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Abstract: Precise and high-throughput phenotyping (HTP) of vegetative drought tolerance in chick-
pea plant genetic resources (PGR) would enable improved screening for genotypes with low relative
loss of biomass formation and reliable physiological performance. It could also provide a basis to
further decipher the quantitative trait drought tolerance and recovery and gain a better understanding
of the underlying mechanisms. In the context of climate change and novel nutritional trends, legumes
and chickpea in particular are becoming increasingly important because of their high protein content
and adaptation to low-input conditions. The PGR of legumes represent a valuable source of genetic
diversity that can be used for breeding. However, the limited use of germplasm is partly due to a
lack of available characterization data. The development of HTP systems offers a perspective for the
analysis of dynamic plant traits such as abiotic stress tolerance and can support the identification of
suitable genetic resources with a potential breeding value. Sixty chickpea accessions were evaluated
on an HTP system under contrasting water regimes to precisely evaluate growth, physiological traits,
and recovery under optimal conditions in comparison to drought stress at the vegetative stage. In
addition to traits such as Estimated Biovolume (EB), Plant Height (PH), and several color-related traits
over more than forty days, photosynthesis was examined by chlorophyll fluorescence measurements
on relevant days prior to, during, and after drought stress. With high data quality, a wide phenotypic
diversity for adaptation, tolerance, and recovery to drought was recorded in the chickpea PGR panel.
In addition to a loss of EB between 72% and 82% after 21 days of drought, photosynthetic capacity
decreased by 16–28%. Color-related traits can be used as indicators of different drought stress stages,
as they show the progression of stress.

Keywords: chickpea; image-derived traits; growth dynamics; plant genetic resources; drought stress;
chlorophyll fluorescence

1. Introduction

In addition to the rising global population, the changing climate poses challenges
for agriculture [1]. In Europe, droughts will be 11–28 times more frequent in different
regions and will become much more severe in terms of their spatial and temporal spread [2].
However, there is already a high variability in the severity, timing, and intensity of droughts
with severe consequences for Europe [3]. This is especially true for legumes, as they are
summer crops, which are more yield-instable than winter crops [4–6]. Many studies among
several crop species have employed plant genetic resources (PGR) to detect quantitative
trait loci (QTL) that can harbor beneficial alleles at loci for relevant phenotypic traits
under challenging environments [7–10]. In chickpea, valuable QTLs from landraces against
abiotic and biotic stress factors and improved root growths have been introgressed by
marker-assisted backcrossing into cultivars [11,12]. Other methods for the introgression

Plants 2023, 12, 2866. https://doi.org/10.3390/plants12152866 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants12152866
https://doi.org/10.3390/plants12152866
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0002-9332-157X
https://orcid.org/0000-0001-9598-3131
https://orcid.org/0000-0002-2152-4634
https://doi.org/10.3390/plants12152866
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants12152866?type=check_update&version=2


Plants 2023, 12, 2866 2 of 20

of regions of interest or more specific genes include CRISPR [13,14]. However, besides
drought tolerance per se, it is also essential to further investigate the ability to recover from
drought, as precipitation is becoming more extreme and unpredictable [15]. Hence, it is
necessary to evaluate PGR not only for drought tolerance but also for drought recovery
and to analyze drought stress in the vegetative stage in addition to the drought stress at
the end of the season [16]. So far, it is not sufficiently understood how plants respond
to drought stress at different growth stages and during recovery to contribute to a more
resilient agricultural system.

Chickpea (Cicer arietinum L.) is one of the legumes of the future [17–19]. Global
production was 15 million tons, with cultivation being carried out primarily in India and
Turkey, followed by Pakistan, Myanmar, and Ethiopia; an increasing production can be
observed in Europe [20,21] (FAO, 2021). With their high protein content and important
nutrients, they are not only in line with the dietary trend towards less meat consumption
but because they form symbiotic nodulation with bacteria, they require less fertilizer and
thus fit into an agriculture in which the use of fertilizers is viewed critically [22–24]. There
are two different types of chickpea: desi and kabuli. The rough grains of desi are different in
color and smaller than the beige and softer-coated kabuli. In addition, there are differences
in biomass formation, in the metabolomic response to drought stress, and in anthocyanin
synthesis [25–27]. To increase chickpea production in Europe, studying drought stress
during the vegetative stage is crucial, as is the development of genotypes that are less
sensitive to cold and more tolerant of Ascochyta blight [28–31]. The response of chickpea
to drought stress depends on its duration and intensity, as well as the growth stage of the
plants [18]. Terminal drought stress, which occurs from the early pod set, reduces biomass,
reproductive growth, the harvest index, and final seed yield [32]. A higher abscisic acid
content was also found in the seeds, which presumably leads to pod abortion. Reduced
grain yield could be explained by a reduced growth rate, the leaf area index during the
pod-filling stage, and reduced biomass during the reproductive growth stage [33]. Field
studies have shown that chickpeas develop a deeper and denser root system to absorb
water from deeper soil regions and that they tend to deposit lignin in the root xylem when
exposed to drought stress [34–36]. Furthermore, drought stress has a negative impact on
nodulation, which has a negative impact on yield [37]. Animoacids, especially asparagine,
and organic acids such as malate accumulate in the nodules and lead to inhibition of
respiration, nitrogen accumulation, an imbalance in the cell redox status in the nodules,
and reduced nitrogenase activity [38].

Until now, little has been known about drought tolerance during the vegetative stage,
because most studies have focused on terminal drought stress, which is prevailing in
the major production areas and to which chickpea is adapted. In addition to the rooting
ability, a low relative loss of above-ground biomass is an important criterion to assess
drought tolerance. Losses in biomass production due to drought stress are primarily
due to the inhibition of photosynthesis since it is the basic process for maintaining plant
growth [16,32]. To evaluate photosynthesis, the pigments, chlorophyll, and carotenoids,
which play a role in light trapping and photoprotection of the photosynthetic apparatus,
were considered [39]. Recently, chlorophyll fluorescence traits were studied and provided
insights into photosynthetic activity, especially under stress conditions [40–42]. To keep up
with the progress of other technologies, the measurement of chlorophyll fluorescence was
implemented in high-throughput phenotyping (HTP) [43].

The field of genotyping has developed tremendously in recent years with decreasing
costs and increasing precision, but the acquisition of phenotype expression is often even
more complex, objective, and costly [44,45]. HTP is a way to evaluate genotypes in detail,
particularly under controlled greenhouse conditions [46]. Traits such as plant height, color-
related traits, or most importantly, the Estimated Biovolume (EB) are assessed [47]. So
far, in chickpea, HTP has only been employed to evaluate salinity tolerance and to detect
genetic loci for growth rate, water use efficiency (WUE), and the number of seeds under
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salinity and control conditions, among others [48,49]. No study on chickpea for drought
stress tolerance employing HTP has been conducted yet.

Numerous HTP studies with high data quality on cold, heat, or drought stress, for
example in pea (Pisum sativum), Arabidopsis thaliana, barley (Hordeum vulgare), and maize
(Zea mays), were conducted to search for tolerance traits or combined with genetic data
in a genome-wide association study (GWAS) to decipher relevant QTL with spatial and
temporal precision [50–53]. HTP has the strength to assess the temporal dynamics of
agriculturally important traits such as biomass or plant height and reveal traits related to
plant physiology such as WUE and the efficiency of photosynthesis [50,54]. Furthermore,
color-related information was used to study the progress of drought stress and senescence
in barley (H. vulgare), rice (Oryza sativa), maize (Z. mays), and wheat (Triticum aestivum,
T. durum) [47,53–55].

The study is aimed at the investigation of vegetative drought tolerance and recovery
in a panel of PGR of chickpea by employing HTP. The panel is balanced for the two types of
chickpea, desi and kabuli, and was selected to maximize the genetic diversity of the species
on the basis of passport data. The study will reveal (1) how drought during the vegetative
stage affects chickpea growth performance and physiology, (2) how chickpea is able to
recover from this type of drought, and (3) how to identify superior genotypes for further
studies within the panel of PGR.

2. Results
2.1. Data Quality and HTP Experiment

The data quality, represented here as heritability, was high for the EB throughout the
whole experiment (Figure 1). Heritability for the stress treatment was higher than that of
the control treatment, averaging 0.80 compared to 0.55 in the control.
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Figure 1. Heritability of Estimated Biovolume (EB).

The heritability of the manually determined plant weights was in line with EB results
(Figure S1). The data quality of the PH was very high with a heritability of over 0.75
throughout all days (Figure S2). Similarly, the heritability for the MCV was approximately
0.7, except for some initial days and the last days during the recovery phase in the drought
stress treatment. Furthermore, the heritability for r2g was very high with over 0.75 for
the control treatment, but generally lower in the drought stress treatment. In contrast,
heritability for y2g was higher in the drought stress treatment, primarily towards the end.
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For the traits obtained from chlorophyll fluorescence imaging, the heritability was also high,
with averages of 0.76 and 0.65 in control and stress treatments, respectively (Figure S3).

The EB of the last imaging day DAT 43 has been correlated with the manually measured
plant weights; high coefficients of correlation (r = 0.96 and 0.97) were revealed for plant dry
weight and fresh weight, respectively (Figure 2; Figure S4).
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on BLUEs across both experiments of all 60 genotypes. p indicates the level of significance and r is
the coefficient of correlation.

In conclusion, all investigated traits have sufficient data quality for almost all days
and can be used to gain further insights into drought effects and trait relations.

In the first experiment, no nodulation was observed in a single plant. Since the second
experiment was a repeat of the first experiment with the same conditions, it was assumed
that no nodulation occurred here either.

2.2. Impact of Drought

When looking at the EB and the manually recorded plant weights in both treat-
ments, it is clear that lowering the PAW had a significant influence on the formation of EB
(Tables S1–S3). Thus, a negative RGR for drought stress was observed at DAT 22 (Figure S5
and Table S4). This was followed by another week of very low RGR until it finally increased,
with the onset of re-watering for the recovery (Table S4).

Thus, plants in the two treatments differed significantly in EB after seven days of
drought from DAT 14 onwards (Figure 3). EB was 18.5 × 10−5 voxels for the drought
stress treatment at DAT 28, the last day of drought, and 85.1 × 10−5 voxels in the control
treatment. Therefore, the drought period resulted in an average of 78% loss of EB (Table S2).

The CV for EB was similar for both treatments up to DAT 12, but in the further course,
the CV for the control treatment was 30% higher than that for the drought stress treatment,
which was only approximately 20% (Figure S6).

Drought stress also had a significant effect on PH, MCV, r2g, and y2g (Figure 4
and Table S2). For PH, stressed plants were significantly smaller than unstressed plants
from DAT 16 onwards. At the end of the drought period, the stressed plants were 32%
smaller than those in the control treatment. A significant treatment difference in MCV was
observed between DAT 16 and DAT 36. Initially, the MCV in stress increased but then
the loss remained relatively constant at −6.4 to −5.79% during the last days of drought
stress from DAT 24–28. With the onset of re-watering, the MCV in stress decreased again
until there was no significant difference to control from DAT 36 onwards. The r2g ratio
was significantly higher in stress treatment from DAT 17 until the end. It was 0.005 for the
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control and 0.013 for the stress treatment on the last day of drought, representing a loss of
−160% and indicating an increase compared to the control. As the recovery progressed,
the r2g of stressed plants decreased again, so that the r2g on DAT42 was 0.004 for stressed
plants and 0.006 for non-stressed plants. A very similar pattern was observed for the y2g.
For y2g, on DAT 28, the control was 0.029 and the drought stress treatment was 0.069,
showing a loss of −138%.Plants 2023, 12, x FOR PEER REVIEW 5 of 21 
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Figure 4. Further image-based traits under drought stress and control treatments. (A) Plant Height
(PH); (B) Mean Color Value (MCV); (C) red to green ratio (r2g); (D) yellow to green ratio (y2g). The
dotted line indicates the plant available water (PAW) to which the secondary axis refers to. The
shadows describe the 95% confidence interval; as long as the shadows of the individual lines do not
overlap, the significance level of α = 0.05 was reached and therefore a significant difference exists.
Based on means of BLUEs across both experiments of all 60 genotypes.
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The CV for PH was relatively constant throughout the whole experiment in the control
treatment but increased continuously from DAT 16 onwards in stress up to 18% at DAT 42
(Figure S6). For the MCV, the CV was higher for the drought stress treatment compared to
the control treatment for DAT 12–22 and 41 and 42, but for the remaining days, from DAT
22–40, the opposite was true. Overall, the CV for MCV was the lowest of all considered
traits, ranging between 1.5 and 2.5%. The CV for the r2g increased in both treatments
from 13% on DAT 2 to 25% on DAT 15. For the following DATs, it was higher for the
control treatment by up to 7% until, finally, for the last DAT 40–42, the CV was higher
in the drought stress treatment. The CV pattern for y2g was similar to that of r2g, but
continuously higher in the drought stress treatment from DAT 22 onwards.

The WUE in the three different drought phases was evaluated (Figure 5, Tables S5 and S6).
The mean during DA was 0.038 voxel/mL for the control and 0.039 voxel/mL for drought
stress (Tables S5 and S6). During DR, the WUE was lower in drought (0.026 voxel/mL)
compared to the control treatment (0.04 voxel/mL). In DT, WUE was significantly higher
in drought stress (9.63 voxels/mL) than in the control treatment (0.033 voxels/mL).
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60 genotypes. The shape around the boxplot is a violin plot and describes the continuous distribution
of the data at different values. DA = drought adaptability DAT 8–42; DR = drought recovery DAT
29–42; DT = drought tolerance DAT 8–28.

The ΦPSII imaging results showed differences between the two treatments, some
of which were significant (Figure 6, Tables S7 and S8). ΦPSIIh decreased with continued
drought stress and increased again with re-watering. At DAT 20 and 27, after 13 and 19 days
of drought stress, respectively, the control treatment and the drought stress treatment
differed significantly. The loss in the stressed plants was 7% on DAT 20 and 20% on DAT 27
of the ΦPSIIh in the control treatment (Table S7).
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Figure 6. φPSIIh for drought stress and control treatments on several DATs. Based on BLUEs across
both experiments of all 60 genotypes. The shape around the boxplot is a violin plot and describes
the continuous distribution of the data at different values; 1 day before drought = DAT 6, 7 days of
drought = DAT13, 13 days of drought = DAT20, 19 days of drought = DAT 27, 6 days of recovery = DAT34.
φPSIIh = operating efficiency of photosystem II under high-light conditions.

For the ΦPSIIr and ΦPSIIh, comparable results and significances were found
(Tables S7 and S8 and Figure S7).

2.3. Correlations between Traits

Correlation coefficients r between EB and PH, r2g, and y2g traits over each phase of
DA, DT, and DR have been calculated (Table S9). For PH and EB, r ranged from 0.56 to 0.87
in all phases and both treatments. In contrast, there was a negative correlation between the
MCV and EB in both treatments, for DA and DR. In DT, there was a significant difference
between the treatments. For the control treatment, r was −0.54, but for DT in the drought
stress treatment, it was 0.53. Considering the EB and r2g traits, r was strongly negative
(approximately −0.7 for all combinations of treatment and phase); only for the DR phase in
the control treatment did r result in −0.54. All r values for all the pairs of traits for each
phase and treatment yielded significant results, with the only exception being r between
EB and y2g for the DR phase and control treatment (r = 0.005; p = 0.88). In contrast, for DR
in drought stress, there was a strong negative correlation between y2g and EB (r = −0.74;
p < 0.0001); for the DT, r between y2g and EB was −0.75 for the control treatment but only
−0.33 in the drought stress treatment, even if both were significant.

The coefficient of correlation r between ΦPSIIh and ΦPSIIl was 0.5, while r between
ΦPSIIr and ΦPSIIh was significantly higher, equal to −0.94 (Figure S8).

Furthermore, some correlations between ΦPSIIh and image-based traits were signifi-
cant with persistent drought stress (Table S10). On DAT 27, after 19 days of drought stress,
the correlations of ΦPSIIh to EB and PH were significantly positive (r = 0.69 and r = 0.55),
and to the color-related traits, MCV, r2g, and y2g were significantly negative (r = −0.62;
r = −0.7 and r = −0.68; Figure S9). In addition, on DAT 27, a strong positive correlation
between the color-related traits and between EB and PH was visible as well (Figure S10).
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2.4. PGR under Drought Stress

The set of 60 genotypes could be grouped on the basis of biological status and desi and
kabuli types. In particular, the differences in kabuli and desi in terms of their tolerance to
vegetative stage drought stress were of interest and were evaluated based on the drought
stress period DAT 8–28 (Figure S11). In the control treatment, principal component (PC)
1 explained 75%. The EB and PH traits were approximately opposite to y2g and r2g, re-
spectively. For PC2, which explained 15.3% in the control treatment, the genotypes are
subdivided primarily for MCV. A clear separation of the two chickpea types or even a ten-
dency to be different was not detected. PC1 explained 57% of the drought stress treatment,
which was less than the control treatment. Furthermore, PC1 separates genotypes based on
EB and PH versus r2g and y2g. PC2 explained 19.5% of the variation and was influenced
by MCV. In the PCA for drought stress, there was a slight differentiation of desi and kabuli
genotypes, with desi mostly present in the positive range of PC1 (high EB and PH, low
r2g and y2g). There were no significant differences in biological status between cultivars,
domesticated material, landraces, and breeding material (Figure S12).

To evaluate whether desi or kabuli were more tolerant to drought stress, the percentage
loss caused by drought was investigated (Table S2 and Figure S13) There were no significant
differences in losses for EB, r2g, and y2g between both types. Loss of PH was lower for desi
from DAT 16–19, but on DAT 28, a similar loss was detected for desi (31%) and kabuli (34%)
types (Table S2). Similarly, loss for MCV was significantly different from DAT 24–31 for the
two types. For DAT 28, the loss between drought stress and control treatment was lower
for desi (−5.8%) compared to kabuli (−7.2%).

Considering the biological status, the loss ratio of drought stress and control treatment
was calculated to verify if breeding materials, cultivars and landraces, or domesticated
materials are different in terms of their drought tolerance (Figure S14). However, no
significant differences were detected. In addition, the genotypes of the domesticated
material group were very heterogeneous.

In addition, we investigated for each individual the deviation from the mean value of
the BLUEs of the entire set of materials for both treatments in relation to their EB (Figure 7).
At DAT28, the last day of stress, mostly desi genotypes had significantly higher mean values
of both drought stress and control treatment. Thus, these genotypes behave significantly
better than the kabuli genotypes. A similar result was obtained for the last day of the
experiment (DAT 42), that is, after drought stress and recovery. Desi was significantly better
than kabuli over the mean of all 60 genotypes.
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value of Estimated Biovolume (EB) of all 60 genotypes. The superior genotypes were labeled with the
INCCP plant material number and the labels touch the designated places. Based on BLUEs across
both experiments and all 60 genotypes. (A) DAT 28; (B) DAT42.
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In contrast, no significant differences in terms of deviation from the mean values
of BLUEs for EB in both treatment conditions were detected considering the different
biological statuses of the genotypes (Figure S15).

Comparing the WUE for the desi and kabuli types, a significantly higher WUE was
detected for desi genotypes (11.5 voxel/mL) compared to kabuli ones (7.76 voxel/mL) in
the drought stress treatment during the DT phase (Figures 8 and S16, Tables S5 and S6). No
significant differences in the biological status of the genotypes were detected for WUE.

Plants 2023, 12, x FOR PEER REVIEW 10 of 21 
 

 

with the INCCP plant material number and the labels touch the designated places. Based on BLUEs 
across both experiments and all 60 genotypes. (A) DAT 28; (B) DAT42. 

In contrast, no significant differences in terms of deviation from the mean values of 
BLUEs for EB in both treatment conditions were detected considering the different bio-
logical statuses of the genotypes (Figure S15). 

Comparing the WUE for the desi and kabuli types, a significantly higher WUE was 
detected for desi genotypes (11.5 voxel/mL) compared to kabuli ones (7.76 voxel/mL) in the 
drought stress treatment during the DT phase (Figures 8 and S16, Tables S5 and S6). No 
significant differences in the biological status of the genotypes were detected for WUE. 

 
Figure 8. Deviation of the individual genotypes with their affiliation to desi and kabuli, from the 
mean value during DT of Water Use Efficiency (WUE) of all 60 genotypes. Estimated Biovolume 
(EB) based on BLUEs across both experiments and all 60 genotypes. The superior genotypes were 
labeled with the INCCP plant material number and the labels touch the designated places. DT = 
drought tolerance DAT 8-28. 

When looking at the image-derived traits r2g, y2g, and MCV for the deviation from 
the mean values of the entire panel, the kabuli genotypes showed a significantly higher r2g 
than desi ones, but no significant difference was detected for MCV (Figure S17). 

Concerning photosynthesis traits, the two chickpea types showed a significant dif-
ference only on DAT 34 (Tables S7 and S8): The mean ΦPSIIh was higher for desi (0.438) 
than for kabuli (0.425) types. When the deviation from the mean of ΦPSIIh was calculated 
for the desi and kabuli groups and biological status, no significant differences or trends 
were visible (Figure S18). 

There were 32 genotypes that have better EB and WUE in the different phases of DT, 
DR, and DA and at DAT 28 and DAT 42 than the panel mean of 60 genotypes (Table S11). 
These 32 genotypes include 10 Kabuli and 22 Desi genotypes. INCCP_00119 (desi, Turkey, 
landrace), INCCP_00139 (desi, Tajikistan, landrace), INCCP_00291 (desi, Mexico, cultivar), 
and INCCP_01917 (kabuli, Portugal, landrace) were better for WUE and EB than the mean 
of the panel for both treatments on the significant days DAT 28 and 42 and in all phases, 
DA, DT, and DR. 

3. Discussion 

Figure 8. Deviation of the individual genotypes with their affiliation to desi and kabuli, from the mean
value during DT of Water Use Efficiency (WUE) of all 60 genotypes. Estimated Biovolume (EB) based
on BLUEs across both experiments and all 60 genotypes. The superior genotypes were labeled with
the INCCP plant material number and the labels touch the designated places. DT = drought tolerance
DAT 8–28.

When looking at the image-derived traits r2g, y2g, and MCV for the deviation from
the mean values of the entire panel, the kabuli genotypes showed a significantly higher r2g
than desi ones, but no significant difference was detected for MCV (Figure S17).

Concerning photosynthesis traits, the two chickpea types showed a significant differ-
ence only on DAT 34 (Tables S7 and S8): The mean ΦPSIIh was higher for desi (0.438) than
for kabuli (0.425) types. When the deviation from the mean of ΦPSIIh was calculated for the
desi and kabuli groups and biological status, no significant differences or trends were visible
(Figure S18).

There were 32 genotypes that have better EB and WUE in the different phases of DT,
DR, and DA and at DAT 28 and DAT 42 than the panel mean of 60 genotypes (Table S11).
These 32 genotypes include 10 Kabuli and 22 Desi genotypes. INCCP_00119 (desi, Turkey,
landrace), INCCP_00139 (desi, Tajikistan, landrace), INCCP_00291 (desi, Mexico, cultivar),
and INCCP_01917 (kabuli, Portugal, landrace) were better for WUE and EB than the mean
of the panel for both treatments on the significant days DAT 28 and 42 and in all phases,
DA, DT, and DR.

3. Discussion

HTP is considered an important tool that allows the rapid and precise testing of
genotype environmental interactions [56]. In the present study, the effects of drought stress
during the vegetative growth period under well-watered and drought stress conditions



Plants 2023, 12, 2866 10 of 20

using non-destructive HTP was investigated for the first time in chickpea using a diverse
panel of PGR. The high data quality results of the daily phenotyping showed the varying
tolerance of PGR and allowed us to draw conclusions about the suitability of PGR for
pre-breeding.

3.1. Suitability of HTP

The HTP system used in this study has already proven useful for studies to test the
biomass development and color change of wheat Near Isogenic Lines throughout the life
cycle in phases of varying drought stress and also the biomass development of barley PGR
under drought stress in the vegetative stage [47,55]. The greenhouse conditions met the
temperature requirements for chickpea and were combined with an irrigation system that
simulates drought stress followed by recovery during vegetative development.

The heritability of EB in the drought stress and control treatment was comparable
to results from a chickpea HTP experiment for salinity tolerance [48]. Furthermore, the
heritability was also high for PH, MCV, and r2g in the control treatment. On some days,
especially at the beginning and towards the end of the experiment, the heritability for
the y2g, MCV, and r2g was lower in the drought stress treatment. This could be partly
attributed to the non-uniform development and maturation of the PGR and the associ-
ated physiological changes in pigment composition during these days. In addition, the
heritability for the chlorophyll fluorescence imaging traits was satisfactory. In general,
heritability was comparable to that of previous experiments in barley on this HTP system
and is suitable for future genome-wide association studies [52,55]. The high correlation of
EB to measured plant weight demonstrates the suitability of EB as a proxy for biomass.
Based on the high-quality dataset, statistical analyses could be carried out to evaluate the
PGR in terms of their tolerance to drought stress and ability to recover after drought.

The CV was used to determine the degree of phenotypic variation over time [53]. The
change in the CV reflected the variation in PGR, confirming the method and utility of this
dataset for further analysis. Thus, the CV for this PGR under drought stress was highest
for the r2g and y2g color ratios and also high for EB, resultant WUE, PH, and ΦPSIIh.

3.2. General Effect of Drought Stress during HTP Experiments

Drought stress significantly impairs plant development for several traits and yield
components, making the breeding of tolerant varieties a complex task. This study highlights
the importance of HTP for the screening of vegetative drought stress tolerance to identify
superior genotypes within the PGR panel.

According to the timeline of the irrigation regime, statements can be made about
the relevance of traits at certain DATs, e.g., at the maximum sustained drought stress on
DAT 28, or in certain phases such as the DT, DR, and DA [53]. The difference between
treatments became significant for each trait within a few days, but the difference in EB
occurred first. EB showed a significant difference on DAT 14, i.e., 7 days after the onset of
drought stress, 2–3 days before the other traits. This is slightly later compared to results
in barley PGR [55]. As there is a correlation between biomass and seed yield in chickpea,
the reduced EB formation in drought and low biomass of genotypes would likely result in
lower seed yield [48,49].

Drought stress altered the image-based traits that differed even after re-watering.
MCV was the only trait of the image-based traits for which the values of the two treatments
converged again in the recovery phase, so from DAT38 onwards, there was no longer any
significant difference between the treatments. To describe differences between genotypes
based on percentage losses and coefficients of variation, r2g, EB, and y2g were most
informative [53,54].

The effect of drought stress and the optimal choice of the timing of re-watering was
shown in the RGR. As RGR became negative with continued drought stress, the objective
of the study to evaluate the drought tolerance and recovery of chickpea was realized with
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the scheduling of irrigation. If irrigation had been delayed, some genotypes would not
have shown recovery.

WUE based on EB and water use was another informative trait. It is considered for
breeding plants more tolerant to drought and involves optimizing biomass accumulation
and transpiration [57]. It is advisable to supplement the WUE with data on transpiration,
stomatal density conductivity, or vapor pressure deficit [58]. In a field study with one chick-
pea variety, optimum WUE was achieved with early sowing and increased irrigation [59].
Furthermore, in chickpea, better adaptation to water deficit was associated with higher
relative water content, longer chlorophyll retention, and higher osmotic adjustment [60].
The significant differences and variations in WUE during DT can be used to select suitable
PGR genotypes.

PH is an important trait that correlates with shoot biomass and thus also with seed
yield [49]. Drought reduced PH in our study, and the PGR panel showed substantial
phenotypic variation in PH and losses in PH.

Color-related traits have been used previously to represent physiological responses to
challenging environmental conditions in HTP in wheat (T. aestivum; T. durum), barley (H. vulgare),
and maize (Z. mays), as well as rice (O. sativa) and lettuce (Lactuca sativa) [47,54,55,61,62].

Under drought, both color ratios, y2g and r2g, increased, indicating pigment changes
such as chlorophyll, carotenoids, and anthocyanins, which play a role in plants’ reactions to
stress and starting senescence symptoms [63]. Carotenoids, for example, stabilize the lipid
membrane, are important for photosynthetic light collection, and protect photosystems
from oxidative damage caused by light radiation [63]. Similarly, anthocyanins, which are of
red to blue color, reduce the photoinhibition and photobleaching of chlorophyll and occur
in response to environmental extremes [64,65]. In addition to anthocyanin, in chickpea,
lower chlorophyll and carotenoid content was observed under drought stress conditions in
the field, which could explain the changes in r2g and y2g [66,67].

The MCV first increased under drought stress, indicating a deeper green color of
the leaves, then remained constant from DAT 24–28 during advanced drought stress,
and finally fell back to the value of the control treatment with the resumption of normal
watering. In principle, there is a high correlation between hue value and chlorophyll
concentration, which has been observed in a wide range of species, including tobacco
(Nicotiana), grapevine (Vitis labrusca), or Arabidopsis thaliana [65,68,69]. The initially darker
green shade of the leaves could be explained by the fact that under drought stress, the water
content in the cells decreased and therefore the chlorophyll content increased in relative
terms [67]. Another reason could be the short-term overcompensation of chlorophyll, which
has already been observed in soybean (Glycin max) under drought stress [70]. The constant
hue value of DAT 24–28 could be due to anthocyanin accumulation, which correlates
negatively with hue [65].

Many studies in greenhouse and field conditions demonstrated a negative effect of
drought stress on photosynthesis, e.g., in soybean (G. max), lettuce (L. sativa), and wheat
(T. durum) [16,62,71]. In this study, the lower ΦPSIIh, which represents a lower light quan-
tum yield, showed a reduced photosynthetic capacity. However, in our study, when plants
recovered from drought, photosynthetic capacity had not been permanently damaged and
ΦPSIIh returned to well-watered levels, similar to a field study with soybean (G. max) and
drought stress [16]. Similarly, [47] ΦPSIIr was higher under drought stress.

In line with the study for salinity tolerance in chickpea, EB and PH were always
positively correlated in control and drought stress [49]. While correlations between EB
and the other imaging traits were quite constant, correlation to MCV showed a different
pattern. The delayed change from a positive to a negative correlation with the onset of
re-watering suggested that MCV might be important for the selection of PGR for drought
stress tolerance and was found for the DT phase. Y2g and r2g showed a more durable
correlation with EB and y2g appeared to be more informative for DR, with a defined shift
in correlation between control and drought stress. The color traits had a high heritability,
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which is in accordance with studies in barley and maize and therefore could be used in
evaluating the wilting process [55,72].

Precision phenotyping thus allows one to select the most suitable traits, but moreover,
also determines the critical moment for their evaluation [73].

In addition, the use of chlorophyll fluorescence imaging enabled a complex analysis
of chickpeas under drought stress and highlights the importance of studying with com-
plementary methods [43,50,54,62]. A high correlation between plant area and chlorophyll
fluorescence imaging has been noted previously, which is comparable to the EB and PH
traits, which have a high correlation to ΦPSIIh [54].

3.3. PGR for Drought Stress Tolerance during Vegetative Phase

The diverse PGR panel showed high phenotypic diversity throughout the whole
experiment. Grouping according to geographical area and biological status revealed no
differences in performance under well-watered or drought stress conditions, which could
be due to the sample size.

However, significant differences are known for the two types of chickpea, desi and
kabuli. Desi has been reported to be more tolerant to drought stress than kabuli [25,74]. A
higher dry weight in the seedling stage, specific leaf area, and reduced growth for the
desi type were observed in pot and climate-chamber experiments [25,74]. In our panel, no
significant difference was found between desi and kabuli in the image-derived traits for the
entire course of the experiments. When evaluating the performance in comparison to the
deviation from the panel mean values on specific DAT, desi genotypes behaved significantly
better for EB on DAT 28 and 42 and WUE during DT. This was in agreement with earlier
studies that identified a higher WUE and transpiration efficiency in desi and could be in
part attributed to the anatomy of the xylem vessels and cortical layers of roots, which have
less resistance to water [25,74].

In general, the differences between the two types, desi and kabuli, have been inten-
sively discussed in the literature. Re-sequencing of 29 varieties revealed that only 2%
of the genomes are different regions and these are likely signatures of selection during
improvement [75]. Interestingly, markers for proanthocyanin were found to be significantly
different for desi and kabuli, with kabuli showing a reduced function for blocking transcrip-
tion factors for anthocyanin biosynthesis [26]. In this study, kabuli showed a significantly
higher deviation from the mean of the panel for the r2g value than desi at DAT 28 under
drought stress. This higher r2g value could be due to a higher anthocyanin content. How-
ever, there was no significant difference for MCV at DAT 28 under drought stress compared
to the mean of the panel between desi and kabuli, although the hue value is correlated to
anthocyanin content [65].

In contrast to [74], our study did not reveal a significantly better photosynthetic
performance of desi types under drought stress. This could be due to the different genotypes,
type of stress timing, and severity or measurement of photosynthesis. Desi tended to
perform better photosynthetically during the late drought stress phase and during recovery
in the context of our study.

Based on a pre-screening, we were able to gain insights into the suitability of PGR
for drought stress and recovery. For the relevant trait EB, there were 22 desi and 10 kabuli
genotypes that were better than the mean of the panel at key DAT 28 and 42 and for the
different phases DR, DA, and DT. Four superior genotypes are identified that can be used
for future improvement of vegetative drought tolerance. The four genotypes INCCP_00119
(desi, Turkey, landrace), INCCP_00139 (desi, Tajikistan, landrace), INCCP_00291 (desi, Mex-
ico, cultivar), and INCCP_01917 (kabuli, Portugal, landrace) showed superior WUE and EB
and are valuable genotypes for further studies.
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4. Material and Methods
4.1. Plant Material

The set of materials used in the present study consisted of 60 chickpea accessions
(Supplementary Material). Each accession is represented by single seed descent (SSD)
material derived by at least two cycles of selfing from 12 accessions from the IPK Gater-
sleben genebank and 48 accessions from the Western Regional Plant Introduction Station
(USDA-ARS, Washington State University, Pullman, WA, USA) [20,21]. These materials
represent a subset of a larger collection (Training CORE, T-CORE) developed within the
INCREASE (Intelligent Collection of Food Legumes Genetic Resources for European Agro-
food Systems) [21,76] and EMCAP (European and Mediterranean Chickpea Association
Panel) projects [20]; and is being tested in field experiments in collaboration with part-
ners in Italy, too. The 60 genotypes were selected to maximize the genetic diversity of
the T-CORE using passport data; in particular, the genotypes originated from 39 coun-
tries and 16 regions worldwide. Moreover, the set of materials is balanced for being desi
(30 genotypes) and kabuli (30 genotypes). Considering the biological status, the set is
composed of 3 breeding materials, 13 cultivars, and 42 landraces; for the remaining two
genotypes, the biological status is domesticated material (Table S12).

4.2. HTP Experiments

The HTP system (LemnaTec-Scanalyzer 3D) used in the present study is installed in
an environmentally controlled greenhouse at IPK Gatersleben (51◦49′23′′ N, 11◦17′13′′ E,
altitude 112 m). In this system, each plant was transported by conveyor belts to the imaging
chambers equipped with top and side view RGB (Red, Green, Blue) and fluorescence
cameras, where a lifter allows imaging from different angles in side view. The balance-
watering station enables controlled watering and thereby defined drought setups.

Plant material was tested in two experiments with two biological replicates per geno-
type and treatment. The first experiment was conducted from 24 March 2021 to 19 May
2021 and the second from 10 June 2021 to 5 August 2021. Two experiments were planned
to obtain a total of four biological replicates per genotype and treatment. For both experi-
ments, two seeds were sown directly into the pots and thinned out to one seedling per pot
after emergence. Each pot (18.5 cm height × 14.9 cm diameter) was filled with Klasman
substrate No. 2 described in [47]. After 14 days of pre-cultivation in a regular greenhouse
chamber outside the HTP system at 24 ◦C during the day and 20 ◦C during the night, with
a relative humidity of 67% during the day and 76% during the night, a daylight period
of greenhouse lights of 15 h (from 6 am to 9 pm), and manual watering, the plants were
transferred to the greenhouse with the HTP system with the same growing conditions.
To each pot, 7 g of fertilizer with a composition of 19% total nitrogen, 9% P2O5, and 10%
K2O was added, and no inoculation was carried out to promote nodulation. Nevertheless,
each plant in the first experiment was examined for nodulation after the experiment was
completed. A plant support was placed on each pot and each pot was placed into a tray so
that any water added could be absorbed by the plant. During the experiment, LemnaTec
software was used to randomize the arrangement of the plants twice a week resulting in a
fully randomized design. After an establishment phase to bring all plants to the same level
of plant-available water (PAW) of 70%, the irrigation level was lowered to 10% from day 8
after transferring (DAT) for plants in the drought stress treatment (Table 1; SM S2). The
watering regime and simulation of drought stress were developed on this HTP system and
have already been published [52]. The plants of the control treatment were maintained at
70% PAW from DAT 1 until the end at DAT 42 (SM S2).
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Table 1. Timeline of both experiments. DAS = Days after sowing; DAT = Days after transferring;
PAW = Plant-available water.

DAS DAT Action

0 Sowing and pre-cultivation in greenhouse
14 0 Transferring to HTP system and set watering to 70% PAW
15 1 First image
20 6 Chlorophyll fluorescence measurement
22 8 Initiation drought stress: 10% PAW
27 13 Chlorophyll fluorescence measurement
34 20 Chlorophyll fluorescence measurement
41 27 Chlorophyll fluorescence measurement
43 29 First step of recovery: + 300 mL
44 30 Second step of recovery: 70% PAW
48 34 Chlorophyll fluorescence measurement
55 41 Last imaging on HTP system
56 42 Harvest

On DAT 29, gradual re-watering was planned for both experiments with 300 mL
initially, followed by irrigation to 70% on DAT 30. The irrigation was performed in
two steps to allow the plants to slowly absorb the water. Information on daily water-
ing based on weight before and after watering can be extracted with the system software.
At the experiment’s end, fresh and dry weights of the above-ground shoot part were deter-
mined. Furthermore, due to technical difficulties, only an incomplete set of images could
be recorded on DAT 1 for experiment 1 and on DAT 14 for experiment 2. These two days
were excluded from the analysis.

4.3. Image-Derived Plant Traits

The images were analyzed using the IAP version 2.3.0 (Integrated Analysis Platform
(IAP)) [77]. The traits used here include Estimated Biovolume (EB, [voxel 10−5]), Plant
Height (PH; [mm]), Mean Color Value (MCV; [hue]), the red to green ratio (r2g; [%]), and
the yellow to green ratio (y2g; [%]) [55,77]. The MCV refers to the HSV color space. A
20-bin histogram was calculated, which provides information about the composition of the
detected plant color [77]. Based on this model, a mean hue of 0.23 corresponds to an image
of a green plant. The values y2g and r2g indicate the percentage of yellow and red pixels in
the image, respectively. The EB was calculated from the images from the top view camera
and the images of three side views:

Estimated Biovolume [voxel] =
√

average pixel side area2 ∗ top area

The PH results from pictures of the side view and the y2g, r2g and MCV result from
pictures of the top view.

To determine the PAW, the pot weight before watering was taken into account, as was
described in [52].

To draw conclusions about the tolerance of, for example, the two chickpea types or
biological status, the loss was calculated as the ratio of drought stress to control for the
imaging traits.

Loss o f Trait [%] =

(
1−

traitdrought stress

traitcontrol

)
× 100

Based on the mean of the BLUE values in the two experiments for the 60 genotypes,
the relative growth rate (RGR) was calculated. The missing values at DAT1 and 14 were
linearly interpolated to calculate the RGR.

Relative Growth Rate
[

voxel
DAT

]
=

ln(EBi)− ln(EBi−1)

DATi − DATi−1



Plants 2023, 12, 2866 15 of 20

For further analysis, the DATs were divided into phases. DAT 2 to 7 refers to the
establishment phase, DAT 8–28 to the drought tolerance phase (DT), DAT 29–42 to the
drought recovery phase (DR), and the period from DAT 8–42 was considered the drought
adaptability phase (DA).

The WUE was calculated as EB per milliliter of water during each of the phases of DA,
DT, and DR. If the irrigation was at zero milliliters, the amount of irrigation for the entire
phase has been set to 1 milliliter to proceed with further analysis. Outliers which were
detected for EB were removed from the irrigation data, and the mean for each genotype
and each DAT was calculated. For each drought phase, the difference in the BLUEs of EB
between the first and last DAT was calculated and divided by the sum of the irrigation to
calculate the WUE.

4.4. Chlorophyll Fluorescence Imaging and Image Analysis

The system was supplemented with a chlorophyll fluorescence camera (FluorCam;
version 7) from Photon Systems Instruments (PSI; Brno, Czech Republic) to measure
photosynthetic performance from the top view. The FluorCam data were analyzed using
the manufacturer’s software Plant Data Analyzer (version 3).

These measurements took place at DAT 6 (2 days before drought stress); DAT 13
(five days of drought stress); DAT 20 (twelve days of drought stress); DAT 27 (19 days
of stress); and DAT 34 (five days after re-watering) (Table 1). During these days, normal
imaging was advanced to 00:01 am instead of 7 am to allow FluorCam measurements at
8 am (duration 12 h).

Chlorophyll fluorescence measurements were taken approximately once per week
using FluorCam similar to [43]. For the measurement, the plants were first adapted to a
light intensity of 800 µmol/m2/s in an adaptation tunnel. This light intensity is higher
than that in the greenhouse (during the growth). After the adaptation of five minutes, the
plants were moved to the measuring chamber and illuminated once more for 10 s with a
light intensity of 800 µmol/m2/s. At the end of this phase, a first saturating light flash of
4000 µmol/m2/s was applied to measure the operating efficiency under high light intensity
(ΦPSIIh; µmol/m2/s). This was followed by ten seconds of 80 µmol/m2/s to allow the
plants to adapt to low light conditions, and then a second light flash of 4000 µmol/m2/s was
used to measure the operating efficiency under low light conditions (ΦPSIIl; µmol/m2/s).

The ΦPSIIl to ΦPSIIh ratio was calculated in order to measure the plasticity of photo-
system II to fluctuating light (ΦPSIIr).

4.5. Statistics

The EB was divided by a factor of 10−5. For further statistical analysis, R studio version
4.1.2 was used with the packages “tidyr”, “dplyr”, “stringr”, “data.table”, “multtest”,
“agricolae”, and “lattice”. Figures were created with the packages “ggplot2”, “ggpubr”,
and “ggrepel”. The package “ASReml” was used to calculate the outlier, the heritability,
and the best linear unbiased estimators (BLUEs). Across the two experiments, outliers have
been detected separately for each treatment. In the mixed model, the genotypes are fixed
effects and the experiment and the genotype and experiment interaction were random
factors. For every DAT, outliers were calculated separately.

To calculate the broad-sense heritability H2, each DAT is a fixed effect, and the ex-
periment, the genotype and experiment, and genotype interactions have been taken as
random effects.

VG, Ve, and VGxE are the variance components of the genotype, the genotype × experiment
interaction, and the residual, respectively. numExp is the number of experiments for the
respective DAT, and numRep is the number of biological replicates.

H2 =
VG

VG +
(

VG×E
numExp

)
+
(

Ve
(numRep×numExp)

)
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To calculate the BLUEs across the two experiments from the cleaned dataset, geno-
types were used as fixed factors, similar to the outliers, and the experiment and the
genotype–experiment interaction are random factors. The BLUEs across the experiments
were used for all further analyses.

Pearson correlations with the coefficient of correlation r were estimated. The coefficient
of variation (CV) has been calculated by the ratio of σ to µ. For the chlorophyll fluorescence
values, an ANOVA followed by Tukey’s test was performed to calculate the significance
levels. Significant differences were highlighted by calculating the 95% confidence intervals
using the package “Rmisc”. The confidence intervals are shown as shadows in the figures.
Principal component analysis (PCA) was performed using the package “factoextra”.

5. Conclusions

Considering the differences observed between genotypes with respect to drought stress
during the vegetative stage and recovery, HTP proved to be a useful method to study these
complex quantitative traits in chickpea PGR. Genotypes with superior drought tolerance
could be identified from the traits of growth performance and physiology derived from the
images, suggesting that further studies are needed to elucidate the underlying processes.

For practical crop improvement, this method is valuable. PGR can be assessed in an
HTP experiment; by linking genotypic data, root-related data, yield-related data, and, for
example, metabolomic data, QTLs can be mapped by genome-wide association studies to
unravel the underlying genetic architecture for drought tolerance and recovery in chickpea.
In addition, these results can then be verified through field studies.

Once potentially valuable genotypes are identified, they can be incorporated into
breeding programs and introduced into elite material, for example, via CRIPSR/Cas,
backcrossing with marker-assisted selection, or other breeding methods, to breed chickpea
varieties that are more tolerant to drought stress in the vegetative stage and recover quickly.
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