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Abstract: Plant leaf classification involves identifying and categorizing plant species based on leaf
characteristics, such as patterns, shapes, textures, and veins. In recent years, research has been
conducted to improve the accuracy of plant classification using machine learning techniques. This
involves training models on large datasets of plant images and using them to identify different
plant species. However, these models are limited by their reliance on large amounts of training
data, which can be difficult to obtain for many plant species. To overcome this challenge, this
paper proposes a Plant-CNN-ViT ensemble model that combines the strengths of four pre-trained
models: Vision Transformer, ResNet-50, DenseNet-201, and Xception. Vision Transformer utilizes self-
attention to capture dependencies and focus on important leaf features. ResNet-50 introduces residual
connections, aiding in efficient training and hierarchical feature extraction. DenseNet-201 employs
dense connections, facilitating information flow and capturing intricate leaf patterns. Xception uses
separable convolutions, reducing the computational cost while capturing fine-grained details in
leaf images. The proposed Plant-CNN-ViT was evaluated on four plant leaf datasets and achieved
remarkable accuracy of 100.00%, 100.00%, 100.00%, and 99.83% on the Flavia dataset, Folio Leaf
dataset, Swedish Leaf dataset, and MalayaKew Leaf dataset, respectively.

Keywords: plant classification; plant leaf classification; deep learning; convolutional neural network;
Vision Transformer

1. Introduction

Plant leaf classification refers to the process of identifying and categorizing plant
species based on their leaf characteristics. It plays a significant role in various fields, includ-
ing botany, agriculture, and ecological research. Existing works in plant leaf classification
have utilized handcrafted features combined with traditional machine learning [1–7] or
deep learning models [8–17] for feature extraction and classification. However, these ap-
proaches have certain limitations that reduce their effectiveness in accurately classifying
plant leaves.

One limitation is associated with handcrafted features used in conjunction with tra-
ditional machine learning approaches. These features are manually designed based on
domain knowledge and may not fully capture the diverse and complex variations present
in plant leaves. They may lack the ability to represent the intricate details and subtle
differences among leaf species accurately. Furthermore, traditional machine learning al-
gorithms may struggle to learn complex patterns and hierarchical representations from
these handcrafted features, resulting in limited classification accuracy. On the other hand,
deep learning models have demonstrated great potential in various image classification
tasks. However, deep learning models trained from scratch on limited data may suffer from
overfitting, particularly when the dataset is relatively small. They may not fully exploit the
rich spatial relationships and fine-grained details inherent in plant leaf images.
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To address these limitations, this paper proposes a novel ensemble model called “Plant-
CNN-ViT”, which combines the strengths of Vision Transformer, ResNet-50, DenseNet-201,
and Xception. Each model brings unique strengths that contribute to improving the plant
leaf classification accuracy. Vision Transformer (ViT) models excel at capturing global
contextual information from images, allowing for effective representation learning. They
can capture long-range dependencies and relationships between different parts of the leaves.
ResNet-50 is known for its deep architecture, enabling the extraction of rich and multi-scale
features from plant leaf images. The deep layers and residual connections of ResNet-
50 facilitate the learning of complex patterns and hierarchies. DenseNet-201 enhances
feature propagation through dense connections between layers. These connections promote
better gradient flow and improved representation learning. DenseNet-201 can capture
fine-grained details and complex variations in plant leaves. Xception models leverage
depth-wise separable convolutions, reducing the computational complexity while capturing
fine-grained details effectively. This makes Xception suitable for plant leaf classification
tasks, where capturing intricate leaf structures and details is crucial.

The effectiveness of the proposed Plant-CNN-ViT ensemble model was assessed
through rigorous evaluation on four widely used datasets: the Flavia dataset, the Folio Leaf
dataset, the Swedish Leaf dataset, and the MalayaKew Leaf dataset. These datasets were
specifically chosen to encompass a wide range of plant species, ensuring the evaluation of
the model’s performance across various leaf characteristics and variations. Of particular
note is the challenging nature of the Flavia dataset, Folio Leaf dataset, and Swedish Leaf
dataset due to their limited training samples. These datasets exhibit a scarcity of training
samples per class, with an approximate range of 14 to 45 samples per class. This scarcity
poses significant challenges for accurate classification, as the model must learn from a small
number of examples and generalize well to unseen samples. The inclusion of these datasets
in the evaluation provides a comprehensive assessment of the Plant-CNN-ViT ensemble
model’s ability to handle limited training samples and effectively classify plant leaves under
such challenging conditions. By demonstrating robust performance on datasets with scarce
training samples, the proposed model showcases its potential for practical applications in
real-world scenarios where limited training data availability is a common challenge.

The main contributions of this work can be summarized as follows:

• Introduction of the Plant-CNN-ViT ensemble model, which integrates the strengths of
Vision Transformer (ViT), ResNet-50, DenseNet-201, and Xception, to advance plant
leaf classification. This ensemble model is designed to leverage the unique capabilities
of each constituent model, enabling enhanced feature extraction and representation
learning. By combining ViT, ResNet-50, DenseNet-201, and Xception, the ensemble
model effectively captures the complex spatial relationships and fine-grained details
present in plant leaves, leading to a notable improvement in overall classification
performance.

• The efficacy of the proposed ensemble model was evaluated on widely used datasets,
providing empirical evidence of its effectiveness across diverse plant species. The
evaluation aimed to assess the model’s ability to handle data scarcity challenges,
which are prevalent in certain datasets. Specifically, the model was subjected to the
Flavia dataset, Folio Leaf dataset, Swedish Leaf dataset, and MalayaKew Leaf dataset.
These datasets, with limited training samples per class, ranging from approximately
14 to 41, offer a realistic representation of the challenges encountered in plant leaf
classification tasks.

2. Related Works

This section presents an overview of the existing research conducted in the domain of
plant classification. The body of literature in this field can be broadly classified into two
categories: traditional machine learning methods and deep learning approaches.
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2.1. Traditional Machine Learning

Traditional machine learning methods in plant classification involve a two-step pro-
cess. Initially, researchers perform manual feature engineering, where domain-specific
features are handcrafted based on botanical knowledge and expertise. Subsequently, these
engineered features are fed into machine learning algorithms for classification. Although
these methods have been widely employed and have yielded notable results, their efficacy
is limited by the reliance on manual feature engineering.

In an early work, Arafat et al. (2016) [1] presented a comparison of three well-known
techniques for leaf classification. The authors compared the abilities of these techniques to
differentiate among plant species. The evaluated techniques included the Histogram of
Oriented Gradient (HOG), Color Scale Invariant Feature Transform (C-SIFT), and Maxi-
mally Stable Extremal Region (MSER). HOG, C-SIFT, and MSER features were extracted
for each leaf, and classifiers were built using the SVM algorithm for HOG and the KD-Tree
algorithm for C-SIFT and MSER. These techniques were evaluated on two leaf datasets:
a personally built dataset and the Flavia dataset. The experimental results revealed that
HOG achieved accuracy of 98% on the personal dataset and 97% on the Flavia dataset. Ad-
ditionally, C-SIFT demonstrated accuracy of 98% for both datasets, while MSER achieved
accuracy of 96% and 90% for the personal and Flavia dataset, respectively.

In another study, Saleem et al. (2019) [2] presented a plant classification method
comprising preprocessing and segmentation, feature extraction, dimensionality reduction,
and classification. The leaf was first separated from the background in the preprocessing
step using segmentation, followed by the application of a Laplacian operator to smooth
leaf edges and regulate small glitches. From the leaf images, shape, texture, and color
features were extracted to differentiate between various types of leaves based on their
geometry and texture. The feature set comprised 11 shape features, 7 statistical features,
5 venation features, and Fourier descriptors. To reduce the dimensionality of the feature
vector, principal component analysis (PCA) was chosen to eliminate redundancy in the
feature set dimension. A feature space of ten new features was formed by selecting only
the first ten principal components, corresponding to almost 95% of the existing feature
space. In the classification stage, the resultant feature vectors were classified into their
respective plant species. A variety of classification methods were utilized, including k-
nearest neighbor (KNN), decision tree, naïve Bayesian, and multi-support vector machine
(SVM) classifiers. The proposed method achieved the highest accuracy of 98.93% on the
Flavia dataset and 97.75% on the self-collected dataset when KNN was used as the classifier,
without dimensionality reduction.

Trukoglu and Hanbay (2019) [3] proposed novel methods inspired by the Local Bi-
nary Patterns (LBP) method for leaf recognition. Prior to the application of the methods,
morphological operations were performed for size reduction and color channel separation.
The proposed approaches included filtering operations based on the regional and overall
mean, using the R and G color channels in the Overall Mean-LBP (OM-LBP) and Region
Mean-LBP (RM-LBP) methods, respectively. The authors also introduced a third method,
ROM-LBP, which combined the parameters from OM-LBP and RM-LBP using both color
channels. The attribute parameters obtained from these methods were classified using the
Extreme Learning Machine method. The performance of the methods was evaluated on
four datasets, where ROM-LBP achieved the highest accuracy of 98.94% on Flavia, 83.71%
on ICL, and 92.92% on Foliage. Meanwhile, OM-LBP recorded the highest accuracy of
99.46% on the Swedish dataset.

In Mostajer Kheirkhah, and Asghari (2019) [4], the researchers conducted plant leaf
classification with a pipeline that involved resizing images and reducing boundary artifacts
using the pad-array technique. They applied a DFT filter for whitening and utilized local
contrast normalization to create a pre-filter image. Subsequently, GIST features were
extracted by convolving the pre-filter image with a Gabor filter bank and dividing it into
four regions. Thereafter, PCA was used for feature selection and dimensionality reduction.
Classification was performed using KNN, SVM, and a neural network (Patternnet). The
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proposed GIST features with PCA and KNN obtained the highest accuracy of 98.7% on the
Flavia dataset.

Kaur and Kaur (2019) [5] used texture and color feature extraction in plant species clas-
sification. The texture features were extracted using statistical methods, specifically second-
order statistics using a gray-level co-occurrence matrix (GLCM). The GLCM captured the
spatial relationships between pixels and derived features such as contrast, correlation, en-
ergy, entropy, and homogeneity. The color features were extracted from segmented images
using first-order statistics, including the mean, standard deviation, skewness, and kurtosis.
For classification, a supervised approach using Multiclass-SVM was employed. The pro-
posed method attained an average accuracy score of 93.26% on the Swedish Leaf Dataset.

LBP was also employed in Keivani et al. (2020) [6] as part of a hybrid approach to
identify plant leaf images. In their study, the authors used a combination of GIST and
LBP features, three types of geometric features, color moments, vein features, and texture
features based on lacunarity for the analysis. The features were normalized after the pro-
cessing phase, and a novel method called Pbest-guide binary particle swarm optimization
(PBPSO) was used to reduce their number. Classification was performed using several
machine learning classifiers, including KNN, decision tree, naïve Bayes, and multi-SVM.
The proposed hybrid approach with decision tree achieved the highest accuracy, with
98.58% on the Flavia dataset and 90.02% on the Folio dataset.

Rajesh and Dudi (2021) [7] explored the application of five commonly used machine
learning classifiers, random forest, naive Bayes, SVM, KNN, and logistic regression, for leaf
image classification. The study focused on utilizing a comprehensive set of leaf features, en-
compassing the area, perimeter, physical length, physical width, aspect ratio, rectangularity,
circularity, mean, contrast, correlation, and entropy. To assess the performance of these clas-
sifiers, the authors conducted experiments on three well-known datasets: Flavia, Swedish,
and Folio. Notably, random forest demonstrated the highest accuracy of 84.11% on the
Flavia dataset, 84.61% on the Swedish Leaf dataset, and 84.04% on the Folio Leaf dataset.

2.2. Deep Learning

In recent years, deep learning methods have gained significant attention in plant
classification research. These approaches leverage the power of deep neural networks to
automatically extract features directly from raw plant leaf images. Deep learning models,
such as convolutional neural networks (CNNs), are designed to learn hierarchical represen-
tations and capture complex patterns in the input data. By eliminating the need for manual
feature engineering, deep learning methods offer the potential to overcome the limitations
of traditional approaches and achieve more accurate and robust plant classification.

In a previous study by Lee et al. (2015) [8], feature extraction was conducted using a
fine-tuned convolutional neural network (CNN) on the MalayaKew Leaf dataset. The final
fully connected layer was modified, replacing the original 1000 neurons with 44 neurons. The
CNN architecture consisted of multiple convolutional layers with varying kernel sizes and
strides, along with fully connected layers containing 4096 neurons. Two datasets, D1 and D2,
were utilized for comparison. D1 encompassed complete leaf images with foreground pixels
extracted through the HSV color space, while D2 consisted of cropped leaf image patches
excluding the shape. The extracted features were classified using multilayer perceptron (MLP)
or support vector machine (SVM). The CNN model trained with D2 and MLP as the classifier
achieved the highest classification accuracy of 99.5%.

In Liu et al. (2018) [9], a plant leaf classification method was presented that was based
on a ten-layer CNN. The CNN architecture used in this method was based on the LeNet
model. The method utilized the feature extraction and classification capabilities of the CNN
to achieve accurate leaf classification. Data augmentation techniques, including horizontal
flip, vertical flip, noise, color jittering, and rotation, were applied to expand the size of the
leaf database. The experimental results showed that the proposed method achieved high
overall accuracy of 87.92% on the Flavia dataset.
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Tan et al. (2018) [10] proposed a new CNN-based method called D-Leaf. The D-Leaf
model consisted of six layers, including three convolution layers, three fully connected
layers, and a softmax classification layer. The leaf images were pre-processed, and features
were extracted using three different CNN models: pre-trained AlexNet, fine-tuned AlexNet,
and D-Leaf. These features were then classified using five machine learning techniques:
SVM, ANN, k-NN, NB, and CNN. A conventional morphometric method based on Sobel
segmented veins was used for benchmarking. The D-Leaf features with ANN achieved
testing accuracy of 90.38%, 94.63%, and 98.09% on the MalayaKew dataset, Flavia dataset,
and Swedish Leaf dataset, respectively.

A multiscale fusion convolutional neural network (MSF-CNN) architecture was de-
scribed in Hu et al. (2018) [11]. The MSF-CNN consisted of three basic units: CBR (con-
volutional, batch normalization, and ReLU layers), max pooling, and average pooling
units. The convolutional layers utilized 3 × 3 filters, while the max pooling layers em-
ployed 3 × 3 windows. The average pooling layer utilized a 4 × 4 window. Strides of
1 and 2 pixels were applied to the convolutional and max pooling layers, respectively.
Bilinear interpolation was employed for image downsampling. The MSF-CNN architecture
processed four different input image sizes (256 × 256, 128 × 128, 64 × 64, and 32 × 32) to
learn discriminative features at different depths. Feature fusion between different scales
was achieved through the concatenation of feature maps. This multiscale fusion mechanism
progressively handled multiscale images and aggregated discriminative information in
the final features. On the MalayaKew Leaf dataset (D2), the MSF-CNN achieved accuracy
of 99.82%.

Kaya et al. (2019) [12] investigated five classification models for plant classification,
which included an end-to-end CNN model, a cross-dataset fine-tuned CNN model, pre-
trained AlexNet and VGG16 models, different combinations of pre-trained AlexNet and
VGG16 as feature extractors with linear discriminant analysis (LDA) and linear kernel SVM
as classifiers, and pre-trained AlexNet and VGG16 as feature extractors with a recurrent
neural network (RNN) as a classifier. Among these models, the pre-trained VGG16 and
LDA achieved the highest classification accuracy of 99.10% on the Flavia dataset, while
both the pre-trained VGG16 and CNN-RNN obtained the highest accuracy of 99.11% on
the Swedish Leaf dataset. The pre-trained AlexNet with LDA yielded the highest accuracy
of 96.20% on the UCI dataset.

Anubha et al. (2019) [13] conducted a study on plant species recognition using both
traditional methods and deep learning approaches. The traditional method involved
extracting features such as shape features (Hu moments), texture features (Haralick texture,
LBP), and color features (color channel statistics). The deep learning approach used
pre-trained models, specifically VGG16, VGG19, Inception-v3, and Inception-ResNet-v2,
as feature extractors. The extracted features were then classified using several machine
learning techniques, including linear discriminant analysis, logistic regression, classification
and regression trees, naïve Bayes, KNN, random forest, and bagging classifier. The results
showed that VGG16 with logistic regression achieved accuracy of 97.14% for the Leaf12
dataset, while VGG19 with the logistic regression classifier resulted in accuracy of 96.53%,
96.25%, and 99.41% for the Folio, Flavia, and Swedish Leaf datasets, respectively.

Riaz et al. (2020) [14] proposed a multi-path multi-convolutional neural network (MPF-
CNN) for plant species identification. The deep feature learning architecture consisted of
multiple CNN blocks, max-pooling layers, a flatten layer, and a softmax layer for classifica-
tion. The features from each block were concatenated, and the overall concatenation results
were aggregated to obtain the final discriminative features. The MPF-CNN architecture
utilized convolution filters of size 5 × 5, 3 × 3, and 1 × 1 in all blocks, along with a 3 × 3
filter size for the max-pooling layers. The MPF-CNN achieved accuracy of 98.71% on the
MalayaKew dataset (D2).

Litvak et al. (2022) [15] recently contributed to the field of plant species classification
by introducing the Urban Planter dataset. This dataset consists of 1500 images categorized
into 15 plant species categories, and the authors evaluated various pre-trained CNN
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models to classify the plant species. These models included VGG16, VGG19, Xception,
Inception-ResNet-v2, Inception-v3, DenseNet-201, and MobileNet-v2. In addition, the
authors investigated the effect of different pre-training approaches on the models using
the ImageNet and Oxford102 datasets. The experimental results demonstrated that the
DenseNet-201 model pre-trained on the ImageNet dataset achieved the highest accuracy of
96% on the Urban Planter dataset.

Arun and Viknesh (2022) [16] explored several pre-trained models, namely AlexNet,
EfficientNet B0 to B7, ResNet50, and Xception. These models were trained on a plant
leaf image dataset that consisted of leaf images from eleven unique plant species [18].
The experimental results revealed that EfficientNet-B5 performed better in classifying leaf
images compared to the other pre-trained models, with the highest accuracy of 99.75%.

Beikmohammadi et al. (2022) [17] employed three CNN models for the purpose of
plant classification. The first model, referred to as S-LeafNET, was designed with five CBR
layers, four max pooling layers, and an average pooling layer. S-LeafNET was utilized
to analyze the margins and overall shapes of binary leaf segments. The second model,
W-LeafNET, consisted of seven CBR layers accompanied by seven max pooling layers.
W-LeafNET was employed to analyze the colors, shapes, and venations of the complete leaf
images. As for the third model, P-LeafNET, it involved fine-tuning a MobileNet architecture
and was primarily used to classify leaf patches. The final predictions were obtained by
combining the outputs of all three models through a voting mechanism, resulting in the
creation of SWP-LeafNET. Remarkably, SWP-LeafNET achieved accuracy of 99.67% on the
Flavia dataset and 99.81% on the MalayaKew dataset.

The existing work in plant classification has explored different approaches and tech-
niques to achieve promising classification results. Studies have utilized various methods,
such as CNN models, pre-trained models (e.g., VGG16, AlexNet, DenseNet-201), feature
extraction techniques (e.g., shape, texture, color), dimensionality reduction (e.g., PCA), and
different classifiers (e.g., KNN, decision tree, SVM) for plant species recognition. Despite
the significant progress made in plant classification, there exist research gaps that can be
addressed to further improve the accuracy. One limitation is the focus on using individual
models or approaches, neglecting the potential benefits of combining multiple models or
architectures. By leveraging the strengths of different models, it is possible to enhance the
classification accuracy. Additionally, while the Vision Transformer architecture has shown
outstanding performance in image classification tasks, its potential in plant classification
remains unexplored.

To address these research gaps, this paper proposes an ensemble method that combines
the Vision Transformer, ResNet-50, DenseNet-201, and Xception architectures for plant
species classification. The ensemble aims to leverage the unique characteristics of each
architecture to achieve improved accuracy and robustness. The inclusion of the Vision
Transformer architecture introduces the attention mechanism, which can capture global
dependencies and relationships within plant images. This allows the model to focus
on important regions and patterns, enhancing its understanding of the image content.
The ResNet-50, DenseNet-201, and Xception architectures, known for their strong feature
extraction capabilities, complement the Vision Transformer’s attention-based features.
They can effectively capture low-level and high-level visual features, including intricate
structures and textures within plant images. By combining these four architectures in
an ensemble, the model benefits from their synergistic strengths, potentially leading to
enhanced classification performance.

3. Plant-CNN-ViT

This paper introduces an ensemble model named “Plant-CNN-ViT” for plant leaf
classification. The proposed model combines the capabilities of four pre-trained models,
namely Vision Transformer, ResNet-50, DenseNet-201, and Xception. The architecture of the
Plant-CNN-ViT model is depicted in Figure 1, illustrating the integration of these models
for plant leaf classification. The plant leaf images from the datasets undergo individual
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processing in each model. The activation maps obtained from the final dense layer of
each model are then concatenated and forwarded to the classification layer. This approach
enables the comprehensive utilization of the extracted features from each model, facilitating
the more robust classification of plant leaves.

Figure 1. Architecture of Plant-CNN-ViT.

3.1. Vision Transformer

Transformers have achieved remarkable success in natural language processing tasks,
largely attributed to their attention mechanisms. Building upon this concept, the Vision
Transformer (ViT) [19] has emerged as a powerful architecture for image classification. The
ViT architecture comprises three fundamental components.

• Patch Embedding

The plant image x ∈ RH×W×C is partitioned into fixed-size patches to be transformed

into a sequential representation of flattened 2D patches xp ∈ RN×(P2·C), where H represents
the image height, W denotes the image width, C is the number of channels, and (P, P)
represents the resolution of each image patch. The number of patches N can be calculated as

N =
H ×W

P2 (1)

Before feeding the sequence of patches into the Transformer, a linear projection is applied
to the patches. During this linear projection, the patches are mapped to a D-dimensional vector
space by multiplying them with an embedding matrix E. The output of this linear projection is
referred to as a patch embedding. To enable the model to capture positional information within
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the image, positional embeddings Epos are appended to the patch embeddings. Additionally,
the embedded image patches are concatenated with a learnable class token xclass, which
is essential for the classification process. The initial patch embedding z0, consisting of the
embedded sequence of image patches along with the class token, is computed as follows:

z0 =
[
xclass; x1

pE; x2
pE; · · · ; xN

p E
]
+ Epos, E ∈ R(P2·C)×D, Epos ∈ R(N+1)×D (2)

Here, xn
p represents the n-th image patch, where n ∈ 1, 2, . . . , N. The resulting embed-

ded image patches are then passed to the Transformer encoder.

• Transformer Encoder

The Transformer encoder is composed of L identical encoder blocks, each containing
two sub-layers: a multi-head self-attention (MSA) layer and a fully connected feed-forward
multi-layer perceptron (MLP) layer. In each encoder block, the `-th layer receives the
input sequence from the previous layer z`−1. The input z`−1 undergoes layer normal-
ization, which normalizes the input values across the feature dimension, improving the
training time and performance. Next, the output of the layer normalization is passed to the
MSA layer.

The output of the MSA layer is then layer-normalized again. Finally, the output from
the layer normalization is fed into the MLP layer. Residual connections, also known as
skip connections, are employed in the encoder block to facilitate the flow of information
between non-adjacent layers. These connections allow gradients to propagate through the
network without being affected by non-linear activation functions, addressing the issue of
vanishing gradients. The gradient flow in the `-th encoder layer is defined as

z′` = MSA(LN(z`−1)) + z`−1, ` = 1, . . . , L (3)

z` = MLP(LN(z′`)) + z′`, ` = 1, . . . , L (4)

where LN denotes layer normalization.
The MSA consists of a linear layer, self-attention layer, concatenation layer, and a

final linear layer. In the MSA, multiple self-attention operations are performed in parallel
based on the number of heads k. In each head, the D-dimensional patch embedding z is
multiplied by three weight matrices Uq, Uk, and Uv to obtain the query (q), key (k), and
value (v) matrices. The multiplication operation in each head is defined as

[q, k, v] = [zUq, zUk, zUv], Uq, Uk, Uv ∈ RD×Dh (5)

The obtained matrices q, k, and v are then projected into k subspaces, and the weighted
sum over all values V is calculated. Attention weights are computed in each head based
on the relationship between each pair of elements (i, j), using the dot product of qi and kj.
The resulting dot product indicates the importance of patches in the sequence. The dot
product of q and k is computed, and a softmax function is applied to obtain the weights on
the values, as follows:

A = softmax
(

qkᵀ
√

Dh

)
, A ∈ RN×N (6)

where Dh = D
k .

The self-attention matrices are then concatenated and passed through a single linear
layer with a learnable weight matrix Umsa, resulting in

MSA(z) = [SA1(z); SA2(z); · · · ; SAk(z)]Umsa, Umsa ∈ Rk·Dh×D (7)
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Each head of the MSA captures information from different aspects and positions, allowing
the model to encode intricate features in parallel.

• Classification

The classification of the ViT model is performed by the multi-layer perceptron (MLP),
which consists of two fully connected layers with the Gaussian error linear unit (GeLU)
activation function. The GeLU activation function applies a weight to the inputs based
on their values rather than their signs. Unlike the ReLU function, GeLU can produce
both positive and negative outputs, and it exhibits a higher degree of curvature. This
property allows the GeLU function to better approximate complex functions compared to
the ReLU function.

In the encoder, the last layer selects the first token of the sequence, z0
L, and generates

the image representation r by applying layer normalization. The resulting r is then passed
through a small MLP head, which consists of a single hidden layer with the sigmoid
function, for classification purposes. The image representation of the sequence is obtained
as follows:

r = LN
(

z0
L

)
(8)

3.2. ResNet-50

ResNet-50 [20] introduced the concept of residual connections to address the degrada-
tion problem in deep neural networks. The ResNet-50 architecture consists of 50 layers,
including convolutional layers, pooling layers, fully connected layers, and shortcut con-
nections. The key innovation of ResNet-50 is the incorporation of residual blocks, which
allow the network to learn residual functions rather than directly fitting the desired under-
lying mapping.

Each residual block in ResNet-50 contains two or three convolutional layers with
batch normalization and ReLU activation functions. These layers are followed by a skip
connection that directly connects the input of the residual block to its output. This skip
connection enables the gradient to flow more easily during training, mitigating the problem
of vanishing gradients.

The skip connection can be mathematically represented as follows:

y = F (x, Wi) + x (9)

where x represents the input to the residual block, F (x, Wi) denotes the residual function
implemented by the convolutional layers with weights Wi, and y represents the output of
the residual block.

By introducing these residual connections, ResNet-50 effectively tackles the problem
of information degradation in deep networks, allowing the model to be deeper while
maintaining or improving its performance. The skip connections enable the gradient to
propagate through the network more effectively, enabling the learning of deeper and more
complex features.

3.3. DenseNet-201

DenseNet-201 [21] is characterized by its densely connected layers and efficient infor-
mation flow. The DenseNet-201 architecture is composed of multiple dense blocks, each
consisting of several densely connected convolutional layers. In contrast to traditional
CNN architectures, where information flows sequentially through the layers, DenseNet-201
introduces dense connections that allow for direct connections between layers at different
depths. This dense connectivity promotes feature reuse and facilitates the efficient flow of
information throughout the network.

Each dense block in DenseNet-201 is composed of multiple densely connected layers,
typically consisting of a combination of convolutional layers, batch normalization, and
activation functions. The output of each layer is concatenated with the feature maps from
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all preceding layers within the same dense block. This concatenation operation can be
mathematically represented as

xl = [h0, h1, . . . , hl−1] (10)

where xl represents the output of the l-th layer within the dense block, and hi denotes the
feature maps from the i-th preceding layer.

By densely connecting the layers within each dense block, DenseNet-201 encourages
feature reuse, allowing the network to access a rich set of features at each layer. This
leads to a more compact model and alleviates the vanishing gradient problem, enabling
the efficient training of deep networks. Furthermore, DenseNet-201 incorporates transi-
tion layers between the dense blocks to control the number of feature maps and reduce
the spatial dimensions. These transition layers typically consist of a convolutional layer
followed by a pooling layer, which helps to compress the information and improve the
computational efficiency.

3.4. Xception

Xception [22] is known for its innovative approach to the design of convolutional
layers, which aims to capture more fine-grained spatial information and enhance feature
representation.

The Xception architecture is based on the concept of depth-wise separable convolu-
tions, which decouple the spatial and channel-wise dimensions of the convolution opera-
tion. Unlike traditional convolutional layers that perform convolutions across both spatial
and channel dimensions simultaneously, Xception introduces separate operations for each
dimension, leading to improved efficiency and effectiveness.

The key idea behind depth-wise separable convolutions is to apply spatial convo-
lutions independently for each channel and then combine the results through pointwise
convolutions. Mathematically, the depth-wise separable convolution operation can be
represented as

Y = DW(X) ∗ PW(Y′) (11)

where X represents the input feature maps, DW denotes the depth-wise convolution
operation, PW represents the pointwise convolution operation, Y′ denotes the intermediate
feature maps, and Y represents the output feature maps.

By separating the spatial and channel-wise operations, Xception significantly reduces
the number of parameters and computations required compared to traditional convolu-
tional layers. This enables deeper network architectures with fewer parameters, facilitating
better learning and improved representation capability. In addition to depth-wise separable
convolutions, Xception also incorporates residual connections, inspired by the ResNet
architecture. These connections allow the network to learn residual functions and mitigate
the vanishing gradient problem, enabling the effective training of very deep networks. Fur-
thermore, Xception employs a modular design with repeated sequences of convolutional
blocks followed by pooling layers. This design facilitates the extraction of hierarchical
features at different levels of abstraction, enabling the network to capture both low-level
and high-level visual patterns.

3.5. Fusion of Model Output

After training the models, the next step in the classification process involves combining
the outputs of multiple models. This can be achieved by using a concatenation layer, which
merges the outputs of the individual models into a single tensor. The concatenation
layer concatenates the individual output tensors along a specified axis, resulting in a
merged activation map from all the models. This concatenated representation is then
passed through the rectified linear unit (ReLU) activation function. The ReLU activation
function introduces non-linearity to the output of each unit, allowing the network to learn
complex patterns and improve the expressive power of the model. Finally, the softmax
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activation function is used in the classification layer of Plant-CNN-ViT to obtain normalized
probabilities for each class.

4. Experiments and Discussion

In this section, the datasets used for the performance evaluation are described, along
with the comparison results with existing methods.

4.1. Datasets

The proposed Plant-CNN-ViT is evaluated using four publicly available datasets: the
Flavia dataset, Folio Leaf dataset, Swedish Leaf dataset, and MalayaKew Leaf dataset.
Table 1 provides a summary of the plant leaf datasets.

• Flavia Dataset: The Flavia dataset, created by Wu et al. [23], comprises a total of
32 classes and 1907 images. Each class contains 50 to 77 images. The dataset is
divided into three subsets: training, validation, and testing. The training set consists
of 1323 images (70%), the validation set contains 178 images (10%), and the testing set
consists of 406 images (20%). Figure 2 presents sample images from the Flavia dataset.

• Folio Leaf Dataset: The Folio Leaf dataset, developed by Munisami et al. [24], is the
smallest dataset in this experiment, consisting of 637 images. It encompasses 32 classes,
with each class containing 20 images, except for two classes. The dataset was captured
in the University of Mauritius’s farm and nearby locations. The training set comprises
445 images (70%), the validation set contains 62 images (10%), and the testing set
consists of 130 images (20%). Some sample images from the Folio Leaf dataset are
illustrated in Figure 3.

• Swedish Leaf Dataset: The Swedish Leaf dataset, created by Oskar J. O. Söderkvist [25],
includes 15 species of Swedish trees. Each class consists of 75 images, resulting in a total of
1125 images in this dataset. The dataset is divided into three sets, with 675 images in the
training set (60%), 105 images in the validation set (10%), and 345 images in the testing set
(30%). Figure 4 shows sample images from the Swedish Leaf dataset.

• MalayaKew Leaf Dataset: The MalayaKew Leaf dataset, introduced by Lee et al.
(2015) [8], was collected from the Royal Botanical Gardens, Kew, England. It comprises
two variations, namely D1 and D2, where D1 represents whole leaf images and D2
contains patches extracted from the leaves. For this experiment, D2 is employed,
which includes 43,472 patches from 44 different classes. The training dataset consists
of 34,672 images, while the testing dataset consists of 8800 images. The training dataset
is further divided into two parts, with 80% (27,720 images) allocated to training and
20% (6952 images) for the validation set. Figure 5 showcases sample images from the
MalayaKew Leaf dataset (D2).

Table 1. Summary of plant leaf datasets.

Dataset Number of
Classes

Total Number of
Images Training Validation Testing

Flavia Dataset 32 1907 1323 (70%) 178 (10%) 406 (20%)
Folio Leaf Dataset 32 637 445 (70%) 62 (10%) 130 (20%)

Swedish Leaf Dataset 15 1125 675 (60%) 105 (10%) 345 (30%)
MalayaKew Leaf Dataset 44 43,472 27,620 (80%) 6952 (20%) 8800
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Figure 2. Sample images of the Flavia dataset.

Figure 3. Sample images of the Folio Leaf dataset [24].
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Figure 4. Sample images of the Swedish Leaf dataset [25].

Figure 5. Sample images of the MalayaKew Leaf dataset (D2).
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4.2. Comparison with Existing Methods

This section compares the performance of the proposed Plant-CNN-ViT with the
existing works in plant leaf classification. The experimental setup of Plant-CNN-ViT
involved several important variables and settings. The image size used for the Flavia, Folio
Leaf, and Swedish Leaf datasets was set to 224 × 224 pixels, while, for the MalayaKew Leaf
dataset, a smaller image size of 96 × 96 pixels was used. The batch size, which determines
the number of samples processed in each iteration, was set to 32. The learning rate of the
pre-trained models was set to 0.0001. During the training process, the pre-processed images
were individually fed into the four pre-trained models for feature extraction and training.
The outputs from these models were then combined and inputted into a concatenation
layer. Following this, two fully connected layers were added to the model. The first dense
layer consisted of 50 units and employed the rectified linear unit (ReLU) activation function,
while the unit size of the second dense layer corresponded to the number of classes in the
dataset. The activation function used for the second dense layer was the softmax function.

Table 2 presents a comparison of various methods for plant leaf classification on the
Flavia dataset. Among the existing methods, machine learning techniques such as KNN,
ROM-LBP, and PBPSO with decision tree or SVM showed better performance, surpassing
90% accuracy. However, their performance was still exceeded by the proposed Plant-
CNN-ViT. Notably, deep-learning-based approaches demonstrated notable advancements.
Models such as VGG16, VGG19, and CNN-RNN achieved high accuracy in the range of
99%, demonstrating the potential of convolutional neural networks. The SWP-LeafNet
model further improved the performance, reaching an impressive accuracy score of 99.67%.

Table 2. Comparison of results on Flavia dataset.

Methods Accuracy (%)

HOG with SVM [1] 97.00
C-SIFT with KD tree [1] 98.00
MSER with KD tree [1] 90.00

KNN [2] 98.93
ROM-LBP [3] 98.94

Cosine KNN [4] 95.50
SVM [4] 89.90

Patternnet Neural Network [4] 72.20
PBPSO with Decision Tree [6] 98.58

PBPSO with SVM [6] 96.12
PBPSO with Naive Bayes [6] 92.01

PBPSO with KNN [6] 94.89
Random Forest [7] 84.11

SVM [7] 79.05
Logistic Regression [7] 84.11

KNN [7] 80.10
Naive Bayes [7] 72.25

CNN [9] 87.92
D-Leaf with ANN [10] 94.63
VGG16 and LDA [12] 99.10

VGG16 [12] 99.11
CNN-RNN [12] 99.11

VGG19 with Logistic Regression [13] 96.25
SWP-LeafNet [17] 99.67

ViT 99.75
ResNet-50 98.28

DenseNet-201 99.51
Xception 97.04

Plant-CNN-ViT (proposed) 100.00
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Despite the limited availability of training samples in the Flavia dataset, with only
an average of 41 samples per class, the proposed Plant-CNN-ViT model demonstrated
exceptional performance by achieving 100% classification accuracy. This outstanding
outcome can be attributed to the adoption of an ensemble approach that combines multiple
powerful architectures, harnessing their complementary features and collectively enhancing
the classification performance. The integration of Vision Transformer, ResNet-50, DenseNet-
201, and Xception models synergistically contributes to the model’s capability in capturing
intricate leaf characteristics and accomplishing highly accurate plant leaf classification. The
confusion matrix depicted in Figure 6 provides a visual representation of the classification
performance of the Plant-CNN-ViT model on the Flavia dataset.

Figure 6. Confusion matrix of Plant-CNN-ViT on the Flavia dataset.

Table 3 presents a comparison of different methods for plant leaf classification on
the Folio Leaf dataset, which is characterized by an average of 14 training samples per
class. Consequently, the achieved accuracy of all methods was relatively lower. Traditional
machine learning techniques, including PBPSO with decision tree, SVM, naive Bayes, and
KNN, demonstrated moderate accuracy ranging from 81.30% to 90.02%. The random forest
and logistic regression methods achieved accuracy of 84.04% and 77.65%, respectively.
Encouragingly, deep-learning-based approaches yielded promising results. Notably, the
combination of VGG19 with logistic regression achieved accuracy of 96.53%, showcasing the
effectiveness of deep convolutional neural networks in the context of leaf classification tasks.

The proposed Plant-CNN-ViT, which combines the Vision Transformer, ResNet-50,
DenseNet-201, and Xception models, achieved remarkable accuracy of 100%. This excep-
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tional performance is attributed to the ensemble approach, which effectively harnesses the
diverse strengths of these architectures. The Vision Transformer model captures global
patterns and long-range dependencies, while the ResNet-50, DenseNet-201, and Xcep-
tion models excel in capturing intricate local features. By integrating these models, the
Plant-CNN-ViT ensemble demonstrates a comprehensive understanding of leaf characteris-
tics, resulting in highly accurate classification even with limited dataset availability. The
confusion matrix of Plant-CNN-ViT on the Folio Leaf dataset can be observed in Figure 7.

Figure 7. Confusion matrix of Plant-CNN-ViT on the Folio Leaf dataset.

Table 4 provides a comparison of the different methods for plant leaf classification
on the Swedish Leaf dataset. Despite the Swedish Leaf dataset being considerably small,
with an average of 45 training samples per class but only 15 classes, notable accuracy was
achieved by the different approaches. Among the existing methods, OM-LBP achieved
notable accuracy of 99.46% by effectively capturing local leaf texture information. An-
other method, GLCM with Multiclass-SVM, achieved respectable accuracy of 93.26% by
leveraging gray-level co-occurrence matrix features and support vector machines. The
D-Leaf with ANN approach achieved accuracy of 98.09%, highlighting the potential of
deep-learning-based methods.

However, the proposed Plant-CNN-ViT method stood out by achieving impressive
accuracy of 100%, surpassing all other approaches. This superior performance can be
attributed to several factors. Firstly, the ensemble strategy allows the model to combine
the strengths of multiple architectures, enabling it to capture diverse and complementary
information from the leaf data. The Vision Transformer, ResNet-50, DenseNet-201, and
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Xception models excel in different aspects of feature extraction and representation learning,
leading to a comprehensive understanding of leaf characteristics. Figure 8 provides the
confusion matrix obtained by Plant-CNN-ViT when evaluated on the Swedish Leaf dataset.

Table 3. Comparison of results on Folio Leaf dataset.

Methods Accuracy (%)

PBPSO with Decision Tree [6] 90.02
PBPSO with SVM [6] 88.02

PBPSO with Naive Bayes [6] 81.30
PBPSO with KNN [6] 89.21

Random Forest [7] 84.04
SVM [7] 60.63

Logistic Regression [7] 77.65
KNN [7] 70.21

Naive Bayes [7] 72.34
VGG19 with Logistic Regression [13] 96.53

ViT 96.92
ResNet-50 96.15

DenseNet-201 95.38
Xception 97.69

Plant-CNN-ViT (proposed) 100.00

Table 4. Comparison of results on Swedish Leaf dataset.

Methods Accuracy (%)

OM-LBP [3] 99.46
GLCM with Multiclass-SVM [5] 93.26

Random Forest [7] 84.61
SVM [7] 79.28

Logistic Regression [7] 84.02
KNN [7] 76.03

Naive Bayes [7] 73.07
D-Leaf with ANN [10] 98.09

VGG19 with Logistic Regression [13] 99.41

ViT 98.26
ResNet-50 98.26

DenseNet-201 98.55
Xception 95.07

Plant-CNN-ViT (proposed) 100.00

Table 5 provides a summary of the performance of various methods for plant leaf clas-
sification on the MalayaKew Leaf dataset (D2), which is the largest dataset, with an average
of over 600 training samples per class and a high number of classes. Comparatively, MLP
and SVM achieved high accuracy of 99.50% and 99.30%, respectively, utilizing traditional
machine learning algorithms. The D-Leaf with ANN approach achieved accuracy of 90.38%
by employing an artificial neural network for leaf representation learning. The MSF-CNN
method achieved impressive accuracy of 99.82% by utilizing a multiscale fusion convo-
lutional neural network architecture, which captures discriminative information through
feature fusion. Similarly, the MPF-CNN approach achieved accuracy of 98.71% by opti-
mizing the network parameters and enhancing the feature learning through a multi-path
multi-convolutional neural network. Another method, SWP-LeafNet, achieved accuracy of
99.81% by combining the predictions of multiple deep neural networks.

The challenging nature of the MalayaKew Leaf dataset (D2) is highlighted by the
presence of patches with high similarity, posing additional difficulties for classification.
However, the proposed Plant-CNN-ViT method outperformed all other methods by achiev-
ing accuracy of 99.83%. The deep learning architectures utilized in the Plant-CNN-ViT
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model excel in learning hierarchical representations from complex data. This enables the
model to extract intricate leaf features at multiple levels of abstraction, leading to improved
classification accuracy. The inclusion of the Vision Transformer introduces attention mech-
anisms that enhance the model’s ability to focus on relevant leaf patterns and capture
fine-grained details. Figure 9 visualizes the confusion matrix of the MalayaKew Leaf
dataset obtained using the Plant-CNN-ViT model.

Figure 8. Confusion matrix of Plant-CNN-ViT on the Swedish Leaf dataset.

Table 5. Comparison of results on MalayaKew Leaf dataset.

Methods Accuracy (%)

MLP [8] 99.50
SVM (Linear) [8] 99.30

D-Leaf with ANN [10] 90.38
MSF-CNN [11] 99.82
MPF-CNN [14] 98.71

SWP-LeafNet [17] 99.81

ViT 97.85
ResNet-50 95.67

DenseNet-201 91.98
Xception 90.28

Plant-CNN-ViT (proposed) 99.83
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Figure 9. Confusion matrix of Plant-CNN-ViT on the MalayaKew Leaf dataset (D2).

5. Conclusions

This paper introduces a novel approach to plant leaf classification, termed Plant-
CNN-ViT, which combines the strengths of ViT, ResNet-50, DenseNet-201, and Xception
models. The proposed method leverages the feature maps extracted from each of these
models and concatenates them using a dedicated concatenation layer, followed by a final
classification layer.

The ViT model excels in capturing long-range dependencies in images through self-
attention mechanisms, enabling it to learn global contextual information. ResNet-50, known
for its residual connections, enables effective feature extraction by mitigating the vanishing
gradient problem. DenseNet-201 facilitates feature reuse and gradient flow through dense
connections, leading to enhanced representation learning. Xception, characterized by its
depth-wise separable convolutions, achieves a good balance between model complexity
and computational efficiency. The performance of the proposed Plant-CNN-ViT model
on different leaf datasets is impressive. It achieves accuracy scores of 100.00%, 100.00%,
100.00%, and 99.83% on the Flavia, Swedish, Folio, and MalayaKew datasets, respectively.
This performance demonstrates the effectiveness and robustness of the Plant-CNN-ViT
model in plant leaf classification tasks across various datasets.

One potential limitation of the proposed method is the integration of multiple mod-
els, which introduces increased computational complexity to the classification pipeline.
However, considering the achieved accuracy and the relatively low urgency of plant leaf
classification, this limitation can be deemed tolerable. In addition, the proposed Plant-
CNN-ViT model can be extended to tackle other related tasks in plant biology, such as plant
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disease detection, by leveraging the learned representations and incorporating additional
domain-specific data.
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