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Abstract: In model plants, the BRI1-EMS suppressor 1 (BES1)/brassinazole-resistant 1 (BZR1) tran-
scription factors play vital roles in regulating growth, development, and stimuli response. However,
the roles of maize ZmBES1/BZR1 members are largely unknown. In this research, the ZmBES1/BZR1-9
gene was ectopically expressed in Arabidopsis and rice for the phenotyping of flowering. We found
that the complementation and overexpression of ZmBES1/BZR1-9 in bes1-D mutant and wild type
Arabidopsis both resulted in early flowering that was about 10 days shorter than in the untransformed
control under long-day conditions. In addition, there was no difference in the rosette leaf number be-
tween all transgenic lines and the control. Subsequently, the ZmBES1/BZR1-9 gene was overexpressed
in rice. It was found that overexpression lines of rice exhibited early flowering with heading dates
that were 8 days shorter compared with untransformed plants. Moreover, the results of RNA-seq
and qRT-PCR showed that five flowering-regulated genes, namely At2-MMP, AtPCC1, AtMYB56,
AtPELPK1, and AtPRP10, were significantly up-regulated in all complementary and overexpressing
lines of Arabidopsis. Meanwhile, the results of RNA-seq showed that 69 and 33 differentially expressed
genes (DEGs) were up- and down-regulated in transgenic rice, respectively. Four flowering-related
genes, namely OsGA20OX1, OsCCR19, OsBTBN19, and OsRNS4 were significantly up-regulated in
transgenic lines. To sum up, our findings demonstrate that ZmBES1/BZR1-9 is involved in controlling
flowering and provide insights into further underlying roles of BES1/BZR1s in regulating growth and
development in crops.
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1. Introduction

In higher plants, flowering is an important developmental process and marks the
transition from vegetative growth to reproductive growth [1]. The photoperiod, ver-
nalization, autonomic, gibberellin, age, and temperature pathways are among the main
flowering-regulatory cues in plants. But, as crucial steroidal hormones, brassinosteroids
(BRs) have been confirmed to control various biological processes in plants, such as growth
and development regulation as well as stress resistance [2,3]. The BR signal is perceived
by the receptor BRI1 and the co-receptor BAK1 on the cell membrane and triggers the
phosphorylation and dephosphorylation of various downstream proteins, including BSKs
(BR SIGNALING KINASES), CDGl (CONSTITUTIVE DIFFERENTIAL GROWTH1F), BSU1
(BRI1-SUPPRESSORF), BIN2 (BR-INSENSITIVE 2) [4–7]. Importantly, the inactivated BIN2
cannot phosphorylate the BES1 (BRI1-EMS-SUPPRESSOR 1) and BZR1 (BRASSINAZOLE
RESISTANT 1) transcription factors, which also can be dephosphorylated by PP2A [6,8,9].
Thereafter, the activated BES1/BZR1s accumulate in the nucleus and regulate the transcrip-
tion of nuclear genes by directly binding to elements of the E-box (CANNTG) or BRREs
(CGTGT/CG) in gene promoters to regulate plant growth and BR synthesis [10–13].
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As core transcription factors, previous studies have shown that BZR1/BES1s not
only meditate BR signaling but also cross-talk with other hormone signals to regulate
plant growth and stress resistance [14,15]. For instance, BES1/BZR1 can inhibit BR syn-
thesis by binding to the BR synthesis genes promoter of DWF4 and CPD to inhibit their
expression [10,12,16]. BES1 hinders ABI5 (ABSCISIC ACID INSENSITIVE5) to promote
seed germination via ABA signaling and involves light to regulate plant growth medi-
ated by the SINAT E3 ligase [17,18]. Exogenous GA can activate the BZR1-mediated BR
signaling pathway [15]. Likewise, BES1/BZR1s regulate the adaptation to freezing, heat,
phosphate-deficient, drought, and salt stress by up-regulating the expression of multiple
stress-related genes in Arabidopsis, wheat, maize, tomato, and apple [19–28].

Moreover, BES1/BZR1s also recruit other regulators to regulate plant developmental
processes. In Arabidopsis, dephosphorylated BES1 interacts with the UV receptor UVR8 and
the blue light receptors CRY1 and CRY2 to regulate plant photomorphogenesis by inhibiting
the binding between BES1 and DNA [29]. BES1 interacts with ERF6 (Early flowering 6)
and its homolog REF6 to regulate target gene expression and to control flowering time [30].
BZR1 interacts with the cyclophilin Cyp20-2 to co-regulate flowering by suppressing FLD
(FLOWERING LOCUS D) expression [31]. BZR1, together with BES1-INTERACTING
MYC-like protein (BIM), recruits the H3K27 (histone 3 lysine 27) demethylase to activate
FLC expression, leading to the inhibition of the flower transition [32]. Recently, it has
been reported that BES1 acts on BEE1 (BR ENHANCED EXPRESSION 1), which directly
binds to FT (FLOWERING LOCUS T), to control photoperiodic flowering [33]. In rice,
OsBZR1 targets and interacts with histone deacetylase HDA703 to control rice growth and
the heading date by repressing Ghd7 (HEADING DATE 7) expression [34]. However, the
function of BES1/BZR1s is largely unknown in crops.

In maize, a total of eleven ZmBES1/BZR1 genes were identified in the maize genome
in our previous study and by another group [35,36]. Subsequently, we confirmed that
ZmBES1/BZR1-3 and -9 negatively regulates drought tolerance, while ZmBES1/BZR1-5
positively regulates salt and drought tolerance, the ABA response, and seed develop-
ment [21,25,37]. Furthermore, ZmBES1/BZR1-2 has also been proven to positively regulate
seed size and to promote the enlargement of the cotyledon and rosette leaves [38]. These
reports suggest that ZmBES1/BZR1s members act on plant growth and development with
functional diversity. However, whether ZmBES1/BZR1s is involved in flowering regulation
is unknown. In this study, the function of ZmBES1/BZR1-9 in regulating flowering was
evaluated by the heterologous expression of ZmBES1/BZR1-9 in Arabidopsis and rice. The
study proves that ZmBES1/BZR1-9 is an activator of flowering and will provide insights into
further underlying roles of BES1/BZR1s in regulating growth and development in crops.

2. Results
2.1. Generation of Transgenic Lines

To identify the function of ZmBES1/BZR1-9, it was transformed into Arabidopsis and
rice, respectively. The positive transformants of Arabidopsis showed normal growth and
robust green plants on plates with 50 mg/L kanamycin. In total, six homozygous lines were
generated as identified by PCR amplification and reverse transcription PCR (RT-PCR), and
these were named OE9-1, 9-2, 9-3, 9-5, 9-10, and 9-14. In these lines, the ZmBES1/BZR1-9
gene was successfully amplified from their genomic DNA (gDNA) and cDNA, respectively.
However, there was no amplicon in the wild type (WT) (Figure 1). Meanwhile, five
homozygous lines of rice expressing ZmBES1/BZR1-9 were produced and defined as R9-1, 9-
2, 9-3, 9-4, and 9-5. These lines exhibited green leaves after soaking in 100 mg/L hygromycin
solution, and the insertion of ZmBES1/BZR1-9 in the rice genome was confirmed by PCR and
RT-PCR, respectively (Figure 2). The complementary lines L9-3 and L9-5 of the Arabidopsis
mutant were produced in our previous study [21]. Hence, the complementary Arabidopsis
lines L9-3 and 9-5, the overexpressing Arabidopsis lines OE9-2 and OE9-3, as well as the
overexpressing rice lines R9-1 and R9-5 were used for phenotyping.
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R9-1, R9-2, R9-3, R9-4, and R9-5 mean transgenic rice lines expressing the ZmBES1/BZR1-9 gene. 
The 911 bp and 582 bp fragments of ZmBES1/BZR1-9 were amplified and detected by PCR and RT-
PCR, respectively. M, DNA 2000 standard consisting of a 2000, 1000, 750, 500, 250, and 100 bp ladder 
from top to bottom. WT, wild type. The 629 bp fragment of the OsGAPDH gene was amplified and 
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2.2. Expression of ZmBES1/BZR1-9 Accelerates Flowering in Arabidopsis 
To explore the function of ZmBES1/BZR1-9 in the floral transition, the days from ger-
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Figure 1. Identification of transgenic Arabidopsis lines. (a) PCR detection. (b) RT-PCR. OE9-1, 9-2,
9-3, 9-5, 9-10, and 9-14 represent homozygous lines overexpressing the ZmBES1/BZR1-9 gene in
Arabidopsis. The 911 bp fragment of ZmBES1/BZR1-9 was amplified and detected by PCR (a) and
RT-PCR (b), respectively. M, DNA 2000 standard consisting of a 2000, 1000, 750, 500, 250, and 100 bp
ladder from top to bottom. WT, wild type. The 545 bp fragment of AtACTIN2 was amplified and
used as a reference.
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Figure 2. Screening of transgenic rice. (a) Antibiotic screening. (b) PCR amplification. (c) RT-PCR.
R9-1, R9-2, R9-3, R9-4, and R9-5 mean transgenic rice lines expressing the ZmBES1/BZR1-9 gene. The
911 bp and 582 bp fragments of ZmBES1/BZR1-9 were amplified and detected by PCR and RT-PCR,
respectively. M, DNA 2000 standard consisting of a 2000, 1000, 750, 500, 250, and 100 bp ladder from
top to bottom. WT, wild type. The 629 bp fragment of the OsGAPDH gene was amplified and used as
a reference.

2.2. Expression of ZmBES1/BZR1-9 Accelerates Flowering in Arabidopsis

To explore the function of ZmBES1/BZR1-9 in the floral transition, the days from
germination to flowering (DTF) of the complementary lines L9-3 and L9-5 were measured.
As shown in Figure 3, under long-day (LD) conditions, the L9-3 and L9-5 lines exhibited
early flowering and a significantly higher rate of flowering plants in the same growth stage
compared with the bes1-D mutant, which showed delayed flowering compared with the
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WT. However, there was no difference in the total rosette leaf number (RLN) between the
bes1-D, L9-3, and L9-5 lines. Meanwhile, the RLN of bes1-D was significantly higher than
that of WT.
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(a) Flowering phenotype. (b) Days at flowering. (c) Dynamic statistics of flowering time. (d) The
number of rosette leaves. The seeds of each line were germinated and grown in growth chambers
under LD conditions. The days from germination to flowering, the percentage of flowering plants
over the same time period, and the total rosette leaf number were measured from 25 plants in each
replicate. WT, wild type. bes1-D, untransformed mutant. L9-3 and L9-5 represent complementary
lines of ZmBES1/BZR1-9 in the bes1-D mutant. * and ** represent p < 0.05 and p < 0.01, respectively.

Meanwhile, to validate the early-flowering phenotype regulated by ZmBES1/BZR1-
9, we generated the overexpressed lines OE9-2 and OE9-3 and conducted a phenotype
characterization as a complementary assay. Similarly, early flowering was also observed
in overexpressing lines under LD conditions. The DTF of the OE9-2 and OE9-3 lines was
about 10 days earlier than that of WT. Compared with WT, the number of flowering plants
in OE9-2 and OE9-3 was significantly higher from 55 days after sowing (Figure 4). At the
same time, there was also no significant difference in RLN among different lines.

The above results indicate that the heterologous expression of the ZmBES1/BZR1-9
gene accelerates floral transition but does not affect the vegetative growth in Arabidopsis.

Moreover, in order to determine whether ZmBES1/BZR1-9 promotes flowering via
the photoperiod pathway, L9-3, L9-5, and bes1-D as well as OE9-2, OE9-3 and WT were
cultured under short-day (SD) conditions for phenotyping. We found that L9-3, L9-5,
and bes1-D showed no bolting, with a severe vegetative growth phenotype at 125 days
after sowing under SD conditions (Figure 5a). Likewise, although OE9-2, OE9-3, and WT
gradually blossomed after 95 days of planting, there was no difference in flowering time
among these lines (Figure 5b). The RLN also showed no difference (Figure 5c).
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Figure 4. The phenotype of overexpressed lines under LD conditions (14 h light/10 h dark). (a) Flow-
ering phenotype. (b) Days at flowering. (c) Dynamic statistics of flowering time. (d) The number of
rosette leaves. The seeds of each line were germinated and grown in growth chambers under LD condi-
tions. The days from germination to flowering, the percentage of flowering plants over the same time
period, and the total rosette leaf number were measured from 25 plants in each replicate. WT, wild
type. OE9-2 and OE9-3 represent lines overexpressing ZmBES1/BZR1-9. * and ** represent p < 0.05 and
p < 0.01, respectively.
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Figure 5. The flowering phenotype of transgenic Arabidopsis under SD conditions. (a) The phenotype
of complementary lines. (b) The phenotype of overexpressed lines. (c) The number of rosette leaves.
L9-3 and L9-5 represent complementary lines. OE9-2 and OE9-3 represent overexpressing lines.
bes1-D, mutant; WT, wild type.

2.3. ZmBES1/BZR1-9 Promotes the Expression of Flowering-Related Genes in Arabidopsis

RNA-sequencing (RNA-seq) was performed in our previous study to interrogate the
transcriptomic changes caused by ZmBES1/BZR1-9 in the L9-3 and L9-5 lines [21]. To inves-
tigate the potential mechanism of ZmBES1/BZR1-9 in controlling flowering in transgenic
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lines, the differentially expressed genes (DEGs) related to flowering were explored. In
comparison with the bes1-D mutant, five DEGs associated with the regulation of flowering
were identified in both the L9-3 and L9-5 lines, namely At2-MMP (AT1G70170), AtPCC1
(AT3G22231), AtMYB56 (AT5G17800), AtGRDP2 (AT4G37900), and AtPELPK1 (AT5G09530).
Therefore, quantitative real-time PCR (RT-qPCR) was performed to analyze the expression
of these genes in complementary lines, overexpressed lines, and an untransformed control.
As shown in Figure 6, the expression of At2-MMP, AtPCC1, AtMYB56, AtGRDP2, and
AtPELPK1 genes was significantly up-regulated in L9-3 and L9-5, as well as in OE9-2 and
OE9-3, compared with bes1-D and WT, respectively. Meanwhile, 8, 10, 8, 13, and 16 E-box
elements were found in the At2-MMP, AtPCC1, AtMYB56, AtGRDP2, and AtPELPK1 pro-
moter regions, respectively (Table S2). The result indicates that ZmBES1/BZR1-9 promotes
the flowering of transgenic Arabidopsis by up-regulating the expression of these genes.
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2.4. ZmBES1/BZR1-9 Accelerates Flowering in Rice

To further analyze the role of ZmBES1/BZR1-9 in regulating flowering, the transgenic
rice lines R9-1, R9-5, and the WT line were grown in Chengdu in summer (LD) and in
Sanya in winter (SD). The results of phenotyping showed that there was no difference in
heading date between the transgenic lines and the WT under LD conditions in summer. In
contrast, compared with the WT, the transgenic lines R9-1 and R9-5 exhibited an earlier
heading date and their flowering time was shortened by about 8 days under SD conditions
in winter (Figure 7).
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2.5. ZmBES1/BZR1-9 Regulates the Expression of Flowering-Associated GENES in Rice

RNA-seq was also conducted to analyze the DEGs regulated by ZmBES1/BZR1-9
in transgenic rice. As shown in Figure 8, compared with WT, a total of 102 common
DEGs were identified and shared by the R9-1 and R9-5 lines. Among them, 67.65% of
DEGs (69) were up-regulated, and 32.35% of DEGs (33) were down-regulated in the two
transgenic lines. Gene Ontology (GO) analysis suggested that five DEGs were associated
with flowering and involved in short-day photoperiodism and circadian rhythm; these
were OsGA20OX1 (Os03g0856700), OsCCR19 (Os09g0419200), OsBTBN19 (Os09g0420900),
OsRNS4 (Os09g0537700), and an unknown gene (Os02g0205500). Similarly, 15, 8, 14, 13,
and 8 E-box elements were also found in the OsGA20OX1, OsCCR19, OsBTBN19, OsRNS4,
and Os02g0205500 gene promoters, respectively (Table S2).
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3. Discussion

Previous studies show that BR signaling is an important pathway involved in plant-
flowering regulation. For instance, BR-insensitive and deficient mutants exhibit delayed
flowering morphology, confirming that the components of the BR signal control the flow-
ering transition [30,31,39–41]. BES1/BZR1s are key hubs in the BR signal [10,13]. In the
present study, we found that the complementation and overexpression of the ZmBES1/BZR1-
9 gene in WT and mutant Arabidopsis resulted in early flowering under LD conditions com-
pared with the control (Figures 3 and 4). Nevertheless, there was no significant difference
in flowering time between the transgenic Arabidopsis and the control, which both exhibited
exuberant vegetative growth of each line under SD conditions (Figure 5). The RLN is a
key indicator of Arabidopsis flowering [42], but the transgenic plants showed no difference
in RLN under LD and SD conditions (Figure 5). Meanwhile, transgenic rice exhibited a
shorter heading date and about 8 days earlier flowering than WT under SD conditions,
but there was no difference under natural LD conditions (Figure 7). This indicates that
the ZmBES1/BZR1-9 gene positively regulates flowering but does not affect the vegetative
growth process.



Plants 2023, 12, 2995 9 of 14

It has been confirmed that BES1 acts as a positive regulator of photoperiodic flowering
in Arabidopsis [33]. As previously reported, the overexpression of BES1 promotes flowering,
and its mutant and RNAi plants delayed flowering and possess significantly higher RLN
than WT under LD conditions [32,33,43]. Similarly, overexpression of MiRZFP34 resulted in
early flowering in transgenic Arabidopsis but no difference in RLN was observed [44]. Like-
wise, it was previously proven that histone deacetylase HDA703 interacts with OsBZR1 to
control rice growth and heading by inhibiting Ghd7 expression [34]. Hence, it is speculated
that the different phenotypes of transgenic Arabidopsis and rice expressing ZmBES1/BZR1-9
under LD and SD conditions may be due to the Arabidopsis being an LD plant but the rice
being an SD plant [42]. In Arabidopsis, under LD conditions, the CO (CONSTANS) protein
accumulated and induced the expression of FT and its homolog TSF (TWIN SISTER OF FT)
to promote flowering [45,46]. However, the CO-homologous Hd1 promotes early heading
by up-regulating the expression of the FT-homologous Hd3a gene under SD conditions
in rice [47,48]. Therefore, we speculate that the ZmBES1/BZR1-9 gene regulates flowering
through different photoperiod-mediated pathways in Arabidopsis and rice.

Furthermore, we showed that ZmBES1/BZR1-9 up-regulated the expression of At2-
MMP, AtPCC1, AtMYB56, AtGRDP2, and AtPELPK1, as well as of OsGA20OX1, OsCCR19,
OsBTBN19, and OsRNS4, in transgenic Arabidopsis and rice, respectively (Figures 6 and 8).
This can be explained by the binding of ZmBES1/BZR1-9 to E-box elements in these genes
promoters to promote their expression (Table S2) because the ZmBES1/BZR1-9 protein
localizes in the nucleus and functions as a transcription factor [21]. It was confirmed that
BES1/BZR1s can directly bind to E-box or BRRE elements to regulate the transcription of tar-
get genes [10,13]. Previous studies confirmed that at2-mmp mutant, AtPCC1 and AtPELPK1
RNAi plants, and AtGRDP2 knockout lines showed delayed flowering, suggesting their
positive roles in regulating flowering [49–52]. Likewise, PPC1 exhibits a circadian-regulated
expression pattern, is involved in light-regulated development via interaction with the
COP9 signalosome subunit 5, and regulates the flowering transition in the photoperiod-
dependent pathway [52–54]. AtGRDP2 also regulates female gametophyte development via
the auxin pathway, and plants overexpressing it show early flowering [50,55]. Meanwhile,
BES1 directly represses AtMYB56, which positively regulates the quiescent center and cell
division [56,57]. In rice, OsGA20OX1 influences GA levels, is expressed in reproductive
meristems, and crosstalks with cytokinin to regulate growth and development [58,59].
GA also regulates flowering [60,61]. OsRNS4 is regulated by phytochrome (pyh) A-, B-,
and C-mediated light signals in rice [62]. It has been shown that phyA, B, and C play
crucial roles in plant flowering [63–66]. In addition, OsBTBN19 and its homolog, NPY1,
encode BTB domain proteins, which are reported to regulate flowering [67,68], although
the OsBTBN19 and OsCCR19 genes were not directly confirmed to regulate flowering.

The study suggests that the ZmBES1/BZR1-9 gene positively regulates flowering in
transgenic Arabidopsis and rice and that its overexpression can be used to shorten the
flowering period. Meanwhile, the mechanism of ZmBES1/BZR1-9 in regulating flowering
in maize is unknown and will be revealed in our future studies.

4. Materials and Methods
4.1. Plants Materials and Growth Conditions

Arabidopsis thaliana (Col-0) and Oryza sativa (Nipponbare) were used for the overex-
pression of the ZmBES1/BZR1-9 gene. The complementary lines (L9-3 and L9-5) of the
Arabidopsis bes1-D mutant were previously produced in our laboratory [21]. All Arabidop-
sis plants were grown in the growth chambers under an artificial LD photoperiod (14 h
light/10 h dark, LD) or SD photoperiod (10 h light/14 h dark, SD) under 60–70% relative
humidity at 22 ◦C. The rice seedlings were grown in the field in Chengdu in summer (from
mid-May to mid-July; LD conditions with 13.4–14 h of light) and in Sanya in winter (from
mid-Oct to mid-next March; natural SD conditions with 9.5–12 h light).
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4.2. Vector Construction and Transformation

The specific primers 1300-F and 1300-R (Table S1) were designed using Primer5.0,
synthesized at Sangon Biotech (Shanghai, China), and used to amplify the coding sequence
(CDS) of the ZmBES1/BZR1-9 gene from the 35S::ZmBES1/BZR1-9-eGFP plasmid con-
structed previously [21]. The PCR products and the pCAMBIA1300 plasmid were digested
using Hind III and BamH I. After digestion, the PCR products were subsequently cloned into
Hind III and BamH I sites of the pCAMBIA1300 plasmid to generate 35S::ZmBES1/BZR1-9 us-
ing the ClonExpress II One Step Cloning Kit (Vazyme, Nanjing, China). The ZmBES1/BZR1-
9 gene was driven by the 35S promoter and terminated by CaMV Poly(A).

The 35S::ZmBES1/BZR1-9 plasmids were introduced into the Agrobacterium tumefaciens
strain GV3101 for the next transformation. To create overexpressed lines of Arabidopsis,
the transformation of Arabidopsis and rice was performed by the floral dip method and
Agrobacterium-mediated calli transformation, respectively [69,70]. After transformation, the
seeds of transgenic Arabidopsis were screened using 50 mg/L kanamycin (Sigma, St. Louis,
MI, USA) to screening for transformants. The transgenic rice plants were screened by using
100 ng/mL hygromycin B (Coolaber, Beijing, China). The positive Arabidopsis seedlings
with kanamycin resistance and positive rice seedlings with hygromycin resistance were
harvested individually. In the T2 generation, the plants showed a 3:1 segregation for
resistance/susceptibility to kanamycin or hygromycin and were self-pollinated to generate
T3. Then, the seeds of each line were screened using the same methods. The homozygous
lines were identified without segregation and used in the next study.

4.3. PCR and RT-PCR

The gDNA of the transgenic lines and the WT line was extracted using the CTAB
method [71]. To confirm the insertion of ZmBES1/BZR1-9 in the genome of Arabidopsis and
rice, a pair of specific primers, 9F and 9R, were designed, synthesized, and used to amplify a
911 bp fragment from ZmBES1/BZR1-9. Moreover, the total RNA of each line was extracted,
and the gDNA was removed and reverse-transcribed to cDNA using the RNAiso Plus kit
(Takara) and HiScript® II 1st Strand cDNA Synthesis Kit (+gDNA wiper), respectively. The
RT-PCR was performed to detect the transcription of the ZmBES1/BZR1-9 gene in transgenic
lines. Meanwhile, the primer pairs qAf/qAr and qGf/qGr were designed, synthesized,
and used to amplify AtACTIN2 and OsGAPDH genes, respectively, which were used as the
internal controls. The sequences of primers used for RT-PCR are also listed in Table S1.

4.4. Phenotyping of Transgenic Lines

To analyze the flowering time of transgenic Arabidopsis, the seeds of the complementary
lines, overexpressed lines, WT, and bes1-D mutant were sown in soil and cultured in the
growth chambers under the conditions described above. The days from germination to
flowering, the total rosette leaf number, and the percentage of flowering plants over the
same time period were measured from 25 plants and used to monitor the flowering time, as
described by Li et al. [32] and Wang et al. [33]. For the phenotyping of transgenic rice, the
days from seed germination to the appearance of the first main panicle were counted and
used to detect the heading date, as described by Lu et al. [44]. In each replicate, 20 plants
of every line were scored. Three replicates of each experiment were performed in this
study. All statistical data were calculated using GraphPad Prism and Microsoft Excel
2017 and were presented as the mean ± SE. Student’s t-tests were used to analyze the
significance of the data between the transgenic lines and the WT. * and ** represent p < 0.05
and <0.01, respectively.

4.5. RNA-Seq Analysis

The RNA-seq analysis was conducted as our previous study [21]. In brief, the to-
tal RNA was extracted from two-week-old seedlings of R9-1, R9-2, and WT using the
RNAprep Pure Plant Kit. Then, each RNA sample was qualified by testing their quality
and integrity and used for sequencing library preparation using the Bioanalyzer 2100 and
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the VAHTSTM mRNA-seq V2 Library Prep Kit, respectively. The library was sequenced
at the Sanshu Biotechnology Company (Shanghai, China) using the Novaseq 6000 system.
The sequencing data were analyzed as described by Sun et al. [25]. The raw data were
evaluated and filtered by removing sequencing adapters and low-quality reads as well
as contaminants to produce clean data using FastQC (version 0.11.2) and Trimmomatic
(version 0.36). Then, clean data were aligned with the Arabidopsis genome (TAIR 10) using
Hisat2 and used to assemble transcripts of each gene using StringTie. The read counts
of each gene assembled by StringTie were used to identify DEGs using DESeq2 with a
p-value < 0.05 and |FoldChange| > 2. The GO enrichment analysis was performed using
KOBAS accessed on 15 February 2023 (http://kobas.cbi.pku.edu.cn/anno_iden.php).

4.6. qRT-PCR

The expression of candidate genes in transgenic lines was analyzed by qRT-PCR using
PerfectStart®Green qPCR SuperMix (TransGen, Beijing, China) in the CFX96TM Real-Time
System (Bio-Rad, Hercules, CA, USA), as described in our previous study [25]. The proce-
dure of qRT-PCR consisted of a two-step temperature cycle with pre-degeneration at 95 °C
for 30 s, 39 cycles of degeneration at 95 for 5 s, and an extension step at 58 ◦C for 30 s. The
temperature was set to increase to 95 °C by 0.5 °C/s at the end of each last cycle to differen-
tiate between specific and non-specific amplicons. Likewise, the AtACTIN2 and OsGAPDH
genes were amplified using the primer pairs qAf/qAr and qGf/qGr, respectively, and used
as the internal controls. The relative expression level was normalized following the 2−∆∆Ct

method [72]. The sequences of these candidates were derived from the National Center
for Biotechnology Information (NCBI) or the Arabidopsis Information Resource (TAIR) and
used to design primers using primer-BLAST accessed on 5 November 2021 (https://www.
ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome). The primers
are listed in Table S1. The candidate genes include AtACTIN2 (AT3G18780), OsGAPDH
(Os04g40950), At2-MMP (AT1G70170), AtPCC1 (AT3G22231), AtMYB56 (AT5G17800),
AtGRDP2 (AT4G37900), AtPELPK1 (AT5G09530), OsCCR19 (Os09g0419200), OsBNTB19
(Os09g0420900), OsRNS4 (Os09g0537700), and OsGA20OX1 (Os03g0856700).

5. Conclusions

In conclusion, the objective of the study was to validate the role of the maize ZmBES1/
BZR1-9 transcription factor in regulating flowering time. The ZmBES1/BZR1-9 gene was ec-
topically expressed in Arabidopsis and rice for phenotyping. Our findings demonstrate that
ZmBES1/BZR1-9 is a positive regulator that promotes flowering via multiple photoperiod-
mediated pathways, but it does not affect vegetative growth. Our results also suggest
that the maize ZmBES1/BZR1-9 gene can be used to improve the flowering period via
its overexpression and provide a reference for further underlying roles of BES1/BZR1 in
regulating growth and development in crops.
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