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Nearly three decades have passed since the first commercial cultivation of genetically
engineered (GE) crops. Even prior to commercialization, there were studies testing the
biosafety and ecological risks of the release of GE plants. While we have learned much, and
the National Academies of Sciences, Engineering, and Medicine Committee on genetically
engineered crops found no substantiated evidence showing foods from GE crops were less
safe than foods from non-GE crops [1], concerns and controversial views remain. The vast
majority of GE crops cultivated by area are annual row crops that are either resistant to
herbicide or produce pesticide or of stacked traits of both herbicide resistance and pesticide
production. We have gained much experience growing these crops [1]. Although people
are optimistic about the environmental and economic benefits conferred by the adoption of
GE crops, there have been some predicted risks that have been actualized. For example,
secondary insect pests have replaced the niche of the primary pests after the wide adoption
of resistant plants that target and suppress populations of primary insect pests, e.g., the
study on GE cotton by Lu et al. [2]. Genetic contamination either by pollen or seed flow in
native maize varieties of Mexico has been confirmed [3].

Genes isolated from Bacillus thuringiensis (Bt) are widely used in the first generation of
GE crops and to express various insecticidal Bt proteins in host plants to protect them from
insect damage. When insect pests evolved resistance to Bt proteins, new Bt proteins were
produced in host plants for pest control [4]. Studies have been performed to evaluate the
efficacy of those new Bt strains, or a combination of them, against insect pests. There are
two research papers in this Special Issue, titled “Biosafety and Ecological Assessment of
Genetically Engineered and Edited Crops”, addressing this concern [5,6].

Once GE plants are released into the environment, they interact with various factors,
including those involving food chains and competition at multiple levels (gene, individual,
population, community, and ecosystem) through trophic connections, nutrient cycles and
energy flows, as well as biogeochemical cycles, in contact with abiotic/biotic elements of
soils, water, and above- and underground ecosystems in the receiving environment [7–13].
For instance, GE plants as primary producers play important roles in the receiving environ-
ment to convert light energy or chemical energy into organic compounds, which are used
as food for other organisms in natural ecosystems. Herbivorous insect pests feed on GE
plants and are then preyed upon and/or parasitized by predators and/or parasitoids, e.g.,
the work of Wei et al. [14] and Guan et al. [15]. When the plants die and decay, decomposers
convert those decaying materials (and other wastes, including dead animals) into inorganic
materials in soils that support a new cycle commenced by the growth of new primary
producers, such as plants. Plant compounds could also be exuded from the roots into
soils and may affect soil organisms [16]. The engineered genes and their products (such
as proteins) in GE plants could accumulate at or transfer through different trophic levels
and actively participate in natural processes (cycles) in the receiving ecosystems and could
cause unintended effects to the exposed organisms (Figure 1).
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Figure 1. An example of the interaction of genetically engineered (GE) plants with organisms in
released environment.

This Special Issue includes four research papers on the impacts of Bt crops on the arthro-
pod community [15,17–19] and two research reports on the effects on soil microbiome [20,21]
in the lab and in the field. Generally, no overall significant change was observed in the
field studies as the environmental conditions and plant growth stage were likely stronger
effects than the engineered status of crop cultivars. Two review papers [16,22] analyzed and
discussed the current progress of the impacts of GE crops on soil microbiota.

Similarly, a feeding study in this Special Issue showed the absence of adverse effects
of a drought-tolerant GE wheat line to experimental rats compared to its non-GE parent
crop [23]. “Omics” technologies are proposed to quantify the differences between GE and
non-GE foods to inform regulation strategies [24]. A proteomic case study presented in this
Special Issue suggested that no shared change occurred between the two GE oilseed rape
(Brassica napus) lines transformed by the Bt Cry1Ac gene [25]. However, in GE corn, the
transformation of the Bt Cry1Ab gene may affect plant defenses with plant hormones [26],
which could suggest that a potential change in metabolomics could be important [24].
Another important aspect of the biosafety concern for the release of GE crops is transgene
escape through pollen or seed flow, which may increase or reduce the fitness of the gene
flow recipient plants [27]. One review paper included in this Special Issue proposed and
discussed potential approaches to bioconfine transgene flow [28].

While controversial debates on those adverse impacts of the first generation of GE
plants using transgenic technology continue and some of those concerns remain unresolved,
new breeding tools such as gene editing have been developed and widely employed in
scientific research for quantity and quality/nutrition improvement in agriculture and food
production [29]. Regarding the fast development of gene-edited crops, this Special Issue
also published a review paper on the regulation perspectives of these novel crops [29].
In some countries, this kind of breeding tool may be exempt from the sorts of regulation
imposed on GE crops when genetic manipulation does not involve or result in the presence
of transgenes. Although there are still concerns regarding the release of gene-edited crops,
it is unfortunate that no experimental studies have been reported yet on the biosafety and
ecological consequences of the edited crops. However, we believe that the commercially
adopted edited crops can benefit from lessons learned from the first generation of engi-
neered crops. Holistic approaches may be helpful to evaluate both the benefits and risks of
those GE crops in the view of sustainable agriculture.
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In summary, the papers collected in this Special Issue addressed some crucial aspects
of the interaction of GE crops with organisms in the environment. Although there is no
report on the experimental evaluation of the application of novel breeding tools, such as
gene editing, previous works with genetically engineered crops may provide valuable
experiences for new gene-edited plants.
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