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Abstract: Purple-grained wheat (Triticum aestivum L.) is an important germplasm source in crop breed-
ing. Anthocyanin biosynthesis in the pericarps of purple-grained wheat is largely light-dependent;
however, the regulatory mechanisms underlying light-induced anthocyanin accumulation in the
wheat pericarp remain unknown. Here we determined that anthocyanins rapidly accumulate in
the pericarps of the purple-grained wheat cultivar Heixiaomai 76 (H76) at 16 days after pollination
under light treatment. Using transcriptome sequencing, differential gene expression analysis, and
phylogenetic analysis, we identified two key genes involved in light signaling in wheat: ELONGATED
HYPOCOTYL 5-7A (TaHY5-7A) and B-BOX-3B (TaBBX-3B). TaHY5-7A and TaBBX-3B were highly
expressed in purple-grained wheat pericarps. The heterologous expression of TaHY5-7A partially
restored the phenotype of the Arabidopsis (Arabidopsis thaliana) hy5 mutant, resulting in increased
anthocyanin accumulation and a shortened hypocotyl. The heterologous expression of TaBBX-3B in
wild-type Arabidopsis had similar effects. TaHY5-7A and TaBBX-3B were nucleus-localized, consistent
with a function in transcription regulation. However, TaHY5-7A, which lacks a transactivation
domain, was not sufficient to activate the expression of PURPLE PERICARP-MYB 1 (TaPpm1), the key
anthocyanin biosynthesis regulator in purple pericarps of wheat. TaHY5-7A physically interacted
with TaBBX-3B in yeast two-hybrid and bimolecular fluorescence complementation assays. Addition-
ally, TaHY5-7A, together with TaBBX-3B, greatly enhanced the promoter activity of TaPpm1 in a dual
luciferase assay. Overall, our results suggest that TaHY5-7A and TaBBX-3B collaboratively activate
TaPpm1 expression to promote light-induced anthocyanin biosynthesis in purple-pericarp wheat.

Keywords: Triticum aestivum L.; light; purple pericarp; anthocyanin biosynthesis; HY5; B-BOX
protein; R2R3-MYB

1. Introduction

Anthocyanins are members of the flavonoid class of secondary metabolites and broadly
accumulate in land plants. They are responsible for the red, purple, and blue hues in
different organs, such as seeds, flowers, and fruits. Additionally, due to their potent
antioxidant and free-radical-scavenging properties, anthocyanins are believed to provide
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protection against damage caused by biotic and abiotic stressors in plants. Furthermore,
they are beneficial for human health [1–5].

Anthocyanin biosynthesis composes a major branch of the phenylpropanoid pathway.
It occurs through a series of enzymes, with phenylalanine as the initial substrate [6].
The structural genes that encode these enzymes have been identified in many plant
species [7–10]. Overexpression or silencing of single structural genes often affects antho-
cyanin accumulation [11–13]. Furthermore, the expression of structural genes is precisely
regulated by transcription factors (TFs). For example, in the purple-grained wheat (Triticum
aestivum) cultivar Heixiaomai 76 (H76), PURPLE PERICARP-MYB 1 (TaPpm1, an R2R3-
MYB TF) and PURPLE PERICARP-bHLH 1 (TaPpb1, a basic helix–loop–helix TF) have
been identified and confirmed to co-regulate anthocyanin biosynthesis by activating the
expression of TaANS encoding anthocyanidin synthase [14].

The R2R3-MYB–bHLH–WD40/WD40-REPEAT (MBW) protein complex has been
extensively studied across a broad range of species [14–21]. Specifically, R2R3-MYB TFs
play key roles in regulating anthocyanin biosynthesis [21–23]. Certain MYB TFs have
been characterized as repressors of anthocyanin biosynthesis genes, such as AtMYBL2
and CAPRICE (CPC) in Arabidopsis (Arabidopsis thaliana) and PhMYBx in petunia (Petunia
hybrida). As R3-MYB proteins, it is proposed that CPC and PhMYBx compete with R2R3-
MYB transcriptional activators for binding to bHLH factors [24–26].

In addition to the genetic components, environmental factors, such as light, temper-
ature, and water stress, induce anthocyanin biosynthesis in plants [27]. Among these
stimuli, light is often indispensable for anthocyanin accumulation [28–30]. Many studies
have described the effects of light on anthocyanin accumulation, especially in regard to
Arabidopsis, where it has been described in detail [31,32]. ELONGATED HYPOCOTYL5
(HY5), a basic leucine zipper (bZIP) TF, is a master regulator of photomorphogenesis and
plays a key role in the connection between light and anthocyanin biosynthesis [30]. The
direct interaction between HY5 and the promoters of many genes involved in anthocyanin
biosynthesis has been reported in Arabidopsis, tomatoes (Solanum lycopersicum), pears
(Pyrus pyrifolia), and apples (Malus domestica) [32–37]. However, HY5 proteins usually lack
a transactivation domain and are not sufficient to induce the expression of their target
genes by themselves [38–41]. Therefore, they may require additional cofactors to fine-
tune their activity [42]. Among these cofactors, the B-BOX (BBX) proteins are the most
well-known [43,44].

The BBX protein family is a subgroup of zinc-finger proteins with one or two B-box mo-
tifs at the N terminus and, occasionally, a CCT (CONSTANS [CO], CO-LIKE, and TIMING
OF CAB EXPRESSION1 [TOC1]) motif at the C-terminal region [45]. In Arabidopsis, 32
BBX proteins are clustered into five subclades according to their domain compositions [45].
Certain BBX members have been characterized as activators of anthocyanin biosynthesis in
response to light, especially the Group IV BBX proteins, such as BBX20, BBX21, BBX22, and
BBX23 [43,46–50]. Although the relationships between HY5 and each BBX are diverse, these
BBXs typically require a functional HY5 to regulate anthocyanin biosynthesis [43,49–51].

Purple-grained wheat varieties accumulate anthocyanins in the pericarp [52].
Anthocyanin-rich products derived from purple wheat varieties are favored for their
potent antioxidant and free-radical-scavenging properties, making purple-grained wheat
important germplasm sources in crop breeding [53,54]. Light plays an essential role in antho-
cyanin biosynthesis in purple-grained wheat [55,56]; however, the regulatory mechanisms
underlying light-induced anthocyanin accumulation in the pericarps of purple-grained
wheat varieties are still unknown.

In this study, we identified two TF genes, TaHY5-7A and TaBBX-3B, using RNA se-
quencing and expression profile analysis of light-treated H76 pericarps. To reveal the role
of TaHY5-7A and TaBBX-3B in anthocyanin biosynthesis, we heterologously expressed
TaHY5-7A in the Arabidopsis hy5 mutant and TaBBX-3B in wild-type Arabidopsis. We ana-
lyzed the expression of endogenous anthocyanin biosynthesis-related genes, anthocyanin
content, and hypocotyl length of the TaHY5-7A- and TaBBX-3B-expressing lines and their
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corresponding hy5 or wild-type backgrounds, respectively. Finally, we characterized the
biological function of TaHY5-7A and TaBBX-3B via transactivation activity analysis, yeast
two-hybrid assay, bimolecular fluorescence complementation assay, and dual luciferase
assay. Our results showed that TaHY5-7A physically interacts with TaBBX-3B to posi-
tively regulate the expression of TaPpm1, a regulator of anthocyanin biosynthesis, in the
H76 pericarps.

2. Results
2.1. Anthocyanins Rapidly Accumulate in the Pericarps of Purple-Grained Wheat in the Light

We observed that anthocyanins accumulated on both sides of normally developing
seeds of the H76 cultivar at 17 days after pollination (DAP) in the field (Figure 1a). This
phenomenon might be due to seed expansion, causing the sides of seeds to be directly
exposed to light and leading to light-induced anthocyanin accumulation. Subsequent shad-
ing treatment verified this hypothesis. At 10 DAP, we completely wrapped whole spikes
of H76 with two layers of dark paper bags for the shading treatment and observed grain
coloration at 21, 26, and 30 DAP. Although a small amount of anthocyanin accumulated at
the later stages of seed development, there was no anthocyanin accumulation in wrapped
spikes even at 21 DAP (Figure 1b).
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Figure 1. Assessment of anthocyanin accumulation in the pericarps of purple-grained wheat “H76” 
during dark or light treatment. (a) Normally developing spikes and grains at 17 DAP. (b) Color 
changes during dark treatment. Dark, grains of H76 were covered with two layers of dark paper 
bags at 10 DAP. The control was the normally developing grain. Coloration of grains was observed 
at 21, 26, and 30 DAP. (c) Color changes during light treatment. The glumes and lemmas of H76 
were removed (light treatment) or not (control) to let the grains be directly exposed to sunlight. 
Pericarps were assessed at four time points, i.e., 0, 3, 6, and 9 h after removing the glumes and lem-
mas. (d) Anthocyanin concentration during light treatment. FW is fresh weight. (e) Transcript abun-
dance of genes related to anthocyanin biosynthesis at part time points during light treatment. (d,e) 
UL and L correspond to “Control” and “Light” in (c), respectively. Scale bar, 0.5 cm. Error bars 
represent the standard deviation (SD) of the three biological replicates. Shared letters above the bars 
indicate that there is no statistically significant difference between the means, as determined by one-
way ANOVA (p > 0.05). 
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Figure 1. Assessment of anthocyanin accumulation in the pericarps of purple-grained wheat “H76”
during dark or light treatment. (a) Normally developing spikes and grains at 17 DAP. (b) Color
changes during dark treatment. Dark, grains of H76 were covered with two layers of dark paper bags
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at 10 DAP. The control was the normally developing grain. Coloration of grains was observed
at 21, 26, and 30 DAP. (c) Color changes during light treatment. The glumes and lemmas of H76
were removed (light treatment) or not (control) to let the grains be directly exposed to sunlight.
Pericarps were assessed at four time points, i.e., 0, 3, 6, and 9 h after removing the glumes and
lemmas. (d) Anthocyanin concentration during light treatment. FW is fresh weight. (e) Transcript
abundance of genes related to anthocyanin biosynthesis at part time points during light treatment.
(d,e) UL and L correspond to “Control” and “Light” in (c), respectively. Scale bar, 0.5 cm. Error
bars represent the standard deviation (SD) of the three biological replicates. Shared letters above the
bars indicate that there is no statistically significant difference between the means, as determined by
one-way ANOVA (p > 0.05).

To further explore the influence of light on anthocyanin biosynthesis in the pericarps
of purple-grained wheat, we removed the H76 glumes and lemmas at 16 DAP and directly
exposed the grains to sunlight for 0–9 h. By visual inspection, the H76 grains were light
green at 3 h and gradually turned purple after 6 h, while the control remained light green
(Figure 1c). We isolated the pericarps from the grains and measured their anthocyanin
content. Consistent with their phenotype, we detected little anthocyanin in all the samples
that were not exposed to light (Figure 1d). However, anthocyanin levels markedly increased
after exposure to light for 6 h (Figure 1d).

Light triggers anthocyanin accumulation by inducing the expression of MYB TF genes,
thereby upregulating anthocyanin biosynthetic genes [57]. We analyzed the transcript
levels of several structural genes related to anthocyanin biosynthesis (TaCHS, TaCHI, TaF3H,
TaF3’H, TaF3’5’H, TaDFR, and TaDLOX/TaANS), as well as a regulatory factor gene (R2R3-
MYB, named TaPpm1). All genes except for TaCHI showed high transcript abundance in
the purple pericarps, consistent with their higher anthocyanin content (Figure 1e). These
results indicate that light rapidly induces anthocyanin biosynthesis and accumulation in
the pericarps of purple-grained wheat.

2.2. Identification of HY5 and BBX Genes in Purple-Grained Wheat

To identify genes involved in light-induced anthocyanin biosynthesis, transcriptome
analysis was performed on two control samples with light green pericarps (0 h and UL-6 h),
as well as one sample treated with light that exhibited purple pericarps (L-6 h). As a
result, 3251 upregulated differentially expressed genes (DEGs) were identified between
non-purple and purple pericarps (0 h vs. L-6 h and UL-6 h vs. L-6 h) (Figure S1, Table S1).
Kyoto encyclopedia of genes and genomes (KEGG) indicated that the DEGs were mostly
enriched in pathways related to phenylpropanoid biosynthesis and flavonoid biosynthesis
(Figure S2). Notably, the anthocyanin biosynthesis pathway involves both the phenyl-
propanoid and flavonoid biosynthesis pathways, consistent with the observed differences
in anthocyanin accumulation in pericarps under different light treatments (Figure 1c).
Anthocyanin-related structural and regulatory genes (TaPpm1 and TaPpb1) were identified
from the DEGs (Table S2). A total of 103 unigenes were found to be distributed among
12 kinds of structural genes (Table S2). Furthermore, two types of transcription factor genes,
HY5s and BBXs, were also identified from the DEGs (Table S2). Given the crucial roles of
HY5 and BBX as transcription factors in the light-induced biosynthesis of anthocyanins in
plants [58,59], HY5 and BBX genes were chosen as the subjects for further investigation.

The anthocyanin-related HY5 and BBX genes in the DEGs were further screened
out using phylogenetic analysis. A total of 24 HY5 proteins from other plant species,
together with seven HY5 proteins among the DEGs, were classified into three subgroups.
TraesCS6A02G175800, TraesCS6B02G209600, TraesCS6D02G167800, TraesCS7A02G373800,
and TraesCS7D02G349300 clustered with HY5 proteins from monocots. However, TraesCS3-
A02G128900 and Ta_newGene_6257 clustered separately (Figure 2a). A total of 32 Ara-
bidopsis BBX proteins, together with six BBX proteins among the DEGs, were divided
into five subgroups. TraesCS6A02G143900, TraesCS6B02G172300, TraesCS6D02G133100,
TraesCS3B02G156900, and TraesCS3D02G139600 clustered within the same clade as AtBBX22,
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and TraesCS2B02G406600 clustered within the same clade as AtBBX20 and AtBBX21
(Figure 2b). AtBBX20, AtBBX21, and AtBBX22 are Group IV BBX proteins and are in-
volved in anthocyanin biosynthesis [43,60]. Due to the relatively high FPKM values of
TraesCS6B02G209600, TraesCS7A02G373800, TraesCS7D02G349300, and TraesCS3B02G156900
(Table S2 and Figure 2c), we selected the HY5 genes from the sixth and seventh homologous
groups and the BBX genes from the third homologous group for further analysis.
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DEGs are indicated in bold red font. BdHY5: Brachypodium distachyon, XP_003571497.1; LrHY5:
Lolium rigidum, XP_047081217.1; LpHY5: Lolium perenne, XP_051194354.1; ObHY5: Oryza brachyantha,
XP_040376418.1; SbHY5: Sorghum bicolor, XP_002453510.1; PvHY5: Panicum virgatum, XP_039788683.1;
SvHY5: Setaria viridis, XP_034594319.1; SiHY5: Setaria italica, XP_004951525.1; OsHY5: Oryza sativa,
XP_015641260.1; HvHY5: Hordeum vulgare, XP_044962427.1; BrHY5: Brassica rapa, XP_009121971.1;
BnHY5: Brassica napus, XP_013668083.1; RsHY5: Raphanus sativus, XP_018445811.1; BoHY5: Bras-
sica oleracea, XP_013620110.1; AtHY5: Arabidopsis thaliana, AT5G11260.1; ThHY5: Tarenaya hassle-
riana, XP_010541629.1; HaHY5: Helianthus annuus, XP_022023437.1; SlHY5: Solanum lycopersicum,
NP_001234820.1; PeHY5: Populus euphratica, XP_011039711.1; VvHY5: Vitis vinifera, XP_010648648.1;
PaHY5: Prunus avium, XP_021827650.1; FaHY5: Fragaria ananassa, AKG58815.1; MdHY5: Malus
domestica, MDP0000586302; PbHY5: Pyrus bretschneideri, XP_009355719.1. (b) Phylogenetic tree of six
BBX proteins from the DEGs and 32 Arabidopsis BBX proteins. Six BBX proteins from the DEGs were
indicated in bold red font. Thirty-two Arabidopsis BBX proteins were obtained from TAIR. The AGI
numbers of Arabidopsis BBX proteins were described in a previous study (Gangappa and Botto, 2014).
(c) A heat map for the transcript levels of HY5 and BBX candidate genes in different light-treated
pericarps. The relative transcript levels were obtained from transcriptome data. (d) Multiple sequence
alignment of TaHY5-6A, TaHY5-7A, TaHY5-7B, TaHY5-7D, and their homolog in Arabidopsis. The
conserved sequences of the casein kinase II (CKII) phosphorylation sites, the COP1 interaction sites,
and the bZIP domain are marked with red lines. (e) Multiple sequence alignment of TaBBX-3A,
TaBBX-3B, and TaBBX-3D. B-box I and B-box II are marked with red lines.

We isolated all HY5 genes from the sixth and seventh homologous groups from H76
cDNA and designated them as TaHY5-6A, TaHY5-6B, TaHY5-6D, TaHY5-7A, TaHY5-7B,
and TaHY5-7D. Although single nucleotide polymorphisms (SNPs) exist in the nucleic
acid sequences of TaHY5-6A, TaHY5-6B, and TaHY5-6D, they share the same amino acid
sequence (156 amino acids) (Figure 2d). TaHY5-7A, TaHY5-7B, and TaHY5-7D encode 164,
166, and 164 amino acids, respectively, and share ~96% amino acid sequence identity
(Figure 2d). TaHY5-6A, TaHY5-7A, TaHY5-7B, and TaHY5-7D are bZIP TFs in wheat and
are homologous to the C-terminal region of Arabidopsis HY5 and rice HY5 (Figure 2d).
They harbor conserved amino acid motifs to the casein kinase II (CKII) phosphorylation
site and the CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) interaction site upstream
of the bZIP domain [38,61–63] (Figure 2d).

We isolated BBX genes on the third homologous group from H76 cDNA and desig-
nated them as TaBBX-3A, TaBBX-3B, and TaBBX-3D. These genes all encode 349 amino acids
and share high sequence similarity (~98% identity) (Figure 2e). The structural analysis
showed that they contained two conserved B-box domains, namely, B-box I and B-box II, in
their N terminus (Figure 2e).

Taken together, according to transcriptome sequencing, differential gene expression
analysis, and phylogenetic analysis, we have isolated six HY5 genes and three BBX genes,
which may be involved in light-induced anthocyanin biosynthesis in the pericarps of
purple-grained wheat.

2.3. Expression Analysis of HY5 and BBX Genes in the Pericarps of Purple-Grained Wheat during
Light Treatment

To analyze the expression patterns of TaHY5-6A, TaHY5-6B, TaHY5-6D, TaHY5-7A,
TaHY5-7B, TaHY5-7D, TaBBX-3A, TaBBX-3B, and TaBBX-3D in the pericarps of purple-
grained wheat during light-induced anthocyanin accumulation, the transcript levels of
these genes in the pericarps exposed to sunlight for 0–6 h were analyzed by RT-qPCR. All
the HY5 genes were significantly induced by light. However, among the three BBX genes,
only TaBBX-3B was significantly induced by light (Figure 3a–i). The expression patterns of
these light-induced genes were consistent with a large increase in the anthocyanin content
(Figure 1c). These results suggest that TaHY5-6A, TaHY5-6B, TaHY5-6D, TaHY5-7A, TaHY5-
7B, TaHY5-7D, and TaBBX-3B are involved in the light-induced anthocyanin accumulation.
In addition, the HY5 genes might have redundant functions. Among the HY5 genes, TaHY5-
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7A had the highest expression during light treatment (Figure 3j). Therefore, we selected
TaHY5-7A and TaBBX-3B for further experiments.
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Figure 3. The transcript abundance of HY5 and BBX genes in the pericarps of “H76” wheat during
light treatment. (a–i) The expression patterns of TaHY5-6A, TaHY5-6B, TaHY5-6D, TaHY5-7A, TaHY5-
7B, TaHY5-7D, TaBBX-3A, TaBBX-3B, and TaBBX-3D in 0 h, UL-6 h and L-6 h samples. (j) Comparison
of relative expression levels of TaHY5-6A, TaHY5-6B, TaHY5-6D, TaHY5-7A, TaHY5-7B, TaHY5-7D
in L-6 h samples. UL and L correspond to “Control” and “Light” in Figure 1c, respectively. Error
bars represent the standard deviation (SD) of the three biological replicates. Shared letters above the
bars indicate that there is no statistically significant difference between the means, as determined by
Student’s t-test (p > 0.05).

2.4. TaHY5-7A and TaBBX-3B Localize in the Nucleus

Both HY5 and BBX proteins are transcription factors; therefore, to elucidate the in-
tracellular localization of TaHY5-7A and TaBBX-3B, we generated TaHY5-7A–GFP and
TaBBX-3B–GFP fusion proteins and transiently expressed them in the epidermal cells of
Nicotiana benthamiana leaves through Agrobacterium-mediated infiltration. Fluorescent sig-
nals from GFP alone were distributed throughout the cell, whereas the signals from the
TaHY5-7A–GFP and TaBBX-3B–GFP fusion proteins were exclusively detected in nuclei
(Figure 4), suggesting that TaHY5-7A and TaBBX-3B localize in the nucleus.
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2.5. Heterologous Expression of TaHY5-7A in Arabidopsis Induces Anthocyanin Biosynthesis

To further explore the biological function of TaHY5-7A, we heterologously expressed
TaHY5-7A in the Arabidopsis hy5 mutant and obtained three TaHY5-7A-overexpression
(TaHY5-7A-OE) lines. This is because the hy5 mutant seedlings exhibited an elongated
hypocotyl phenotype even when grown in the light and had defects in light-induced
chlorophyll and anthocyanin accumulation [38,64,65]. Thus, we first assessed the hypocotyl
elongation in the TaHY5-7A-OE lines. All three TaHY5-7A-OE lines showed significantly
reduced hypocotyl elongation when compared with the hy5 mutant (Figure 5a,b), indicating
that the heterologous expression of TaHY5-7A partly rescued the long-hypocotyl phenotype
of hy5. Subsequently, we investigated the biological function of TaHY5-7A in the context of
anthocyanin biosynthesis. As shown in Figure 5c, anthocyanin accumulation was partially
restored in all three TaHY5-7A-OE lines. Moreover, we performed RT-qPCR analysis
to examine the transcript levels of endogenous anthocyanin biosynthesis-related genes
(AtCHS, AtCHI, AtF3H, AtDFR, AtDLOX/AtANS, and AtMYB) in the Arabidopsis hy5
mutant, wild-type, and TaHY5-7A-OE lines. Compared with the hy5 mutant, the expression
levels of all genes tested, except for AtF3H, increased in the TaHY5-7A-OE lines (Figure 5d–i),
which was consistent with their anthocyanin content (Figure 5c). In addition, the phenotype
of the TaHY5-7A-OE lines was identical to that of the hy5 mutant and the wild type when
all lines were grown in the dark, as evidenced by the etiolated seedlings with elongated
hypocotyls (Figure 5j,k). These results suggest that TaHY5-7A functions similarly to HY5 in
Arabidopsis in the context of photomorphogenesis.
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Figure 5. The phenotypes of the Arabidopsis hy5 mutant and TaHY5-7A complementation lines.
(a) Representative images of the 6-day-old seedlings grown under light conditions. Scale bar, 2 mm.
(b) Hypocotyl lengths of the light-grown seedlings. (c) Anthocyanin concentration in light-grown
seedlings. (d–i) The transcript abundance of genes related to anthocyanin biosynthesis in light-grown
seedlings. (j) Representative images of the 4-day-old seedlings grown in darkness. Scale bar, 2 mm.
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statistically significant difference between the means, as determined by one-way ANOVA (p > 0.05).

2.6. Heterologous Expression of TaBBX-3B in Arabidopsis also Increases Anthocyanin Accumulation

To investigate the function of TaBBX-3B, we heterologously expressed TaBBX-3B in
wild-type Arabidopsis and selected three TaBBX-3B-overexpression (TaBBX-3B-OE) lines.
Compared with the wild type, all three TaBBX-3B-OE lines exhibited stronger photomor-
phogenesis phenotypes, with shorter hypocotyls and greater anthocyanin accumulation
(Figure 6a–c). Under normal light conditions, the average hypocotyl length of eight-day-old
TaBBX-3B-OE seedlings was approximately 50% shorter than that of the wild-type seedlings.



Plants 2023, 12, 2996 10 of 23

Moreover, their anthocyanin content was more than fourfold higher than that of the wild-
type seedlings (Figure 6a–c). Furthermore, the transcript levels of endogenous anthocyanin
biosynthesis-related genes (AtCHS, AtCHI, AtF3H, AtDFR, AtDLOX/AtANS, and AtMYB)
were significantly upregulated in the TaBBX-3B-OE lines compared with the wild type
(Figure 6d–i). Given the association between anthocyanin accumulation and the expres-
sion pattern of the anthocyanin biosynthesis-related genes in the TaBBX-3B-OE lines, we
conclude that TaBBX-3B plays an important role in promoting anthocyanin accumulation.
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Figure 6. The effects of TaBBX-3B’s overexpression in the Arabidopsis wild type. (a) Representative
images of the 8-day-old seedlings grown under light conditions. Scale bar, 1 mm. (b) Anthocyanin
concentration in the transgenic seedlings. (c) Hypocotyl lengths of the transgenic seedlings. (d–i) Tran-
script abundance of the genes relative to anthocyanin biosynthesis in the transgenic seedlings. Error
bars represent the standard deviation (SD) of the three biological replicates. The asterisk (*) represents
a statistically significant difference between the wild-type and transgenic lines, as determined by
Student’s t-test (p < 0.05).

2.7. TaHY5-7A Physically Interacts with TaBBX-3B

HY5 lacks a transactivation domain and requires additional cofactors to function as a
TF [38]. Among these cofactors, the B-box proteins are well known [43]. In this study, the
transactivation analysis of TaHY5-7A in a yeast Y2H strain was performed. The results
showed that while the yeast cells harboring the positive control could grow on a SD/-Trp/-
His/-Ade medium, the cells containing vectors pGBKT7-TaHY5-7A and empty pGBKT7
did not grow, suggesting that TaHY5-7A lacks a transactivation domain (Figure 7a). To test
whether TaBBX-3B acts as a cofactor of TaHY5-7A, a yeast two-hybrid (Y2H) assay was
carried out. The yeast cells co-transformed with pGBKT7-TaHY5-7A and pGADT7-TaBBX-
3B could survive on an SD/-Trp-Leu-His-Ade medium, while all the negative controls did
not (Figure 7b). This indicated that pGBKT7-TaHY5-7A interacted with pGADT7-TaBBX-
3B in yeast. To validate the interaction between TaHY5-7A and TaBBX-3B in planta, we
performed a bimolecular fluorescence complementation (BiFC) assay. We detected strong
YFP signals in the nuclei of N. benthamiana cells co-transformed with TaBBX-3B–nYFP and
TaHY5-7A–cYFP but not in those co-transformed with TaBBX-3B–nYFP and empty cYFP,
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and empty nYFP and TaHY5-7A–cYFP (Figure 7c). Taken together, these results suggested
that TaHY5-7A interacted with TaBBX-3B.
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2.8. TaHY5-7A and TaBBX-3B Collaboratively Induces TaPpm1 Promoter Activity

We isolated the TaPpm1 promoter (from −1 to −1767 bp) from H76 genomic DNA
and identified several potential HY5 or BBX binding sites, such as the G-box or ACE
element [41,66] (Figure 8a). In addition, given that TaHY5-7A, TaBBX-3B, and TaPpm1 were
co-upregulated during light-induced anthocyanin accumulation and that TaHY5-7A directly
interacted with TaBBX-3B, we speculated that TaHY5-7A and TaBBX-3B collaboratively
regulate TaPpm1 transcription. Therefore, we used the dual luciferase system to test
the ability of TaHY5-7A and TaBBX-3B to co-regulate TaPpm1 in N. benthamiana leaves.
When the TaPpm1 promoter was co-infiltrated with TaHY5-7A or TaBBX-3B, the luciferase
activity was approximately twofold higher than the control (Figure 8b). However, co-
infiltration of TaHY5-7A and TaBBX-3B further significantly enhanced TaPpm1 promoter
activity (Figure 8b). These results suggested that TaHY5-7A and TaBBX-3B functioned
together to activate TaPpm1.
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promoter. (a) The distribution of the G-box or ACE element in the promoter region of the TaPpm1
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3. Discussion
3.1. Light Plays a Crucial Role in the Purple Pericarp Formation in Wheat Grain

Many plants accumulate anthocyanins in a light-dependent manner. Dark-cultivated
strawberry (Fragaria vesca) fruits accumulated anthocyanins after exposure to light for
just 12 h [67]. In the dark, hardly any anthocyanins accumulated in apple skin, pear,
and lychee (Litchi chinensis) [28,39,68,69]. Here we observed a similar phenotype in the
pericarps of the purple-grained wheat H76 at 16 DAP, in which anthocyanin accumulation
increased significantly after six hours of light exposure and a great deal more after nine
hours, whereas shaded grains did not accumulate anthocyanins in the pericarps of H76
even at 21 DAP (Figure 1b,c). These findings suggested that light was crucial for promoting
anthocyanin accumulation in H76 pericarps.

We also observed slight anthocyanin accumulation at the late stages of grain develop-
ment (26 DAP) in shaded grains (Figure 1b), which suggested a light-independent pathway
for anthocyanin accumulation. Studies in sweet cherry (Prunus avium) have shown that
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anthocyanin accumulation is highly light-dependent in bicolored cultivars, while it is only
slightly light-dependent in the dark red fruit cultivars [70]. Moreover, in the tomato hy5 mu-
tant, which has a defective light signaling pathway, anthocyanins still gradually accumulate
at the fruit development stage [71]. In addition to environmental cues, phytohormones
such as abscisic acid, jasmonic acid, and gibberellic acid play important roles in regulating
anthocyanin biosynthesis [72–76]. However, the role of phytohormones in anthocyanin
biosynthesis during wheat grain maturation needs to be investigated.

3.2. Light-Induced TaHY5-7A Participates in Photomorphogenesis

HY5, a central regulator of light signaling, acts downstream of photoreceptors to
mediate light-regulated developmental processes in plants, such as anthocyanin biosyn-
thesis, chlorophyll biosynthesis, and seedling development [59]. In this study, through
transcriptome sequencing, differential gene expression analysis, and phylogenetic analysis,
we identified six differentially expressed HY5 genes in the pericarp of purple-grained
wheat. As TaHY5-6A, TaHY5-6B, and TaHY5-6D encoded the same amino acid sequence,
these six HY5 genes encoded only four different proteins. All four HY5 proteins contained
a highly conserved bZIP domain at their C terminus and had a conserved amino acid motif
at the CKII phosphorylation site, as well as in the COP1 interaction site upstream of the
bZIP domain (Figure 2d). These conserved motifs were highly homologous to HY5 proteins
from other species [38,61–63]. These results indicated that the four HY5 proteins in wheat
might function redundantly and similarly to HY5 proteins from other species.

RT-qPCR revealed that TaHY5-7A had the highest expression among the HY5 genes
in wheat in response to light (Figure 3a–f,j). Mutations in Arabidopsis HY5 caused de-
fects in hypocotyl elongation and light-induced chlorophyll and anthocyanin accumu-
lation [38,64,65]. However, the heterologous expression of TaHY5-7A partially rescued
the hypocotyl growth and anthocyanin accumulation of the Arabidopsis hy5 mutant
(Figure 5a–i). These results indicated that TaHY5-7A functioned similar to HY5 in Ara-
bidopsis. In purple-grained wheat, anthocyanin accumulation was also observed in other
tissues, such as in the coleoptile, leaf sheath, and stem. We speculated that the different
HY5 genes had tissue-specific expression and that the HY5 genes with low expression in
the pericarp might be involved in anthocyanin biosynthesis in other tissues. However, this
hypothesis remains to be investigated.

Arabidopsis HY5 exists in two isoforms due to light-regulated phosphorylation of its
COP1-binding domain mediated by CKII [61,77]. In the dark, a large pool of unphosphory-
lated HY5 is targeted for proteasomal degradation by COP1 [61,77]. In our study, seedlings
of the Arabidopsis hy5 mutant, wild-type, and TaHY5-7A-OE lines became etiolated, with
closed cotyledons on an apical hook and elongated hypocotyls, when grown under dark
conditions (Figure 5j,k), suggesting that TaHY5-7A did not function in the dark. Given the
existence of the CKII phosphorylation site and the COP1 interaction site upstream of the
bZIP domain in TaHY5-7A (Figure 2d), we speculated that COP1 promoted the degradation
of TaHY5-7A in the dark. In addition, light-regulated phosphorylation may modulate
TaHY5-7A activity and its ability to bind COP1.

3.3. TaHY5-7A Alone Is Not Sufficient to Fine-Tune Anthocyanin Biosynthesis

HY5 binds to the promoters of many genes involved in anthocyanin biosynthesis,
including MYB genes [32,34–37,78]. However, the transactivation activity of HY5 has not
been widely studied. Previous studies in our laboratory have shown that TaPpm1 and
HY5 on Chr. 7A (designated as TaHY5-7A in this study) are co-upregulated during light-
induced anthocyanin accumulation [14]. Additionally, we identified several potential HY5-
binding sites, such as the G-box and ACE element [64], in the promoter of the TaPpm1 gene
(Figure 8a). Therefore, we carried out a promoter transactivation assay and determined
that TaHY5-7A elicited a twofold increase in the activation of the TaPpm1 promoter in
N. benthamiana leaves (Figure S3), which did not explain the high TaPpm1 expression
after light treatment [14]. Transactivation analysis of TaHY5-7A in yeast showed that
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it lacked a functional transactivation domain (Figure 7a), similar to the HY5 proteins
in Arabidopsis, rice (Oryza sativa), and pear [39,41,79]. In Arabidopsis, HY5 functioned
exclusively as a component of a protein complex [61], which was consistent with the
finding that HY5 lacked a transactivation domain and required additional cofactors to
function [38]. However, MdHY5 from apple activated MdMYB10 and its own expression
more than fourfold in N. benthamiana leaves [36]. This finding indicated that HY5 had
distinct functions in different species.

3.4. Light-Induced TaBBX-3B Physically Interacts with TaHY5-7A and Enhances
TaPpm1 Expression

TaBBX-3B was also highly expressed in the light-treated H76 pericarps (Figure 3h).
TaBBX-3B is a homolog of Arabidopsis BBX22 (Figure 2b). In Arabidopsis, HY5- and
COP1-modulated BBX22 promotes anthocyanin accumulation [47,66]. The heterologous
expression of TaBBX-3B in Arabidopsis induced anthocyanin accumulation, especially in
the hypocotyls (Figure 6), suggesting that TaBBX-3B promoted anthocyanin biosynthe-
sis. Similarly, apple CONSTANS-like 11 (MdCOL11) and pear PpBBX16 (homologs of
Arabidopsis BBX22) also stimulated anthocyanin accumulation [68,80].

B-box proteins are often involved in anthocyanin biosynthesis as HY5 cofactors [43].
Thus, it is plausible that TaBBX-3B participates in anthocyanin biosynthesis as a TaHY5-
7A cofactor. Here we showed that TaBBX-3B and TaHY5-7A localized to the nucleus
(Figure 4), which was important for their function as TFs; TaHY5-7A physically interacted
with TaBBX-3B in vivo and in vitro (Figure 7b,c); and TaBBX-3B, together with TaHY5-7A,
significantly induced TaPpm1 promoter activity (Figure 8b). In red pears, the PpBBX18–
PpHY5 complex positively regulated anthocyanin biosynthesis by inducing PpMYB10
transcription; in this complex, PpHY5 and PpBBX18 provided the DNA-binding and
transactivation activities, respectively [39]. Therefore, we propose that TaHY5-7A and
TaBBX-3B collaboratively modulate light-induced anthocyanin biosynthesis in the purple
pericarps of H76 by activating TaPpm1 expression. Like PpHY5 and PpBBX18, TaHY5-7A
and TaBBX-3B may provide the DNA-binding and transactivation activities, respectively.
However, this hypothesis requires further investigation. Taken together, our results shed
light on the mechanism of light-induced anthocyanin biosynthesis in the pericarps of
purple-grained wheat.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

Heixiaomai 76 (H76), a purple-grained hexaploid wheat (Triticum aestivum L.) cultivar,
was used for RNA sequencing, promoter and gene cloning, and reverse transcription
quantitative PCR (RT-qPCR). The seeds were planted in an experimental field of Northwest
A&F University (108.08′ E, 34.27′ N; Yangling, China). The seed shading treatment was
performed in 2020. Whole spikes of H76 were wrapped with two layers of dark paper bags
at ten days after pollination (DAP). Grain coloration was observed at 21, 26, and 30 days
after pollination (DAP). However, the sunlight irradiation treatment was performed in
2021. Sixteen DAP (a sunny day in early May 2021), the glumes and lemmas of all florets
on one side of the H76 spike were removed, and the pericarps were directly exposed to
sunlight. The pericarps on the other side without any treatment were used as controls. The
control and light-treated pericarps were isolated using tweezers and sampled at 0, 3, 6, and
9 h after irradiation. The samples were immediately flash frozen in liquid nitrogen and
kept at −80 ◦C until use. The samples used for anthocyanin quantification were quickly
weighed (fresh weight) before flash freezing. The control samples collected at 0, 3, 6, and
9 h after irradiation were labeled as 0 h, UL-3 h, UL-6 h, and UL-9 h, respectively. Similarly,
the light-treated samples collected at 3, 6, and 9 h after irradiation were labeled as L-3 h,
L-6 h, and L-9 h, respectively.

Wild-type Arabidopsis thaliana used in this study was the Wassilewskija accession. The
Arabidopsis hy5 mutant was in the Wassilewskija background and was provided by Dr.



Plants 2023, 12, 2996 15 of 23

Zhoubo Hu from Geneva University. The seeds were surface sterilized, washed with sterile
water, and plated on half-strength Murashige and Skoog (1/2-MS) agar medium (Sigma,
Tokyo, Japan) containing 0.5% sucrose. Plants were cultivated in growth chambers with a
16 h light/8 h dark photoperiod at 22 ◦C under fluorescent light (80–100 µmol·m−2s−1).

The tobacco used in this study was Nicotiana benthamiana. All tobacco plants were
grown in growth chambers with a 14 h light/10 h dark photoperiod at 22 ◦C under
fluorescent light (150 µmol·m−2s−1).

4.2. RNA Sequencing and Data Analysis

Total RNA was extracted from two control samples (0 h and UL-6 h) and one light-
treated sample (L-6 h), followed by library construction and sequencing using an Il-
lumina NovaSeq 6000 sequencing system. The raw reads underwent quality control,
which included the removal of adapter sequences and low-quality sequences, result-
ing in clean reads. The clean reads were then aligned to the wheat reference genome
(IWGSC_RefSeq_v1.1, https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_
Annotations/v1.1/) (accessed on 27 June 2022) using HISAT2 [81]. The aligned reads were
further assembled into full-length transcripts and quantified using StringTie [82]. Both
known and newly predicted genes were annotated using the Clusters of Orthologous
Genes (COG) [83], Gene Ontology (GO) [84], Kyoto Encyclopedia of Genes and Genomes
(KEGG) [85], euKaryotic Orthologous Groups (KOG) [86], NCBI NR [87], Protein families
(Pfam) [88], Swiss-Prot [89], and evolutionary genealogy of genes: Non-supervised Ortholo-
gous Groups (eggNOG) [90] databases. The transcription levels of unigenes were calculated
using the FPKM (fragments per kilobase per million) values [91]. Differentially expressed
genes (DEGs) between two samples were screened with a threshold FPKM > 1 and log2
fold change > 2. Draw a Venn diagram of DEGs using jvenn [92]. KEGG enrichment
analysis of DEGs was conducted using KOBAS 3.0 [93] and visualized with ggplot2 [94].
The phylogenetic trees were constructed using the neighbor-joining method in MEGA
7.0 [95] with 1000 bootstrap replicates and were visualized using Interactive Tree Of Life
(iTOL) [96]. Heat maps were plotted using TBtools [97].

4.3. Gene Cloning and Sequence Analysis

The cDNA of TraesCS6A02G175800, TraesCS6B02G209600, TraesCS6D02G167800,
TraesCS7A02G373800, TraesCS7D02G349300, TraesCS3B02G156900, TraesCS3D02G139600,
and their homologs were retrieved from Ensembl Plants [98]. TraesCS3A02G139300 is the
homolog of TraesCS3B02G156900 and TraesCS3D02G139600. However, the homolog of
TraesCS7A02G373800 and TraesCS7D02G349300 was not spliced when the genome was
assembled. Therefore, we spliced four homologous fragments from Ensembl Plants and
obtained the cDNA sequence. All three homologs were aligned by DNAMAN 6.0 (Lynnon
Biosoft, Vaudreuil-Dorion, QC, Canada), and specific primers were designed (Table S3).
The primers used for cloning the promoter of the TaPpm1 gene [14] were designed using
Primer Premier 5 [99] (Table S3). After PCR amplification (KOD FX, TOYOBO, Shanghai,
China) and dATP addition at the 3′ end of the amplicon, the purified products were inserted
into the pMD18-T vector (Takara, Dalian, China) and sequenced.

Cis-acting regulatory elements of the promoter were analyzed using the PlantCARE
database [100]. The sequences were aligned and displayed with DNAMAN 6.0 (Lyn-
non Biosoft, Quebec, Canada). The conserved protein domains were predicted with the
Conserved Domains Database (CDD) tool [101].

4.4. RNA Extraction and RT-qPCR Analysis

Total RNA from wheat pericarps, or six- to eight-day-old plate-grown Arabidopsis
seedlings, was extracted with the RNAprep Pure Plant Plus Kit (Tiangen, Beijing, China).
Then, 1 µg of the total RNA was reverse transcribed into first-strand cDNA with HiScript II
Q RT Supermix for qPCR (including gDNA wiper) (Vazyme, Nanjing, China). The cDNA
was diluted 1:5, and 2 µL of diluted cDNA was used for qPCR with the ChamQ SYBR

https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Annotations/v1.1/
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qPCR Master Mix (Vazyme, Nanjing, China) in a QuantStudio 3 Real-Time PCR System
(Applied Biosystems). The primers for TaActin, TaCHS, TaCHI, TaF3H, TaF3’H, TaF3’5’H, TaL-
DOX/TaANS, TaDFR, TaPpm1, AtActin, AtCHS, AtCHI, AtF3H, AtLDOX/AtANS, and AtDFR
were previously described [14,62,102,103]. The other primers used were designed with the
Primer-BLAST online tool [104] or DNAMAN 6.0 (Lynnon Biosoft, Quebec, Canada). All
the primers are listed in Table S3. At least three biological replicates were performed. The
relative gene expression levels were calculated using the 2−∆∆Ct method [105].

4.5. Subcellular Localization Analysis

The complete coding sequences (CDSs) of TaHY5-7A and TaBBX-3B (without stop
codons) were independently inserted into the pCAMBIA2300 vector at the XbaI site. The
GFP gene was cloned into the pCAMBIA2300 vectors harboring TaHY5-7A or TaBBX-3B,
resulting in GFP fusions under the control of the CaMV 35S promoter. The primers used are
listed in Table S3. These two recombinant vectors and the empty vector were individually
transformed into Agrobacterium tumefaciens strain GV3101. A. tumefaciens containing an
OsbZIP46-RFP fusion construct, used as the nuclear localization marker, was provided by
Dr. Dongnan Xia (Northwest A&F University). After growing the Agrobacterium strains at
28 ◦C to a concentration of OD600 = 0.4–0.6 and harvesting the cells by centrifugation, the
pellets were resuspended in infiltration buffer (10 mmol·L−1 MES, 10 mmol·L−1 MgCl2
and 200 µmol·L−1 acetosyringone) [106] to a concentration of OD600 = 1.0. Resuspended
Agrobacteria harboring TaHY5-7A-GFP or TaBBX-3B-GFP were mixed with equal volumes
of Agrobacteria carrying OsbZIP46-RFP, resulting in a final concentration of OD600 = 0.5
for each strain. The infiltration buffer containing the different Agrobacterium strains was
incubated in the dark at room temperature (~25 ◦C) for 3–4 h before infiltration. After
the infiltration of the constructs into N. benthamiana leaves, the transformed plants were
grown in growth chambers with a 10 h dark/14 h light photoperiod at 22 ◦C for 48–72 h.
Fluorescence signals were observed and imaged with a confocal laser scanning microscope
(IX83-FV1200, Olympus, Tokyo, Japan).

4.6. Generation of Arabidopsis Transgenic Lines

The fusion vectors constructed for the subcellular localization assays were also used
to generate transgenic plants. The transformation of Arabidopsis plants was carried out by
the floral dip method [107]. The transgenic plants were selected on 1/2-MS media containing
50 µg·mL−1 kanamycin. Transgenic lines with a single insertion locus were identified
according to a 3:1 segregation ratio on selection medium. The experiments were carried
out with homozygous T3 generation seeds.

4.7. Hypocotyl Length Measurement

The sterilized seeds were plated on 1/2-MS media and stratified for three days at 4 ◦C
in the dark. Following the stratification, all plates were placed into growth chambers and
exposed to white light for four hours. Some plates were kept in the growth chamber for six
or eight days and used for the measurement of hypocotyl length under light conditions.
However, to measure the hypocotyl length following dark treatment, some plates were
completely wrapped with tinfoil and returned to the growth chamber for four days. Thirty
seedlings of each genotype were aligned on an agar plate and imaged. The hypocotyls
were measured using ImageJ software (https://imagej.net/).

4.8. Anthocyanin Extraction and Quantification

The anthocyanin extraction and quantification were carried out as previously de-
scribed [108]. Approximately 50 mg of Arabidopsis seedlings or wheat pericarps were
flash frozen in liquid nitrogen and ground using a high-throughput tissue grinder (G100,
Coyote-Bio). The powders were homogenized in 250 µL of anthocyanin extraction solution
(methanol: 36–38% HCl = 99:1, v:v) for at least one hour with moderate shaking at 4 ◦C
in the dark. After centrifugation at 14,000 r·min−1 for five minutes at room temperature,

https://imagej.net/
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150 µL of the supernatant was transferred into a 96-well transparent ELISA plate and the
absorbances were measured at 530 and 657 nm using a microplate reader (Tecan Spark,
Grödig, Austria). The extraction solution acted as a blank. The anthocyanin content was
calculated according to the following formula: (A530 − 0.25A657)/sample fresh weight (mg).

4.9. Transactivation Assay

The full length CDSs of TaHY5-7A and TaFDL2-1A were independently cloned into the
pGBKT7 vector at the EcoRI site. The primers are listed in Table S3. The empty pGBKT7
vector and the recombinant pGBKT7-TaHY5-7A and pGBKT7-TaFDL2-1A vectors were
individually transformed into the yeast (Saccharomyces cerevisiae) Y2HGold strain. After
they were grown on synthetic defined (SD)/-Trp medium, the yeast cells were spotted
and cultured on SD/-Trp/-His/-Ade medium to test the transactivation activity of the
full-length TaHY5-7A protein. Yeast cells harboring the empty pGBKT7 vector served as a
negative control, while yeast cells harboring the recombinant pGBKT7-TaFDL2-1A vector
were used as a positive control [109].

4.10. Yeast Two-Hybrid Assay

The full-length TaBBX-3B CDS was cloned into the pGADT7 vector at the EcoRI site.
The primers are listed in Table S3. Several pairs of vectors, such as pGBKT7-TaHY5-7A
and pGADT7-TaBBX-3B, pGBKT7-TaHY5-7A and empty pGADT7, empty pGBKT7 and
pGADT7-TaBBX-3B, empty pGADT7 and empty pGBKT7, pGBKT7-Lam and pGADT7-
T-antigen, and pGBKT7-53 and pGADT7-T-antigen, were co-transformed into the yeast
Y2HGold strain. After growth on SD/-Leu-Trp medium, the yeast cells were spotted and
cultured on SD/-Leu/-Trp/-His/-Ade medium and SD/-Leu/-Trp/-His/-Ade/X-α-Gal
medium to detect interactions. Yeast cells containing pGBKT7-Lam and pGADT7-T-antigen
served as a negative control, while yeast cells containing pGBKT7-53 and pGADT7-T-
antigen were used as a positive control.

4.11. Bimolecular Fluorescence Complementation (BiFC) Assay

The recombinant plasmid 35S::TaBBX-3B-nYFP was generated by inserting the full-
length CDS (without the stop codon) of TaBBX-3B into the pCAMBIA2300-VYNE vector,
which carried the N-terminal half of YFP. However, the recombinant plasmid 35S::TaHY5-
7A-cYFP was generated by inserting the full-length CDS (without the stop codon) of
TaHY5-7A into the pCAMBIA2300-VYCE vector, which carried the C-terminal half of YFP.
All primers are listed in Table S3. These two recombinant plasmids and empty vectors were
independently transformed into A. tumefaciens strain GV3101. A. tumefaciens harboring
all possible combinations of plasmids were co-infiltrated into the epidermal cells of N.
benthamiana leaves. The specific methods are detailed in the Subcellular Localization
Analysis section (see above). The fluorescence signals were observed and imaged with a
confocal laser scanning microscope (IX83-FV1200, Olympus, Tokyo, Japan).

4.12. Dual Luciferase Assay

A dual luciferase assay was carried out using N. benthamiana leaves as previously
reported [110]. The TaPpm1 promoter (−1 to −1767 bp) was inserted into the HindIII and
BamHI restriction enzyme sites of the pGreenII 0800-LUC vector to control the expression
of the firefly luciferase gene. The Renilla luciferase gene driven by the CaMV35S promoter
in the pGreenII 0800-LUC vector was used as an internal control. The full-length CDSs
of TaBBX-3B and TaHY5-7A were individually inserted into pGreenII 62-SK at the BamHI
and HindIII restriction sites under the control of the CaMV35S promoter. The recombinant
plasmids TaPpm1pro::LUC, 35S::TaBBX-3B, and 35S::TaHY5-7A and the empty pGreenII 62-
SK vector were individually transformed into A. tumefaciens GV3101 (pSoup). A. tumefaciens
containing TaPpm1pro::LUC was co-infiltrated with Agrobacteria cultures harboring pGreenII
62-SK, 35S::TaBBX-3B, 35S::TaHY5-7A, or 35S::TaBBX-3B+35S::TaHY5-7A into N. benthamiana
leaf epidermal cells according to the methods described in the Subcellular Localization
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Analysis section (see above). Seventy-two hours after infiltration, the firefly luciferase
(LUC) and Renilla luciferase (REN) activities were measured using the Dual-Luciferase
Reporter Assay System (Promega, Beijing, China) with a microplate reader (Tecan Spark,
Grödig, Austria). At least four biological replicates were performed for each assay. The
transactivation activity was calculated as a relative value of LUC/REN luminescence.

5. Conclusions

Here we identified two crucial transcription factor genes involved in light signaling
in wheat: TaHY5-7A and TaBBX-3B. Both genes were induced by light and participated in
anthocyanin biosynthesis in Arabidopsis. TaHY5-7A lacked a transactivation domain and
was not sufficient to induce the expression of TaPpm1, the key anthocyanin biosynthesis
regulator in purple pericarps of wheat. However, TaHY5-7A and TaBBX-3B could function
together to enhance TaPpm1 expression. The current findings offer valuable insights into
the transcriptional regulation of TaPpm1 and light-induced anthocyanin biosynthesis in the
pericarps of purple-grained wheat.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/plants12162996/s1: Figure S1: A Venn diagram depicting the upregulated dif-
ferentially expressed genes between non-purple and purple pericarps (0 h vs. L-6 h and UL-6 h vs. L-6 h).
Figure S2: KEGG annotation of the upregulated differentially expressed genes between non-purple and
purple pericarps (0 h vs. L-6 h and UL-6 h vs. L-6 h). Figure S3: Transactivation effects of TaHY5-7A on
the activity of the TaPpm1 promoter in a dual-luciferase assay. Error bars represent the standard deviation
(SD) of four biological replicates. * indicates the difference between the treatment group and the control
group is statistically significant by Student’s t-test (p < 0.05). Table S1: The upregulated differentially
expressed genes between non-purple and purple pericarps (0 h_vs_L-6 h and UL-6 h_vs_L-6 h). Table S2:
FPKM value of anthocyanin-related genes from the upregulated differentially expressed genes between
non-purple and purple pericarps (0 h_vs_L-6 h and UL-6 h_vs_L-6 h). Table S3: Primers used in the
present study.
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