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Abstract: Perilla frutescens (L.) Britt. is extensively cultivated in East Asia as a dietary vegetable, and
nutraceuticals are reportedly rich in bioactive compounds, especially with anticancer activities. This
study explored the in vitro cytotoxic effects of P. frutescens parts’ (stems, leaves, and seeds) extracts
on prostate cancer cells (DU-145) and possible interactions of putative metabolites to related prostate
cancer targets in silico. The ethanol extract of P. frutescens leaves was the most cytotoxic for the
prostate cancer cells. From high-performance liquid chromatography analysis, rosmarinic acid was
identified as the major metabolite in the leaf extracts. Network analysis revealed interactions from
multiple affected targets and pathways of the metabolites. From gene ontology enrichment analysis,
P. frutescens leaf metabolites could significantly affect 14 molecular functions and 12 biological
processes in five cellular components. Four (4) KEGG pathways, including for prostate cancer, and six
(6) Reactome pathways were shown to be significantly affected. The molecular simulation confirmed
the interactions of relevant protein targets with key metabolites, including rosmarinic acid. This study
could potentially lead to further exploration of P. frutescens leaves or their metabolites for prostate
cancer treatment and prevention.

Keywords: Perilla frutescens; green perilla; phytochemical content; in vitro; prostate cancer; in silico;
network pharmacology

1. Introduction

Prostate cancer (PCa) affected 14.1% of men worldwide, particularly old-aged men,
in 2020 [1]. In this report, it is the fifth most death-causing cancer disease. Most PCa cells
are potentially metastatic and are sometimes detectable from the emergence of urethral
blockage or hematuria [2]. These are usually late-stage manifestations that allude to
appropriate monitoring, especially for high-risk individuals. The early detection of PCa is
currently tested with prostate-specific antigen (PSA) levels in blood serum [3]. However,
it is reported to have broad-ranged screening specificity and sensitivity, and PSA levels
are increased for patients with benign prostate hyperplasia (BPH), which is usually a
noncancerous prostate gland enlargement [4]. For this reason, additional tests such as
biopsy or the detection of other biomarkers are required. Current non-metastatic hormone-
sensitive PCa (nmHSPC) treatments are hormonal therapy, radiotherapy, immunotherapy,
or castration/orchiectomy [3,5]. However, metastatic HSPC (mHSPC) and castrate-resistant
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PCa (mCRPC), which are advanced PCa, are unresponsive to such hormonal therapy and
surgical procedures, which requires life-maintaining treatment and palliative care since
they are generally incurable [5,6]. It is a wide-ranging disease that follows particular cell
growth and progression mechanisms with complex molecular pathogenesis and etiology,
which require multi-targeted treatments [5].

An increasing number of investigations are being conducted of PCa for traditional
and complementary medicines, solely or in decoctions, as supplemental to such treatments
or as a preventative measure [7–9]. These medicinal systems are commonly validated with
non-physical mechanisms and alternative anatomical interpretations, which are viewed
in obscurity and discord with biological mechanisms to some extent. Current efforts in
traditional and complementary medicine research to uncover molecular mechanisms and
therapeutic effects have increased the confidence of health consumers in this medicinal
system [7,10–12]. Still, natural products have been a great source of biologically active
molecules in conventional medicine, such as the chemotherapeutic drug Paclitaxel and
Taxifolin from Taxus chinensis (Chinese yew) [8,11,13]. While plant materials may be low
in concentration of these bioactive molecules compared to current medications, potent
plant materials and extracts have been discovered to be indicative of excellent hit com-
pounds [14,15]. Previously, it was reported that conjunctive use of traditional Chinese
medicine (TCM), especially the Chai-Hu-Jia-Long-Gu-Mu-Li-Tang decoction, increased the
survivability of metastatic PCa patients [16].

One of these traditional medicines is the Perilla frutescens (L.) Britt., which is an annual
plant native and widely cultivated in eastern, southeastern, and southern Asia, mainly
in subtropical climates, whereas it was introduced in northeastern America and southern
Europe [17]. This plant has excellent nutraceutical and pharmaceutical value in TCM, and
its leaves are a staple food in East Asian cuisine [18]. This plant has been traditionally used
for but is not limited to athlete’s foot, generalized edema, cough, antibiotic, antidepressants,
anti-lung, and colon cancer [19]. In fact, Jeong et al. [20] confirmed that ethanol extracts
of this plant inhibited the metastatic ability of cancer cells, specifically breast and liver
cancer cells, through Src kinase deactivation, thereby blocking the epithelial–mesenchymal
transition (EMT) process. Also, a study by Lee et al. [21] uncovered the activity of isoego-
maketone, an isolate in P. frutescens oils, as an inducer of apoptotic mechanisms on PCa
cells from the activation of death receptors 4 and 5. Additionally, numerous secondary
metabolites from plants’ adaptive mechanisms in different conditions could be a good
source of compounds for multiple targets.

Network pharmacology is the current paradigm of molecular investigations of herb
and herbal formulae in traditional medicines [22–24]. This computational approach in-
cludes the chemical diversity of TCMs into multiple targets through experimental data
and predictive models aimed at advances in polypharmacology and multi-targeted drug
discovery approach [23,24]. This network-driven approach overcomes the barriers of the
conventional one-drug-one-target scheme and, therefore, is appropriate for complex dis-
eases, mainly due to the diversity of cancer mechanisms. Based on the common targets
between the disease and active compounds from the TCM herbals, this network-based
method can characterize potential key molecular targets and mechanisms of action.

The abundance of compounds with anticancer activities in various parts of P. frutescens
var. frutescens (PF), the green variety, has potential applications in PCa treatment or preven-
tion [25]. Furthermore, this study focused on polar compounds, including phenolic and
flavonoid compounds, which are abundant in water and ethanol extracts of P. frutescens
and commonly have anticancer properties [26–29]. The cytotoxic effects of these extracts
were explored with prostate adenocarcinoma (PRAD) DU-145 cell lines. The metabolites’
action was briefly studied with in silico network pharmacology. There is limited informa-
tion about their potential anti-PCa activity; hence, this study addressed initial interests in
the bioactivity of the plant’s extracts as supplemental to PCa treatment or its prevention.
Also, understanding the molecular mechanism of the plant could potentially decipher
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drug-to-herb interaction as a necessary criterion for their adjuvant or concomitant use with
conventional medicines.

2. Results
2.1. Total Phytochemical Content

The apparent phytochemical contents of the PF parts relevant to anticancer activity
were assessed from total phenolics and flavonoid contents as shown in Table 1. The leaf
extracts revealed superior amounts of phytochemicals compared to the other studied parts.
For the total phenolics content with a Folin–Ciocâlteu assay, PF-L-W > PF-L-E > PF-SD-W
> PF-S-E > PF-S-W > PF-SD-E, whereas for total flavonoid content with an AlCl3 assay,
PF-L-W > PF-L-E > PF-SD-E > PF-S-E > PF-SD-W. PF leaves (PF-L) and water extracts were
observed to obtain the highest amount of such phytochemicals.

Table 1. Total phytochemical content of P. frutescens extracts.

Extract TPC (mg GAE/g CE) TFC (mg RE/g CE)

PF-S-E 32.1602 ± 0.5445 18.8969 ± 0.9848
PF-S-W 30.1641 ± 1.0134 N.D.
PF-L-E 83.1263 ± 0.9431 42.6199 ± 1.9120
PF-L-W 87.2611 ± 1.0841 54.3026 ± 1.9616
PF-SD-E 22.2391 ± 0.2058 27.3490 ± 0.8821
PF-SD-W 44.6299 ± 0.4715 11.6966 ± 0.3097

Calibration Curve y = 5.6109x − 0.0192
R2 = 0.9990

y = 5.5923x + 0.0280
R2 = 0.9994

Abbreviations: TPC, total phenolics content; TFC, total flavonoids content; GAE, gallic acid equivalents; CE, crude
extract; RE, rutin equivalents; S, stem; L, leaf; SD, seed; E, ethanol extract; W, water extract; N.D., not detected.

2.2. Anti-Prostate Cancer Activity

Dose–response behavior was observed for all samples; however, the water extract
of PF seeds was not significantly different from the negative control and had no dose–
response behavior. In Figure 1, the 5.00 mg/mL dose of ethanolic PF leaf and seeds and
aqueous leaf extracts surpassed the cytotoxicity of 5-fluorouracil (5FU). The highest half-
maximal cytotoxic concentrations were observed from PF-L-E (1.3982 ± 0.3453 mg/mL)
> PF-L-W (1.6224 ± 0.2926 mg/mL) > PF-SD-W (2.0612 ± 0.0327 mg/mL) > PF-SD-E
(2.1631 ± 0.7595 mg/mL) > PF-S-E (3.5275 ± 0.4574 mg/mL). The PF part extract with
the most cytotoxic potential of DU-145 cells is found in their leaves, specifically for the
ethanol extract.

2.3. Detection of the Major Compound

Metabolomic analyses of PF-L show that its major metabolite is rosmarinic acid (RA),
a phenolic acid [30,31]. For verification, the presence of rosmarinic acid in the crude PF-L
extracts was evaluated with HPLC analysis. Peak identification revealed its retention time
at tR = 29.82 min in Figure 2.

2.4. Network Pharmacology

Putative metabolites of PF-L were collected from the literature as summarized in
Table S1, excluding the nonpolar compounds [30–33]. There were 358 predicted targets of
these metabolites after duplicate removal. From differentially expressed genes of PRAD
versus normal prostate cells, 14 upregulated and 46 downregulated genes are associated
with cytotoxicity of PF-L metabolites to DU-145 cells, shown in Figure 3a. The higher
degree of node connections’ strength and amount in these network analyses indicates its
importance. These nodes with higher connection degrees could potentially affect multiple
targets simultaneously. In the metabolite-target network (MTN) for these common targets
in Figure S1, simplified in Figure 3b, with at least 20 affected targets were tuberonic acid
(37, 20 targets), scutellarein-7-O-glucuronide (32, 20 targets), 5’-gluco-pyranosyoxyjasmanic
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acid or tuberonic acid glucoside (1, 20 targets), and n-octanoylsucrose (23, 21 targets). The
major compound, RA (28), in this MTN analysis had 17 common targets.
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UR are upregulated genes; (b) key metabolites (including RA) in the MTN of PF-L against PRAD.

Interaction of the proteins from the protein-coding genes seen in Figure S2 revealed a
highly significant network (p = 9.04 × 10−12) with 76 connections, an average node degree
of 2.53, an average local clustering coefficient of 0.382, and a maximum interaction score
of 0.50. An increased required interaction score of 0.90 revealed a significant network
(p = 0.00033) with 19 significant interactions, an average node degree of 0.633, and an
average local clustering coefficient of 0.298 (Figure 4). Henceforth, the top five (5) targets
from topological analysis in Cytoscape with maximal clique centrality (MCC) and density
of maximum neighborhood component (DMNC) algorithms were considered key targets
for PCa cytotoxicity of PF-L metabolites. The MCC and DMNC algorithms were previously
observed to best identify essential targets in a complex interactome [34]. In this analysis, the
p59-Fyn proto-oncogene (FYN), platelet-derived growth factor receptors α and β (PDGFRA
and PDGFRB), phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), and integrin
αVβ3 (ITGB3) were top-ranking. Based on the network in Figure S3, metabolites with at
least three (3) affected PPI network-relevant targets were 5′-gluco-pyranosyoxyjasmanic
acid (1, 3 targets), apigenin-7-O-diglucuronide (5, 3 targets), coumaric acid-4-O-glucoside
(15, 3 targets), perillaldehyde (24, 3 targets), trans-p-menth-8-en-yl caffeate (36, 4 targets),
and tuberonic acid (37, 5 targets). From these analyses, compounds 1 and 37 were defined
for both MTN.
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Figure 4. PPI network of intersected genes set with interaction score of at least 0.90 where red-labeled
proteins are top-ranking in interactivity through MCC and DMNC analysis.

The gene ontology (GO) terms classified expressed properties from genes and their
products according to their molecular functions (MF), involvement in biological processes
(BP), and presence in cellular components (CC). In Figure S4, GO terms and pathways
were ordered according to the adjusted p-value from the g:SCS algorithm. A higher
p-value indicates that it has a significant PCa cytotoxicity effect from the metabolite
action on protein-coding gene targets. According to the enriched GO terms, 14 MFs,
12 BPs, and 5 CCs were considered significant from 60 intersecting gene targets. Biological
processes relevant to the PCa cytotoxic effect of PF-L metabolites are the responses to
oxygen-containing compounds, protein phosphorylation, and cellular component disas-
sembly, mainly distributed in the cytoplasm, cell surface, and periphery. These results
reveal that the metabolites may influence the activity of ions, protein kinase, and identical
protein binding.

The apparent mechanism of action of PF-L activity on PCa may be deciphered from
significant pathways from KEGG and Reactome. Furthermore, pathway enrichment analy-
sis showed four (4) KEGG pathways and six (6) Reactome pathways, which involved 28
targets, which are acetyl-CoA carboxylase 1 (ACACA), acetyl-CoA carboxylase 2 (ACACB),
acetylcholinesterase (ACHE), disintegrin and metalloproteinase domain-containing protein
10 (ADAM10), aldose reductase (AKR1B1), 20α/3α-hydroxysteroid/dihydrodiol dehydro-
genase (AKR1C1), 3α-hydroxysteroid 3-dehydrogenase (AKR1C2), tyrosine-protein kinase
receptor UFO (AXL), calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2),
M-phase inducer phosphatase 2 (CDC25B), fructose-1,6-bisphosphatase 1 (FBP1), tyrosine-
protein kinase Fyn (FYN), non-lysosomal glucosylceramidase (GBA2), glutathione S-
transferase P (GSTP1), cortisone reductase (HSD11B1), integrin αVβ3 (ITGB3), protein
Mdm4 (MDM4), gelatinase A (MMP2), gelatinase B (MMP9), nuclear receptor 4A1 (NR4A1),
platelet-derived growth factor receptor α (PDGFRA), platelet-derived growth factor re-
ceptor β (PDGFRB), phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), membrane
associated phospholipase A2 (PLA2G2A), protein kinase C-alpha (PRKCA), prostaglandin
G/H synthase 2 (PTGS2), retinoic acid receptor RXR-β (RXRB), and stearoyl-CoA desat-
urase (SCD). The first two pathways were cell growth and proliferation-related pathways;
there are three (3) cancer-related pathways, two (2) metabolism-related pathways, a cell
segregation-related pathway, and an angiogenesis-related pathway. Based on the protein
targets affected visualized in Figures S5–S14, PF-L metabolites have diverse targets where
their activities are still in need of further validation and research.

2.5. Molecular Docking

For protein–ligand interaction validation, selected protein targets and metabolites
from network pharmacology results were subjected to molecular docking. The binding
site was selected with the volume of co-crystallized ligands for FYN (PDB code: 2DQ7),
PIK3R1 (PDB code: 4JPS), ITGB3 (PDB code: 6MK0), and PDGFRA (PDB code: 6JOK).
At the same time, the most significant volume from the grid-search and eraser algorithm
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was determined for PDGFRB (PDB code: 3MJG). Controls used were 5-fluorouracil (CID:
3385), [RGD-ChgE]-CONH2 [35], alpelisib (CID: 56649450), nintedanib (CID: 135423438),
ponatinib (CID: 24826799), and sunitinib (CID: 5329102). The highest docking score from
Table S5 for each ligand was selected, shown in Figure 5. RA (28) has the best docking score
compared to 5FU. For metabolites in network pharmacology, all proteins were most stably
docked with scutellarein-7-O-glucuronide (SG, 32). These compounds were more stable
and spontaneously binding than the positive controls except for [RGD-ChgE]-CONH2.
Prevalent drug–receptor interactions, such as hydrophobic contact, hydrogen bonding, and
π-stacked interactions [36], were observed in all protein-28 complexes shown in Figure 6.
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3. Discussion

PF has a wide array of pharmacologically active compounds historically used in
TCM. Phytochemicals, such as polyphenols, are secondary metabolites of plants that
are generally responsible for their defense mechanism against external stresses, such as
infection, predators, environmental changes, and, to some extent, their growth [37]. Most
polyphenols are anticancer agents targeting apoptotic and cell cycle pathways, along with
cancer cell proliferation, tumorigenesis, angiogenesis, and metastatic abilities [26–29]. Plant
extracts are an excellent source of these cancer-curative and preventative compounds due
to their diverse targets and potentially synergistic action against cancer. Since PF-L had the
most total phenolic and flavonoid content, its anti-PCa activity could be superior to other
parts of PF.
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Cancer is a multifactorial disease triggered through genetic alterations and instabili-
ties, epigenetics, weakened immunosurveillance, infection, and so on [38]. Hallmarks of
cancer pathogenesis revolve around the heightened activity of oncogenes (like growth-
related genes responsible for tumor proliferation) and contrarywise for tumor suppressor
genes [39]. A multi-targeted approach is appropriate since this disease takes advantage
of each cell type’s specific cellular and metabolic machinery. The development of PCa
at every stage has apparent changes in cellular mechanisms [40]. Henceforth, numerous
in vitro models for PCa, such as the DU-145, PC-3, and LNCaP cell lines, are utilized for
anti-prostate cancer activity research [41,42]. The prostate adenocarcinoma DU-145 cells,
which are castration-resistant prostate adenocarcinoma from central nervous system (CNS)
metastasis, were utilized for screening in this study [43]. While it is a negative-androgen
receptor-expressing cell line, current reports reveal that DU-145 has positive androgen
receptor expression in mediocre levels compared to androgen receptor-expressing cell
lines [44]. Nevertheless, the phenolic and flavonoid-rich crude ethanol extracts of PF-L
exhibited the lowest required concentration to become 50% cytotoxic to DU-145 cells. It
indicates that PF-L has deficient activity relative to potent anticancer plant extracts [45–47].
This activity could signify that metabolites at low concentrations are more bioactive or that
major metabolites require high concentrations. Deciphering the probable molecular targets
of these metabolites are explored with network pharmacology and molecular docking anal-
yses. This network-based bioinformatic analysis of metabolite targets and PRAD revealed
60 affected targets. The results show that compounds 1, 5, 15, 23, 24, 32, 36, and 37 have
the most relevant targets on PCa cytotoxicity.

Previous studies revealed that many of the main compounds and such derivatives
have been able to impact PCa cell proliferation and growth. It was known that apigenin
targeted PI3K/Akt/Fox-O, β-catenin, and insulin-like growth factor-I signaling pathways,
impacting PCa proliferation [48]. Also, apigenin derivatives have been known to induce cell
death and cell cycle arrest [49]. Coumaric acid is known to have a similar effect, but it has
targeted mitochondrial-related apoptosis, downregulated specific cyclin-dependent kinases,
and decreased the expression of specific oncogenes [50,51]. Perillaldehyde has been shown
to reduce bone metastasis of PC-3 prostate cancer cells with repression of the nuclear factor-
κB (NF-κB) pathway and receptor activator of NF-κB ligand (RANKL) [52]. At the same
time, scutellarin is considered a promising cancer treatment due to its multifactorial effect
of cell cycle arrest, apoptosis induction, and angiogenic and metastatic reduction [53–56].
However, there are limited studies regarding their structure analogs with PCa. The major
compound of PF-L, RA, was observed to have an excellent activity to DU-145, which could
be the main-effect compound of its extracts [57–60].

In this study, affected targets from PRAD with PF-L were subjected to a GO term,
KEGG, and Reactome pathway enrichment analysis, which uncovered prospective cy-
totoxic mechanisms to PCa in silico. Relevant processes that could be involved in this
phenomenon from GO enrichment are the response to oxygen-containing compounds,
protein phosphorylation, cellular component disassembly, and to a lesser extent, angiogen-
esis. From pathway enrichment, PF-L metabolites potentially regulate the AMPK signaling
pathway, EGFR tyrosine kinase inhibitor resistance, miRNAs in cancer, prostate cancer,
steroid and lipid metabolism, SCF-KIT and PIK3/Akt signaling pathways, EPH-ephrin
mediated cell repulsion, and the VEGFA-VEGFR2 pathway. Collectively, these pathways
were discovered to significantly affect the tumorigenesis, growth, progression, energy
regulation, metastasis, and adhesion of PCa cells [61–69].

One of the relevant protein-coding genes from the PPI network is Fyn, under the
Src family kinases. This gene is typically overexpressed in PCa, a signaling protein typ-
ically attributed to tumor cell proliferation and metastasis [70,71]. It regulates diverse
biological functions, such as cell growth, proliferation, migration, and adhesion. However,
overexpressed Fyn mediates the PIK3/Akt pathway to induce anti-apoptotic mechanisms
and EMT for cell invasion and metastatic initiation, preventing the cell death pathways
of normal cells [70–72]. It is a recent interest for cancer targets due to their functions in
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cancer cells and their drug resistance ability; however, the latter is effective in direct gene
expression regulation. Indeed, previously reported immunochemical assays for Fyn kinase
activity of RA and caffeic acid exhibited noncompetitive inhibition [73–75].

The molecular action of PF-L metabolites was also implicated with ITGB3, a transmem-
brane integrin receptor primarily responsible for cell adhesion, migration, and macrophage
phagocytosis ability [76,77]. It was previously reported that the antagonism of integrin
αVβ3 or vitronectin receptor revealed the most effective reduction in tumor cell angio-
genesis and metastasis compared to the other classes of integrins [76–79]. Since it is
overexpressed in highly metastatic neuroendocrinal metastasis of PCa, it is an antian-
giogenic target, and it affects the migration, survival, plasticity, and metastatic ability of
tumor cells as signal initiators [76,78]. However, previous results for endometrial cells
showed that exposure to aqueous extracts of PF-S&L corresponded to increased integrin
β3 expression and no observable changes in integrin αV [80]. This result is unfavorable for
cancer angiogenesis and should be considered for further study.

Another PPI network-significant protein-coding gene with PF-L is the PIK3R1 from
the PIK3/Akt pathway, which typically regulates cell death, proliferation, metabolism, and
angiogenesis [81]. It is an obligate heterodimer composed of the p110α catalytic subunit
(PIK3CA) and the p85α regulatory subunit (PIK3R1) [82]. This protein-coding gene is
underexpressed and altered in both primary and metastatic PCa cells and has inverse
negative feedback with androgen receptor (AR) [81,83]. Hence, the dynamic interplay of
PIK3R1 and AR indicates that the current androgen-deprivation treatment could enable cell
proliferation and survivability, suggesting vital consideration of combinatorial inhibition
of the two targets [81]. For PF-L, the PI3K/Akt/NF-κB axis was regarded as the primary
pathway of inhibited migration and invasion, induced apoptosis, and cell cycle arrest from
RA [75,84,85].

Lastly, PF-L metabolites were shown to have significant interaction with PDGFRs,
which are transmembrane receptor tyrosine kinases that can initiate various pathways
with the SH2 domain-containing signal transduction molecules as inducers of cell growth
and division, such as in the PI3K/Akt pathway [86]. Dimerization of these receptor
monomers with PDGF ligands induces autophosphorylation [86–88]. The PDGFRα and
β were implicated in PCa due to their heightened expression in PCa cells and oncogenic
activity on its growth, angiogenesis, and metastatic potential [86,89–91]. In fact, ligand
and dimerization-free PDGFRα are about as bone-metastatic compared to the complete
form of the receptor for PCa, indicative of PDGF-independent mechanism on its metastatic
ability [89,90]. In comparison, the high expression of PDGFRβ in prostate tumor stroma was
associated with PCa aggressiveness and low patient survivability [92,93]. PDGF-induced
proliferation of mesangial cells was inhibited upon exposure to RA [94].

Molecular docking was utilized to test whether the selected metabolites could interact
with the key targets. This simulation revealed stable binding with respective proteins
consistent with previous activities of their analogs. RA had the best activity, which could
affirm the activity of PF-L on PCa. These results suggest that added structural features in
the main compound may have increased their potency.

Anti-PCa activity from PF-L extracts can be promising, especially as a preventative
measure and an additional diet for individuals with a high risk of PCa development.
However, pharmacokinetics and toxicity with normal cells in vitro and in vivo tests are
required to successfully evaluate PF-L’s potential as an anticancer agent for PCa or other
cancer types. Also, the polar and nonpolar metabolites present in PF-L could be synergistic
or antagonistic for the anti-PCa activity of PF and could be addressed from compound
isolation and comparative explorations. At the same time, predicted mechanisms and
actions from bioinformatic analyses should be further validated and investigated with gene
expression studies. Meta-analysis of PCa patients and people at risk with their diet on such
TCMs could provide an expansive vantage point of its potential as a cancer curative or
preventative agent. Interestingly, other environmental conditions for the plant may lead to
unique secondary metabolites, hence different activity.
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4. Materials and Methods
4.1. Preparation of Plant Extracts

Dried P. frutescens stem (PF-S), leaves (PF-L), and seeds (PF-SD) were acquired from
a local TCM store located in Tainan City, Taiwan. The identification of P. frutescens was
authenticated by Dr. Chia-Jung Lee, Ph.D. Program in Clinical Drug Development of
Herbal Medicine, College of Pharmacy, Taipei Medical University. A voucher specimen
was deposited as #2023-CJCU-PF-001 at the Department of Medical Sciences Industry at
Chang Jung Christian University, Taiwan.

The samples were collected from manually separated leaves and stems, where the
petioles were included with the latter. These samples were mechanically ground for surface
area enlargement and particle size reduction for effective extraction. For ethanol extracts,
dried samples (50 g) were immersed with one-liter 95% ethanol under a two-hour 65 ◦C
water bath and total reflux. For water extracts, dried samples (50 g) were leached with one
liter of distilled and deionized water in a traditional Chinese decoction pot until reduced to
~200 mL. The crude extracts were vacuum-filtered with 0.45 µm filter paper, concentrated
by vacuum evaporation, and lyophilized to obtain a solvent-free extract stored in a −20 ◦C
refrigerator for further analysis. The yield from the extraction is reported in Table 2.

Table 2. Extraction yield (g CE/100 g PM) of lyophilized P. frutescens crude extracts.

Plant Material

Solvent Stem Leaf Seed

Ethanol 1.8856 6.5310 3.2080
Water 4.9060 15.5686 4.0512

Abbreviations: CE, crude extract; PM, dried plant material.

4.2. Total Phytochemical Content Assay

The total phytochemical contents of PF extracts were assessed according to Tsai
et al. [95] with slight modifications. A 1000 µg/mL stock solution of crude PF extracts was
prepared for all assays. The chemicals used in the analyses are reagent grade. Standards
were prepared from two-fold serial dilutions of 1000 µg/mL stock solution from 500 to
15.60 µg/mL. Results of the following assays were expressed in milligrams of standard
equivalents per gram of crude extract. All measurements were taken in triplicates and
color-corrected with blank solutions.

4.2.1. Total Phenolics Content (TPC) Assay

Gallic acid standards were prepared for TPC analysis. The standard and sample solu-
tions (80 µL) were added with 400 µL of 0.2 N Folin–Ciocâlteu reagent. After five-minute
equilibration, 320 µL of 7.5% (w/v) Na2CO3 was added. The mixture was incubated for
30 min at room temperature and transferred to a 96-well microarray plate. The absorbance
of the mixtures was measured at 600 nm.

4.2.2. Total Flavonoids Content (TFC) Assay

Rutin standards were prepared for TFC analysis. The standard and sample solutions
(500 µL) were reacted with 500 µL of 2.0% (w/v) AlCl3 reagent. The mixture was incu-
bated for 15 min at room temperature and transferred to a 96-well microarray plate. The
absorbance of the mixtures was measured at 430 nm.

4.3. Anti-Prostate Cancer Activity
4.3.1. Human Prostate Cancer Cell Line DU-145

The cell culture of DU-145 was adapted from Park et al. [96]. Briefly, human prostate
cancer cell line DU-145 was obtained from Bioresource Collection and Research Center
(BCRC, Taiwan). The DU-145 cells were cultured in Eagle’s Minimum Essential Medium
(EMEM), containing 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin. The
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cultured cells were kept at 37 ◦C in a humidified atmosphere containing 5% CO2. The cells
were sub-cultured within two-day intervals after reaching 70–80% confluence.

4.3.2. Cell Treatment and Cell Viability with WST-1 Assay

DU-145 cells were cultured in 96-well microarray plates (2 × 104 cells/well) and incu-
bated at 37 ◦C. After 24 h of incubation, the cells were treated with various concentrations
(two-fold dilution from 5.00 to 0.625 mg/mL) of crude extracts for another 24 h. The
positive control in this analysis was 1.00 mg/mL of 5-fluorouracil (5FU). Cell viability was
determined using a WST-1 assay (AbcamTM) [97]. Briefly, 100 µL of a fresh medium was
placed in each treated well with DU-145 cells. A total of 10 µL of WST-1 reagent was added
to each well. The plate was incubated for 2 h at 37 ◦C. The absorbances were measured at
570 nm with background control. Measurements were performed in triplicates for statistical
significance and reproducibility.

4.4. Chromatographic Analysis

The major compound was separated and identified in the extracts with liquid chro-
matography (LC-2050C 3D; Shimadzu Corporation, Japan) for verification through a Hy-
persil™ BDS C18 column (250 × 4.6 mm, 5 µm, Thermo Fischer Scientific Inc., Taiwan)
kept at 25 ◦C. Chromatography conditions were adapted from Lee et al. [30] with slight
modifications. A 5 µL of 10 mg/mL crude extracts dissolved in methanol was filtered with a
0.45 µm syringe filter and injected into the column. Chromatography runs were performed
with mobile phases of 0.05% trifluoroacetic acid in water (eluent A) and methanol (eluent
B). The implemented gradient program was 30% B (0–5 min); 30-50% B (5–20 min); 50–0%
B (20-40 min); 90–100% B (40–45 min); and 100% B (45–50 min); then, it was equilibrated
back to initial conditions for five minutes at a flow rate of 0.4 mL/min. Data acquisition
was set until 45 min.

4.5. Data Treatment and Statistical Analysis

Microsoft Excel was used for data processing, and GraphPad Prism software was used
for statistical analysis and data visualization. Experimental data are reported as mean
± standard deviation (SD). Multiple comparisons of means were conducted through one-
way ANOVA and Dunnett’s pairwise comparison test. A statistical significance of p < 0.05
was set throughout the analysis.

4.6. Network Pharmacology

A brief prediction of the mechanism of action of PF with PCa cytotoxicity was per-
formed with network analysis adapted from Jin et al. [98] and Peng et al. [99] with modifi-
cations. The methods and resulting data of this analysis were validated according to the
guidelines of the World Federation of Chinese Medicine Societies [100].

4.6.1. Target Prediction and Identification

The experimental and predicted gene targets of previously identified putative metabo-
lites from PF extracts were identified from SuperPred (prediction.charite.de, accessed in
June 2023). This target prediction tool utilizes logistic regression and 2048-long Morgan
fingerprints with 94.1% target prediction accuracy [101]. The default set cut-offs for pre-
dicted target probability and model accuracy were ≥ 50%. Differentially expressed genes
between PRAD (ICD-11: 2C82.0) and normal prostate cells were determined from the
Gene Expression Profiling Interactive Analysis (GEPIA2, gepia2.cancer-pku.cn, accessed
in June 2023). Genomic datasets of the GEPIA2 web server utilized were from TCGA
and GTEx isoform expression data [102]. Comparisons were performed with the LIMMA
differential method. Statistically significant genes were selected with the set significance
of p < 0.01 and |log2 FC|> 1. Gene nomenclatures were standardized into their official
gene symbols using SynGO (www.syngoportal.org/convert, accessed in June 2023) [103].
Matched gene targets between the metabolites and PRAD were selected for further analysis

www.syngoportal.org/convert
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with Venny 2.1 (bioinfogp.cnb.csic.es/tools/venny/, accessed in June 2023) and Intervene
(asntech.shinyapps.io/intervene, accessed in June 2023) [104,105].

4.6.2. Network Construction

The identified matched protein-coding genes were imported to the STRING database
11.5 (string-db.org, accessed in June 2023) for the construction of a PPI network [106–118].
Furthermore, proteins with more than one (1) interaction and FDR stringency of 0.01 limited
to the “Homo sapiens” species were considered significant. The PPI network is transferred
CytoScape 3.9.1 for further analysis [119]. Protein relevance in the network was evaluated
with topological analysis using MCC and DMNC algorithms from the cytoHubba plug-in
in CytoScape [34]. The metabolite target network was constructed similarly and analyzed
with the degree-ranking algorithm.

4.6.3. Enrichment Analysis

Functional profiling was performed with g:Profiler (biit.cs.ut.ee/gprofiler/gost, ac-
cessed in June 2023) for the exploration of the predicted pharmacological mechanism and
signaling pathways involved in the action of metabolites to the selected targets [120,121].
Relevant results from databases of gene ontology (GO) terms [122,123], KEGG [124–126]
and Reactome [127–134] pathways were characterized from a g:SCS significance threshold
of less than 0.05 limited to the “Homo sapiens” species. Secondary data filtering of GO terms
was automatically performed from g:Profiler with a simple greedy search algorithm. Data
visualizations were performed in Python 3.11.

4.6.4. Molecular Docking Validation

The molecular modeling and visualization software BIOVIA Discovery Studio was
employed for the docking analysis. Three-dimensional (3D) structure-data files (SDFs)
of ligand molecules were collected from PubChem (chem.ncbi.nlm.nih.gov, accessed in
June 2023). The ligands were prepared with the ligand preparation (at pH 7.5 ± 1.0)
and minimization protocols in Discovery Studio. Experimentally elucidated structures
of protein targets were collected in PDB file format from the Protein Data Bank (PDB,
www.rcsb.org, accessed in June 2023). Afterward, water molecules and irrelevant het-
eroatoms were removed, and polar hydrogens were added to the protein structure. The
proteins were prepared with the protein preparation protocol (at pH 7.4 and 0.145 M ionic
strength) in Discovery Studio. These proteins were minimized until an energy gradient of
0.01 with CHARMm force field and the Momany-Rone partial charge estimation method.
The defined binding sites were determined from the co-crystallized ligands volume or
eraser algorithm in Discovery Studio [135]. The docking runs were performed using the
grid-based CDOCKER protocol [136]. Receptor-ligand binding site visualizations were
performed in PyMOL™ [137].

5. Conclusions

Most PF extracts follow dose–response behavior for PCa cell cytotoxicity with DU-145
cells, where its ethanolic leaf extracts had the most cytotoxic activity. While characterized as
having minimal activity as an anti-prostate cancer agent, the plant may have preventative
potential for PCa development and progression. Regardless, bioinformatic analyses re-
vealed that many minor metabolites and the major metabolite, RA, could have contributed
to the cytotoxic potential of the mentioned extract, affecting the determined key targets
FYN, PDGFRA, PDGFRB, PIK3R1, and ITGB3. Molecular docking of the compounds to
the key targets consistently verified the protein–ligand interactions from network pharma-
cology results. Hence, the cytotoxicity of the leaf extract can be postulated from cell death
induction and cell cycle arrest from action to the key targets. More advanced studies, such
as in vivo trials, gene expression, or clinical trials, are recommended to verify activities and
mechanisms of action from PF-L and their metabolites to PCa.

www.rcsb.org
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12163006/s1, Figure S1: Metabolite-target network of P.
frutescens leaves against PRAD; Figure S2: Protein-protein interaction network of intersected genes
set; Figure S3: Metabolite-target network of PIN-relevant proteins; Figure S4: GO term enrichment
analysis by (a) molecular function, (b) biological process, and (c) cellular component; (d) KEGG
and Reactome pathway enrichment analysis; Figure S5: Affected proteins in the AMPK signaling
pathway from the KEGG database (has04152); Figure S6: Affected proteins in the EGFR tyrosine
kinase inhibitor resistance pathway from the KEGG database (hsa01521); Figure S7: Affected proteins
from protein-translated miRNAs in cancer from the KEGG database (hsa05206); Figure S8: Affected
proteins in the prostate cancer pathway from the KEGG database (hsa05215); Figure S9: Affected
proteins in the steroid metabolism pathway from the Reactome database (R-HSA-8957322); Figure
S10: Affected proteins in the SCF-KIT signaling pathway from the Reactome database (R-HSA-
1433557); Figure S11: Affected proteins in the lipid metabolism pathway from the Reactome database
(R-HAS-556833); Figure S12: Affected proteins in the PI3K/Akt signaling pathway in cancers from
the Reactome database (R-HAS-2219528); Figure S13: Affected proteins in the EPH-ephrin mediated
cell repulsion pathway from the Reactome database (R-HSA-2682334); Figure S14: Affected proteins
in the VEGFA-VEGFR2 pathway from the Reactome database (R-HAS-194138); Table S1: Summary
of putative compounds of P. frutescens leaf extracts from metabolomic studies; Table S2: First-pass
relevant gene ontology (GO) terms; Table S3: Second-pass relevant gene ontology (GO) terms;
Table S4: Identified protein targets from protein-protein interaction network analysis; and, Table S5:
CDOCKER energy (in kcal/mol) of protein-ligand complexes.
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