126]
0.07–0.12 Spring
0.13–0.15 Summer

0.024–0.16 Autumn
1 Finnish Lapland in Sodankyla. 2 Southern Finland in Hyytial.
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Though measurements of monoterpene emission rates were conducted for ambient
temperatures, the normalized values (β-Factors) are given for a given standard temperature
(30 ◦C) using the following algorithm developed by Guenther et al. [52].

E = Ms × exp [β(T − Ts)] (1)

where E is the monoterpene emission rate, T is the ambient/enclosure temperature, Ms
is the emission rate at 30 ◦C, Ts is the standard temperature (303 K), and β is a parameter
that accounts for the strength of the temperature dependence of monoterpene emissions
for a given plant. The normalized values (β-Factors) reported in different studies are
summarized in Table 1.

Monoterpene seasonal emission patterns seem to vary depending on the species,
with some plants having high emissions in fall (Pinus koraiensis) or winter (P. rigida). We
acknowledge the challenges in comparing reports due to the different practices in collection
methods, analytical tools used, and unique environmental conditions at each collection site
(as noted by two different studies conducted in Finland with P. sylvestris). In the following
paragraphs, we discuss some reports and their findings.

Monoterpene emissions for the Scots pine (Pinus sylvestris L.), a typical central Euro-
pean conifer, were measured during April, July, September, and October. The highest and
lowest standard emission rates of the sum of total monoterpenes of 3739 ng g(dw)−1 h−1

and 240 ng g(dw)−1 h−1 were found in the months of April and July, respectively. The main
contributor among all the individual sums of monoterpenes was 3-carene (42%), followed
by α-pinene (30%), and β-pinene (15%), and contributions of other compounds were only
5% [116]. However, the emission rate of 1,8-cineole exhibited a different seasonality with
the highest in April but the lowest in October. This suggests that individual monoterpene
emissions may have a different seasonal dependence.

Three individual trees (Hinoki I, Hinoki II, and Hinoki III) of Chamaecyparis obtusa
(Siebold and Zucc.) Endl. (the most dominant conifer tree species in Japan) exhibited signif-
icant changes in basal (standard) monoterpene emission rates with the season [126]. Their
emission and composition (major compounds include sabinene, myrcene, and p-cymene)
trends were almost similar. The highest basal emissions were observed during the winter,
followed by autumn, spring, and summer in all three trees. The authors suggested that
monoterpenes are stored in large pools in the leaves, which would increase the emission
potential under lower temperatures in winter. The researchers also discovered that dur-
ing the spring, the reproductive stage of the plant (C. obtusa) uses the majority of the
photosynthetic products, while a smaller amount is used for monoterpene synthesis. In
the summer season, the temperature is high and there may be dry conditions, so the
photosynthetic rate is low and the monoterpene emissions from the pools are forced by
evaporation, which makes monoterpene pools smaller in size, which could explain the
low emissions. Therefore, the investigators concluded that monoterpene emission from
C. obtusa depends both on monoterpene pools as well as reproductive stages. A similar
trend was also observed in Cryptomeria japonica by Matsunaga et al. [119].

The emissions from two coniferous trees (Pinus rigida Mill.) and (Pinus koraiensis
Siebold & Zucc.) show maximum emissions (30–50% of annual values) during spring
and low emissions (2.98–3.2%). In spring, the correlation with environmental temperature
was r2 = 0.786. While the emissions during summer and fall show almost similar values
of 27.81–34.4% and 25.82–32.26%, respectively [125]. For the seasonal patterns of the
emissions from P. rigida and P. koraiensis, the authors suggest the role of strong seasonality
in temperature (spring: 20–22 ◦C, summer: 9–17 ◦C, fall: 11–12 ◦C, and winter: 4–13 ◦C)
and their strong correlations with the emission rates. Mochizuki et al. [56] also reported the
seasonal variation of standard monoterpene emissions of Acer palmatum Thunb., a mature
tree in Japan with the maximum emission rates during the summer months (July–August).

The monoterpene emission rates measured from four chemotypes of Cinnamomum
camphora L. during May (spring), July (summer), and November (autumn) show the highest
values during the month of July [124]. Linalool was the dominant monoterpene from all
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four chemotypes during July, comprising 50–70% of all detected monoterpenes (such as
eucalyptol, camphor, and endo-borneol). The authors noted that the seasonal variation
could be due to changes in temperature and the expression of genes for monoterpene
biosynthesis. The most emblematic forest species in central and northern Europe, the Nor-
way spruce (Picea abies L.), showed a significant seasonal fluctuation in MT emission [127].
This study demonstrated a close relationship between solar radiation intensity (PAR) and
camphene, limonene, and α- and β-pinene (predominant MTs). However, both PAR and
temperature were found to stimulate delta-3-carene fluxes.

A field study on the native plant Leptospermum scoparium (mānuka) in New Zealand
also revealed significant seasonal differences in monoterpene emission [27], with higher
emission rates in the summer season. This study highlights the impact of biotic factors
during different seasons, e.g., incidence of herbivore attack, the changing reproductive
state of the plant (and changes in resource allocation), and the effect of neighboring plant
species. While biotic factors are out of the scope of this review, in the future, we hope that
developing technologies and trans-disciplinary research allow for a better insight of how
complex interacting biotic and abiotic factors influence monoterpene emissions throughout
the seasons and lifespan of the plant.

In general, there is still limited information available regarding the mechanisms
behind the influence of environmental factors on terpene emissions. Studies show that
temperature, vapor pressure of the terpenes, the humidity of the air surrounding the leaf,
and the exposure area of essential oils are all involved in the passive release of constitutive
terpenes, in a manner that is often independent from the stomatal opening, e.g., [128,129].
However, light does affect monoterpene production and subsequent release because it
relies on photosynthetic products. Monoterpenes are also well-known antioxidants and are
induced at a genetic level in response to heat, herbivory/damage, and radiation (oxidative
stressors) through the action of secondary messengers such as reactive oxygen species
or jasmonic acid, which trigger signaling cascades [130,131]. Interestingly, the presence
of other antioxidants around the leaf surface, such as isoprene, also appears to have a
regulatory role on monoterpene production that requires further elucidation [132]. Recently,
numerous multi-substrate terpene synthases have been shown to exist based on recent
improvements in the characterization of genes and enzymes responsible for substrate and
end product biosynthesis [133]. An exciting recent study shows that enantiomers of the
same compound (monoterpene) may behave differently in terms of production and release,
and therefore mechanisms may vary depending on the enantiomeric distribution in a
given plant species [134]. Last, but not least, plant phenology plays an important role in
monoterpene production and release (due to trade-offs), along with factors influencing
passive release and those causing increased production in response to stressors [135].

4. Analytical Options for Determining Emission Levels of Monoterpenes

Measuring the fluxes of low-volatility and highly reactive compounds like monoter-
penes in different environments using conventional micrometeorological techniques is a
challenging task. These specific BVOCs have short lifetimes in the atmosphere (ranging
from seconds to minutes), resulting in low atmospheric concentrations and above-canopy
fluxes. To measure these compounds at ambient levels, preconcentration from the sur-
rounding air is typically necessary.

Additionally, analytical losses can affect the measurement of reactive and low-volatility
BVOCs. Due to these difficulties, accurately measuring the fluxes of reactive BVOCs at
the canopy scale has seen limited success [136] and references therein. For instance, where
ambient measurements are unfeasible, experiments involving enclosures at the leaf and
branch levels offer viable alternatives for assessing fluxes of reactive and low-volatility
compounds (Figure 2). Measuring branch-level emissions of monoterpenes presents even
greater challenges. Nonetheless, despite the complexity, quantifying emission rates of
these BVOCs from enclosures can serve as a basis for estimating overall canopy fluxes
and their roles in atmospheric processes. This can be achieved by scaling emission rates
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observed in enclosure studies to the canopy level using precise site-specific biomass data
and meteorological input parameters, e.g., [137]. In contrast to standardized procedures
and commercial enclosure systems available for studying leaf-level photosynthesis and res-
piration, no such standardized methods exist for quantitatively measuring BVOC emissions.
Most researchers construct their own apparatus and employ unique methods, making it
challenging to compare reported emission rates across different studies.
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Enclosures for vegetation experimentation can be categorized as static (no air flow)
or dynamic (flow-through). In the static method, BVOC concentrations increase over time
after enclosure installation. Emission rates are calculated by dividing the change in BVOCs
concentration (emitted from enclosed foliage) by the duration of enclosure and the mass of
leaves. Since air is not circulated, CO2 concentration tends to vary due to photosynthetic
uptake, and greenhouse heating can lead to elevated temperatures. These conditions,
with non-realistic CO2 concentrations, create artificial settings unsuitable for measuring
naturally occurring emission rates. Short-term emission bursts caused by stress can also
occur soon after enclosure setup, further complicating measurements. Static enclosures
cannot be kept in place for extended periods, which introduces the risk of capturing
artificially elevated emissions. Consequently, static methods are inadequate for estimating
realistic long-term emission rates or diurnal variations. However, headspace sampling of
static enclosures can be valuable for identifying BVOC emissions and developing analytical
techniques, e.g., [138]. Solid-Phase Microextraction (SPME) is a sampling technique that
involves the extraction of volatile compounds from the headspace of plant samples using a
solid-phase fiber coated with an adsorbent. The compounds absorbed on the fiber are then
desorbed and analyzed using techniques like gas chromatography (GC). SPME is a simple,
solvent-free method, but it may suffer from limited sensitivity and selectivity for complex
mixtures of monoterpenes.

Unlike static enclosures, dynamic enclosures allow for controlled environmental con-
ditions and airflow [139]. More accurate emission rates can be derived from dynamic
enclosures where air circulates around the vegetation. This maintains environmental
parameters (temperature, CO2, PAR, and water vapor) relatively constant and closer to am-
bient levels, resulting in an enclosure environment that better represents natural conditions.
The emission rate from a dynamic enclosure is calculated using empirical formulas [140]. In
static chambers, temperatures rise without proper airflow, potentially impacting accurate
BVOC estimations, including monoterpenes. Such uncertainties are minimized in dynamic
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chambers, where the absence of a purge flow is not mandatory. As such, dynamic chambers
have become the preferred technique for measuring BVOCs from plant branches due to
their convenience [141,142]. Despite the widespread adoption of dynamic enclosures, they
have limitations. For instance, the materials used for chamber design, such as neoprene and
low-density polyethylene polymers, are suspected to adsorb BVOCs, potentially leading
to emission rate underestimations [140]. Enclosure experiments have been conducted
on naturally growing vegetation as well as in greenhouses. Greenhouse experiments of-
fer advantages, as controlling experimental conditions is generally easier indoors than
outdoors. Operating analytical instruments indoors is more straightforward, facilitating
the use of direct, online analysis techniques. However, due to space limitations, indoor
emission studies are usually limited to smaller plants and the early growth stages of larger
vegetation (such as saplings of larger trees). While greenhouse experiments can reveal
correlations between emissions and environmental controls, it remains uncertain how these
relationships translate to naturally growing vegetation. Consequently, when aiming to
determine ambient flux estimates, conducting emission rate studies on naturally growing
vegetation is preferable.

After sampling, various analytical techniques, including GC-flame ionization detection
(FID), GC-mass spectrometry (MS), proton transfer reactive mass spectrometry (PTR-MS),
and VOC analyzers, are employed for BVOC analysis. GC provides high sensitivity and
selectivity, enabling the identification and quantification of multiple monoterpenes in
a single analysis. However, sample preparation and complex chromatograms can be
challenging, and some thermally labile compounds may degrade during the analysis. PTR-
MS is a real-time, sensitive method that allows for the direct analysis of volatile compounds
in the gas phase. It works based on the ionization of analytes by proton transfer reactions,
followed by mass spectrometric analysis. PTR-MS offers high temporal resolution and
sensitivity, making it ideal for studying fast-changing emission patterns. However, PTR-MS
has limited compound identification capabilities, and the quantification can be challenging
without proper standards. PTR-time of flight (ToF)-MS is an advanced version of PTR-
MS, which couples proton transfer ionization with time-of-flight mass spectrometry. This
method allows for high-resolution mass analysis and can identify and quantify a broad
range of volatile compounds, including monoterpenes, with high sensitivity and accuracy.
The main limitation is the high cost and technical complexity of the equipment.

Accurate determination of monoterpene emissions from plants is essential for under-
standing their ecological role and impacts on the environment. Each analytical method
has its advantages and limitations, and the choice of technique depends on the research
objectives, sample characteristics, and available resources. Combining multiple methods
can provide complementary data and improve the overall understanding of monoterpene
emissions. As technology continues to advance, new and more efficient methods for ana-
lyzing plant emissions will likely emerge, contributing to further insights into the complex
interactions between plants and their environment.

5. Concluding Remarks

Monoterpenes are important compounds due to their ecological roles and contribution
to atmospheric chemistry. Compounds such as α-pinene, β-pinene, limonene, β-myrcene,
and β-ocimene appear to be widespread in terrestrial plants, but the bulk of knowledge is
on temperate trees and grasses, so there is a need to investigate more tropical species and
other plants such as ornamentals or invasives.

Numerous studies have explored monoterpene emissions from different terrestrial
plant species, most notably for temperate tree species. However, comparing different
reports is challenging due to different methods being employed for collection, analysis,
and reporting units (e.g., use of single leaves vs. branches, headspace collection vs. solvent
extraction, different analytical tools, reports based on dry weight vs. fresh weight, etc.).
Moving forward, more standardized approaches or multi-species comparisons using the
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same methods would be useful for comparison purposes and to identify trends or patterns
regarding their emission.

The studies reviewed in this paper clearly indicate that temperature and sunlight are
critical factors influencing monoterpene emission, while the effects of other abiotic factors
(ozone exposure, soil moisture, etc.) are less clear. Differences between monoterpene
storing and non-storing species remain to be further explored.

Monoterpene emissions have seasonal patterns showing increased emissions during
warmer times of the year, particularly in late spring to mid-summer. However, the com-
plexity of interacting biotic and abiotic factors involved in seasonal emissions is far from
fully understood. It is likely that new technologies will be of assistance in advancing the
collection and analyses of complex datasets.
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