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Abstract: As a “living fossil”, ginkgo (Ginkgo biloba L.) has significant ornamental, medicinal, and
timber value. However, the breeding improvement of ginkgo was limited by the lack of enough
excellent germplasms and suitable molecular markers. Here, we characterized numerous poly-
morphic insertion/deletion (InDel) markers using RAD-seq in 12 different ginkgo cultivars. The
total of 279,534 InDels identified were unequally distributed across 12 chromosomes in the ginkgo
genome. Of these, 52.56% (146,919) and 47.44% (132,615) were attributed to insertions and deletions,
respectively. After random selection and validation, 26 pairs of polymorphic primers were used
for molecular diversity analysis in 87 ginkgo cultivars and clones. The average values of observed
heterozygosity and polymorphism information were 0.625 and 0.517, respectively. The results of
population structure analyses were similar to those of neighbor-joining and principal component
analyses, which divided all germplasms into two distinct groups. Moreover, 11 ginkgo core collec-
tions accounted for approximately 12.64% of the total ginkgo germplasms obtained, representing well
the allelic diversity of all original germplasms. Therefore, these InDels can be used for germplasm
management and genetic diversity analyses in ginkgo and the core collections will be used effectively
for ginkgo genetic improvement.

Keywords: Gingko; InDel marker; genetic diversity; core collections

1. Introduction

Ginkgo (Gingko biloba L.) is a well-known living gymnosperm fossil dating back to at
least 200 million years ago [1,2]. Ginkgo has been used as herbal medicine for thousands of
years given its high content of effective pharmacological components including terpenoids
and flavonoids [3]. The standardized extracts (EGb761) of ginkgo leaves containing 24%
flavonol glycosides and 6% terpene lactones, along with ginkgolic acids and other con-
stituents, are considered a drug or dietary supplement in many countries [4,5]. Given its
efficacy and pharmacological activity, ginkgo has been used to treat cardiovascular, cere-
brovascular, and Alzheimer’s diseases [6]. Moreover, in the herbal remedy market, ginkgo
is of great economic value, being a top-selling dietary supplement [5]. Currently, ginkgo
breeding focuses on increasing the production of specific secondary metabolic products
with nutritive or pharmacological functions. Despite collections and cultivations of ginkgo
cultivars and clones, there is considerable synonymy, homonymy, and genetic redundancy
with these germplasms, which severely hinders the progress of ginkgo breeding.

Fruit tree breeding largely depends on excellent and diverse germplasms [7]. The core
germplasm collection includes a subset of germplasms that comprise the highest genetic
diversity and least repeatability of core species. Core germplasm as a useful strategy has
been successfully used to lessen the impact of the redundancy in germplasm resources that
lowers management and conservation effectiveness [8]. Generally, tree germplasms were
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unusually collected from natural populations and underwent long generation times but
with brief domestication history. Therefore, there was a relatively high intrinsic genetic
variability among different wood plants that has a relatively high intrinsic genetic diversity
and core germplasm collections represent 10–45% of the total germplasms obtained from
these species [9,10]. Molecular markers, as powerful and inexpensive tools, have been
widely used for genotypic fingerprinting, analyzing marker-assisted breeding, genetic
diversity, phylogenetic analysis, as well as establishing core germplasm collections [11,12].
In addition, marker-assisted selection has been widely applied to perennial tree breeding,
significantly increasing the selection efficiency [13]. Meanwhile, the genetic diversity of
ginkgo has been investigated by multiple molecular markers such as simple sequence repeat
(SSR) [14], amplified fragment length polymorphism (AFLP) [15], and single nucleotide
polymorphism [16]. However, previous research mainly focused on exploring molecular
diversity and population structure in wide or semi-wide ginkgo germplasms. Due to the
lack of excellent ginkgo cultivars and clones, a reference for further use of germplasm
resources is now unavailable. Currently, core germplasms are used to capture allelic
variations and represent the species diversity in multiple annual crops but only in a few
perennial trees due to the difficulty of wood plant breeding [17,18]. In ginkgo, however,
few reports focused on core collections based on morphological or genetic information. A
comprehensive understanding of the genetic variation of common ginkgo cultivars and
clones is immediately required to promote ginkgo breeding.

Insertion-deletions (InDels) were a common source of variation widely distributed
throughout the genome and successfully identified in diverse annuals or perennial plant
species, such as Arabidopsis [19], rice [20], chickpea [12], common bean [21], poplar [22],
and citrus [23]. InDels arise from errors in sequence replication, insertion of transposable
elements, or unequal crossover events [24]. InDels are suitable for genetic analysis primarily
due to inherent genetic attributes such as codominant inheritance and multi-allelic and
wide genome distribution [12]. With its low cost and high throughput, restriction site-
associated DNA sequencing (RAD-seq) can significantly reduce genome complexity and
identify abundant InDel makers with or without a reference genome [25]. The increased
availability of genome data has allowed the development of a large number of InDels
in many species using RAD-seq [26]. Nevertheless, to our knowledge, just a few InDels
have been used for genetic diversity assessment and molecular marker-assisted breeding
in ginkgo.

Thus, this study aimed to (1) characterize InDel variations in the ginkgo genome
based on the RAD-seq and develop polymorphic InDel markers; (2) analyze the molecular
diversity of different ginkgo cultivars and clones; and (3) screen core germplasms to
promote the process of ginkgo improvement in the future. This research will lay a solid
foundation for the conservation, characterization, and utilization of ginkgo germplasms.

2. Results
2.1. Sequencing Data Quality and Processing

To identify variations in the ginkgo genome, 12 different ginkgo cultivars were selected
for RAD sequencing. A total of 127.37 Gb of clean reads were generated with a size ranging
from 8.08 to 14.61 Gb, with an average of 10.61 Gb per sample (Table S2). In addition, all
samples were free from contamination and our sequencing data revealed a relatively high
sequence Phred quality score (raw Q30 > 90%, clean Q30 > 90%), with a stable GC content
of 40.60–54.17%, lower than the AT content (Table S2). Sequence data showed an average
genome coverage of 1.7% and an average mapping rate of 87.46% (Table S2). Nearly all
reads could be mapped to 12 different chromosomes in the ginkgo genome (Figure S1).

2.2. InDel Characteristics in the Ginkgo Genome

In this study, we focused on small, predominant InDel fragments (2–10 bp) to avoid
the high InDel error rates associated with longer InDels [27]. A total of 279,534 InDel
markers were identified by comparative analyses of raw sequences of 12 different ginkgo
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cultivars with strict filter parameters and the distribution of InDels in each species was
different (Figure 1). There were 27.30 InDels per megabase and all InDels were unequally
distributed across 12 chromosomes in the ginkgo genome (Figure 2A). Of these, 52.56%
(146,919) and 47.44% (132,615) were attributed to insertions and deletions, respectively
(Figure 2B). All identified InDels were contributed by homozygosity (143,146, 51.21%) and
heterozygosity (136,388, 48.79%) and these two typical InDels took up similar proportions
in 12 different ginkgo cultivars. Except for two cultivars (Gb11 and Gb32; Table S1), where
homologous InDels accounted for a relatively low proportion (less than 45%), the rest had
more homologous InDels (Figure S2). Two bases in InDel loci accounted for 35.10% (98,117)
of the total InDels and were found to be the majority of InDel loci. The number of InDel
loci significantly decreased with increasing in InDel length. Accordingly, the length of
InDel loci showed a highly significant and negative correlation with the number of InDel
loci (r = −0.045, p = 0.008). Over 2.08% (5814) of the total number of InDels was found in
coding regions, followed by 21.91% (61,245) in introns and 76.01% (212,475) in intergenic
regions. Unique InDels across these 12 different ginkgo cultivars were also identified
and the range of the number of InDels varied significantly. There was a total of 99,097
(35.45%) unique InDels across these 12 different cultivars. Among individual cultivars, the
maximum number of InDels was founded in ginkgo (Gb70; Table S1) with 15,728 (15.87%),
whereas the minimum one was founded in ginkgo (Gb32; Table S1) with 3378 (3.41%).
Interestingly, there were 452 insertions and 284 deletions that appeared simultaneously in
at least 6 of the 12 different ginkgo cultivars (Table S3).
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Figure 2. The distribution and characteristics of Indels in ginkgo. The patterns of Indel markers
distributed on each chromosome in ginkgo (A); Comparative distribution of the insertions and
deletions among 12 ginkgo cultivars (B).

2.3. Experimental Validation of InDel Polymorphisms

The site-specific or single-copy primer pairs covering InDels were considered po-
tentially useful InDels. A total of 100 pairs of InDel primers distributed unevenly on
12 chromosomes on all cultivars were selected randomly to validate polymorphisms. These
markers were used for amplification in the same 12 ginkgo cultivars used for RAD-seq. As
a result, 26 dimorphic InDel markers produced the expected band size and showed poly-
morphisms, regarded as the best-scored dimorphic markers for further analyses (Figure 3
and Table S4). Furtherly, based on the annotation analysis, 80.76% (21/26) of the devel-
oped polymorphic InDels appeared in coding sequence regions with potential functions
associated to protein kinases or hormone metabolism in ginkgo (Table S4).
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deletion markers were in green and black font, respectively.

2.4. Genetic Diversity and Population Structure Analysis

There were 107 alleles detected by 26 polymorphic InDel markers, with an average of
4.115 alleles per site, among which 6 alleles were detected at the IND57 locus. The alleles
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of 12 different loci (IND67, IND81, IND218, IND288, IND295, IND347, IND511, IND548,
IND584, IND625, IND647, and IND718) were the same, having 4 alleles. Across the 26 loci,
the number of Ne varied from 2.094 to 5.810, with an average of 3.612. The average of He
and Ho were 0.499 and 0.625, respectively. The average PIC was 0.517, suggesting most
InDel loci showed a relatively high level of polymorphism. Accordingly, the InDel locus
(IND57) had the highest genetic diversity, whereas the InDel locus (IND114) had the lowest.
All these genetic parameters are summarized in Table 1.

Table 1. Genetic diversity analysis of ginkgo cultivars and clones based on the 26 pairs of InDel
polymorphic markers.

Locus (Na) (Ne) (I) (Ho) (He) (PIC)

IND57 6 5.810 0.630 0.899 0.743 0.681
IND67 4 3.633 0.535 0.528 0.359 0.520
IND81 4 3.333 0.452 0.682 0.418 0.483

IND111 3 2.094 0.824 0.651 0.522 0.448
IND114 5 3.306 0.385 0.568 0.328 0.410
IND146 5 4.772 0.641 0.727 0.630 0.651
IND218 4 3.566 0.541 0.605 0.457 0.474
IND249 3 2.925 0.673 0.506 0.480 0.416
IND266 3 2.644 0.533 0.538 0.492 0.450
IND288 4 3.648 0.551 0.503 0.371 0.520
IND295 4 3.517 0.524 0.636 0.541 0.483
IND327 3 2.724 0.591 0.524 0.405 0.396
IND347 4 3.277 0.353 0.618 0.407 0.527
IND407 5 4.154 0.451 0.718 0.631 0.620
IND459 5 4.196 0.492 0.761 0.660 0.645
IND469 5 4.621 0.556 0.620 0.572 0.617
IND494 5 4.386 0.394 0.505 0.448 0.485
IND504 3 2.538 0.612 0.810 0.606 0.538
IND511 4 3.601 0.543 0.585 0.462 0.483
IND548 4 3.630 0.527 0.503 0.453 0.471
IND584 4 3.293 0.457 0.667 0.525 0.536
IND625 4 3.659 0.579 0.628 0.492 0.542
IND639 5 4.488 0.454 0.710 0.694 0.583
IND647 4 3.853 0.652 0.678 0.460 0.555
IND718 4 3.332 0.442 0.488 0.349 0.423
IND729 3 2.909 0.668 0.595 0.475 0.472
Mean 4.115 3.612 0.541 0.625 0.499 0.517

The population structure analysis illustrated that the K value increased continuously
with increasing LnP(D) value. The ∆K analysis revealed a sharp ∆K peak at K = 2, indicating
two genetically distinct sub-populations (Figure S3). Based on the membership coefficient
criterion (0.75), each ginkgo germplasm was assigned to a certain population. There were
47 and 40 ginkgo germplasms grouped in cluster I and cluster II, respectively (Figure 4A).
Some germplasms belonged to four major groups (“Changzi”, “Fozhi”, “Zhongzi”, and
“Yuanzi”) and showed mixed distribution in cluster I and II. Interestingly, the ginkgo
germplasms belonging to the “Yuanzi” group were grouped together, showing a distinct
clustering rule from others. Moreover, ginkgo germplasms with the same geographical
origins appeared in the same cluster. For example, three genotypes (Gb46, Gb47, and
Gb47; Table S1) and three genotypes (Gb58, Gb59, and Gb60; Table S1) were selected
from Zheng’an county (Guizhou, China) and Changxin county (Zhejiang, China), respec-
tively, grouped in cluster I. Similarly, five genotypes (Gb72, Gb73, Gb74, Gb75, and Gb76;
Table S1) from Anlu city (Hubei, China) and four genotypes (Gb26, Gb27, Gb28, and Gb29;
Table S1) from Pizhou city (Jiangsu, China) by selective breeding were grouped in cluster II.
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To better characterize the genetic variation among different ginkgo germplasms, we
performed PCoA analysis based on Nei’s unbiased genetic distance (Figure 4B). The scatter
plot generated from PCoA clustered the 87 genotypes of ginkgo into two groups based on
similarity indices. The first, second, and third coordinates accounted for 21.51%, 10.75%,
and 7.96% variation, respectively, together accounting for a total cumulative variation of
40.22%. We further explored the genetic differentiation and relationships among different
ginkgo germplasms based on the NJ tree (Figure 4C). Similar to the PCoA and STRUCTURE
analysis, the NJ dendrogram confirmed the existence of two clusters, congruent with the
model-based population structure and PCoA analysis.

2.5. Establishment and Evaluation of the Ginkgo Core Collections

A core collection of ginkgo germplasm was constructed to reflect all the genetic
diversity discovered in this study considering that the smallest core collections could
represent the whole diversity detected based on 26 InDel markers (Figure 5A). Based on
the maximizing strategy, the number of sampled alleles increased fast with the expanding
sample size. However, for a sample size of 11 individuals, the curve gradually levelled
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out, and there was no obvious change in the number of alleles when the sampling quantity
increased (Figure 5A). At last, a total of 11 germplasms (12.64% of all ginkgo germplasms)
that captured 100% of the detected diversity were set as core collections (Table S5). Furtherly,
there were no significant differences in diversity indices, including Na, Ne, I, Ho, He, and
PIC, between ginkgo germplasms based on pairwise comparisons between core collections
and original germplasms using the Mann–Whitney U tests (Table S6), indicating that the
core collections were representative of the original germplasms.
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ginkgo germplasms based on the strategy of maximizing allelic diversity (A). Principle coordinates
analysis (PCoA) of constructed core collections and the original germplasms (B).

To further test if the core ginkgo collections represented the genetic diversity of
all germplasms, PCoA analysis was performed to show the distribution of the original
germplasms (87 individuals) and core collections (11 individuals) based on genetic diversity
data (Figure 5B and Table S5). Most individuals from the core collections and original
germplasms coincided in the middle part of the scatter plot with only a few exceptions,
showing that the core collections were a good representation of the original germplasms
(Figure 5B).

3. Discussion

To promote ginkgo breeding, it was necessary to conduct a comprehensive survey of
the genetic diversity of ginkgo cultivars and clones at the genome-wide scale with InDel
markers. Along with the advance of sequencing technology, InDels were widely used
in genetic and genomic research for many advantages including high transferability and
polymorphism, low cost of development, simple and efficient experimental procedure, and
abundant distribution across the genome [28]. As a cost-effective sequencing technique,
RAD-seq could simplify the complexity of the genome for InDel discovery and genotyping,
which has been successfully used to mine InDel markers in different wood trees, such as
poplar [22], tea [29], and citrus [23]. In this study, we identified a total of 279,534 InDel loci
based on RAD-seq, which varied among different chromosomes, confirming that it was
suitable for genome-wide marker development. In the ginkgo genome, increasing InDel
size decreased the number of InDels detected. In addition, the most prevalent type was
single-nucleotide Indels, similar to chickpea [12], soybean [30], and sesame [31]. Our InDel
frequency was 27.30 per Mb (279.534 Indels in 10 Gb), lower than that obtained in other
species [12,21]. RAD-seq is a restriction enzyme-guided sequencing approach that only
targets part of the genome. In addition, to reduce the error rate of InDel identification, we
focused on InDel markers with a length of no more than 10 bp. The false positive error rates
would be increased with the length of InDels, which was susceptible to being influenced by
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read lengths, genome coverage and alignment methods [27]. In tomato, longer InDels do
not always lead to more polymorphism as the polymorphism rate dropped to 43.3% when
the InDel size was greater than 30 bp [32]. Therefore, these differences in the exploration of
InDel variants may be due to the sequencing technique and bioinformatic parameters [26].

To better utilize ginkgo germplasms, the molecular diversity should be well-understood.
However, previous genetic studies concentrated on wild ginkgo germplasms instead of
cultivars and clones. The average PIC value of the 26 InDel markers was 0.517 in ginkgo
cultivars and clones, lower than that of the SSR markers (0.781) used to identify genetic
variation in ginkgo from ancient populations [14,16]. In our research, the average PIC
value was more than 0.5 and the maximum value was 0.681, indicating that the developed
InDels hold great potential for evaluating the genetic variation among different ginkgo
germplasms. Generally, markers with PIC values of 0.5 or higher were extremely useful
in distinguishing the polymorphic rate of a marker at a specific locus [33]. A total of
107 observed alleles were obtained in 87 accessions using 26 pairs of primers, with an
average He value of 0.499. The genetic diversity index (H) values in ginkgo based on
RAPD [34] and AFLP [15] were 0.191 and 0.3159, respectively. Based on our results, we
determined a moderate level of genetic diversity in ginkgo. However, the average He value
in our study was lower than that previously obtained with SSR markers (He = 0.808) [14].
Similarly, ginkgo had a lower level of genetic diversity than other gymnosperms evaluated
using SSR markers such as Taxus chinensis (He = 0.261) [35] or Abies fabri (He = 0.739) [36],
but similar to Cupressus funebris (He = 0.520) [37]. Indel markers are less polymorphic
than codominant markers, such as SSR markers. Moreover, in our study, the samples were
cultivars and clones, which completely differ from ginkgo germplasms mainly originating
from wild populations. Generally, wild species preferred to own novel or specific alleles
and diverse resources contributed to maintaining more sustainable biodiversity, but culti-
vated species or clones undergo natural and artificial selections within a limited number of
superior genotypes [38]. Species domestication resulting from superior genotypes instead
of undesirable genotypes leads to a reduction in inferior alleles over generations, which
has a profound impact on the genes and genotypic frequencies of a population [39].

Ginkgo seeds are visually classified according to nut morphology and size and usually
classified into four major cultivation groups, including “Changzi”, “Fozhi”, “Zhongzi”,
and “Yuanzi” [40]. To our knowledge, morphological characteristics are extremely suscepti-
ble to environmental factors. Unfortunately, our cluster results were not consistent with
traditional classifications based on seed morphological characteristics [40]. In other words,
we found all ginkgo cultivars and clones showed an irregular distribution according to
the structure, PCoA, and NJ analyses. There was an obvious controversy on the taxonomy
of ginkgo when we compared the results from phenotypic characteristics and genotype
differences. More ginkgo cultivars and clones were cultivated by artificial breeding and
grafting in recent years for their vital economic and pharmacological value, which in-
creased the difficulty to explore the accurate and efficient identification of different ginkgo
germplasms with a limited number of markers. Therefore, the integration of phenotypic
and genotypic information with more individuals belonging to a specific unit and more
molecular markers covering the whole genome will avoid making misleading associations
between phenotypes and genotypes.

Molecular marker-assisted breeding brings great challenges, opportunities, and prospects
for conventional breeding [41]. Greater attention has been placed on core collections, which
consisted of a minimal number of samples that represented the greatest genetic diversity.
In our study, 11 ginkgo germplasms represented the core collections of the four major
cultivation groups. Interestingly, the subset with a 12.64% sampling ratio yielded the
largest allelic retention in ginkgo. Similar studies have reported allelic retention values of
99.5% and 95.74% in jujube [42] and pear [43], with sampling ratios of 15.6% and 24.2%,
respectively. According to previous research, 5–20% of the sample size could encompass
the genetic diversity of the entire collection [8]. Moreover, species diversity would be
lost if they were used solely to determine the core collections with only limited molecular
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data or few germplasms without enough important morphological characteristics [18].
Therefore, for the ginkgo core collections, it was crucial to characterize valuable traits, such
as the content of flavonoids and terpene lactones, and explore the genetic diversity with
more germplasms.

4. Materials and Methods
4.1. Plant Materials

All ginkgo germplasms used in this study were collected from the national ginkgo
germplasm nursery of Pizhou (Pizhou City, Jiangsu, China) and the ginkgo germplasm
resource nursery of Nanjing Forestry University (Nanjing City, Jiangsu, China), regarded as
the largest centers of ginkgo germplasm collection, preservation, and utilization in China.
The ginkgo cultivars and clones in these two nurseries have special agronomic traits, such
as accumulating a high level of secondary metabolites (particularly for flavonoids and
terpenoids) or varying widely in seed size. Nearly all were selected from wide or semi-wide
germplasms and bred through grafting for more than 20 years. Young leaves of 87 different
ginkgo cultivars and clones were collected from two nurseries and subsequently stored
at −80 ◦C until further DNA extraction. Detailed information on each germplasm was
summarized in Table S1.

4.2. Library Preparation, and Sequencing

According to the traditional classification criteria, ginkgo seeds were usually classified
into four cultivation groups based on the morphology and size of nut, including “Changzi”,
“Fozhi”, “Zhongzi”, and “Yuanzi” [40]. To better reveal the genetic diversity of ginkgo
germplasms and develop polymorphic InDel markers, a total of 12 ginkgo cultivars from
four cultivation groups (Table S1) were selected for genome sequencing. RAD sequencing
library preparation was processed according to previous research [44]. Briefly, library
preparation involved DNA digestion with EcoRI, P1 adapter/barcode ligation, DNA pu-
rification, size selection, P2 adapter/barcode ligation, and RAD tag amplification. Nearly
10 Gb raw data per sample were generated using paired-end sequencing with a read length
of 150 bp based on the Illunina HiSeq 2500 platform (Majorbio Pharm Technology Co.,
Ltd., Shanghai, China). All raw sequence data were submitted to the National Center for
Biotechnology Information database (BioProject ID PRJNA978007).

4.3. InDel Detection and Annotation

The raw data from 12 ginkgo germplasms were processed with Stacks v 1.44 [45]. After
raw sequence reads were demultiplexed, only reads with a clear EcoRI cutting site and
the correct barcode were retained for further analysis. Adapter sequences and low-quality
reads, including reads that have more than 10% nucleotides with a quality value lower than
30 (equals 0.1% sequencing error), were discarded. After trimming, we used BWA MEM
software [46] to map reads to the ginkgo genome with default mapping parameters [16].
The HaplotypeCaller program in GATK v 3.8.0 [47] was used to call InDel variants across
all samples simultaneously. Following the GATK best practices pipeline, variables were
filtered using common hard filtering settings (QD < 2.0, FS > 200, ReadPosRankSum < −20,
InbreedingCoef < −0.5, SQR > 10, maxIndelSize < 10). Lastly, variants with ≥70% call
rate and sequence depth over 5 folds were retained. The distribution of InDels density in
the ginkgo genomes of different ginkgo cultivars was investigated by generating density
plots using rMVP [48] and shinyCircos v2.0 [49]. Using the ginkgo genome as a reference,
InDel annotation was carried out using snpEff software [50]. InDels were categorized into
intergenic regions, introns, or exons.

4.4. Primer Design and Experiment Validation

Site-specific or single-copy primers were defined as those mapping to unique locations
in the ginkgo genome, while primers that matched to numerous positions were disregarded.
The annealing temperature was set to 55–60 ◦C and the length of primers to 18–22 bp. Over-
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all, 100 pairs of InDel primers evenly distributed on 12 different chromosomes in the ginkgo
genome were randomly selected to validate InDel primer accuracy and polymorphism
levels in 12 ginkgo cultivars selected for RAD-seq. Only primers that effectively amplified
and showed polymorphisms were chosen to evaluate the genetic diversity of all ginkgo
germplasms. The polymorphic primers obtained after verification were mapped to chromo-
somes with MapChart software [51] to show their physical locations in the ginkgo genome.
The InDel locus was amplified by PCR and all reactions were conducted in a 20 µL reaction
mixture containing 50 ng genomic DNA, 10 µL 2 × Taq PCR Green MIX (Vazyme Biotech-
nology, Nanjing, China) and 0.1 µM of each primer pair. The PCR amplification procedures
were as previously described and PCR products were separated using 6% polyacrylamide
gel electrophoresis [52].

4.5. Genetic Diversity and Population Structure Analysis

A total of 26 InDel markers evenly distributed in the ginkgo genome showing 2–10 bp
in silico fragment length polymorphism were selected to screen for polymorphism in
87 ginkgo cultivars and clones. The binary matrix generated with molecular data was
converted to the required data format according to the instructions in GenAlEx v 6.5 [53].
The following genetic parameters—effective number of alleles (Ne), observed number
of alleles (Na), expected heterozygosity (He), observed heterozygosity (Ho), Shannon’s
information index (I), and the polymorphism information content (PIC)—were calculated
using PowerMarker v 3.25 [54] and GenAlEx v 6.5.

The population structure of 87 ginkgo germplasms was performed using the STRUC-
TURE v 3.0 [55] based on the individual-based Bayesian clustering method. To determine
the optimal K value for different genotypes, 10 separate runs of a continuous series of K val-
ues from 1 to 10 were conducted. We performed 10 independent runs with 100,000 Markov
chain Monte Carlo iterations after a burn-in of 100,000 steps to verify the consistency
of the results. The optimal K was determined on STRUCTURE HARVESTER [56]. We
processed these data to obtain the final results using DISTRUCT v 1.1 [57] and CLUMPP
v 1.1.2 [58]. To further infer individual variation, the Nei’s genetic distance among all
ginkgo germplasms were calculated in GenAlEx v 6.5, as an input for clustering analysis
using principal component analysis (PCoA) and neighbor-joining (NJ) tree analysis with
1000 bootstrap replicates implemented in GenAlEx v 6.5 and MEGA v 7.0 [59], respectively.
Bootstrap values more than 50 were listed on the dendrogram.

4.6. Core Germplasms Identification and Molecular Diversity Analysis

Based on the genetic diversity data, core collections were constructed using Core
Finder v 1.1 [60], which is based on an M strategy with a Las Vegas-style random algorithm.
During the building of the core collections, the strategy did not involve setting a sampling
ratio because an appropriate sample ratio was automatically established. The genetic
parameters (Na, Ne, Ho, He, I, and PIC) of core collections were calculated using GenAlEx
v 6.5 and PowerMarker v 3.25. The PCoA analysis was conducted with GenAlEx v 6.5 to
evaluate differences between the original germplasms and core collections.

5. Conclusions

To our knowledge, this is the first genome-wide investigation of InDels in ginkgo
using RAD-seq that resulted in the development of a collection of useful polymorphic
InDels. Of these, 26 InDel markers could divide the 87 ginkgo cultivars and clones into
two obvious groups by population structure, PCoA, and NJ analyses. The ginkgo cultivars
showed a moderate level of genetic diversity. A total of 11 core germplasms accounted for
12.64% of the initial germplasms successfully identified, which could be used for future
breeding programs. The present findings will not only provide a useful resource for better
germplasm utilization, facilitating the genetic improvement of ginkgo via marker-assisted
breeding, but will also serve as a database for identification and traceability purposes.
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ginkgo cultivars and clones in the study; Table S2: Summary of the sequencing quality of DNA
libraries of 12 different ginkgo cultivars; Table S3: The information about insertions and deletions
appeared simultaneously in at least six of 12 different ginkgo cultivars; Table S4: Detailed information
of 26 pairs of InDel primers; Table S5: The description of individuals retained for the core ginkgo
collections; Table S6: Mann-Whitney U Test (two-tailed) for the genetic diversity parameters of the
core collections and the original germplasms.
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