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Abstract: The VILLIN (VLN) protein is an important regulator of the actin cytoskeleton, which
orchestrates many developmental processes and participates in various biotic and abiotic responses
in plants. Although the VLN gene family and their potential functions have been analyzed in several
plants, knowledge of VLN genes in soybeans and legumes remains rather limited. In this study, a
total of 35 VLNs were characterized from soybean and five related legumes. Combining with the
VLN sequences from other nine land plants, we categorized the VLN gene family into three groups
according to phylogenetic relationships. Further detailed analysis of the soybean VLNs indicated
that the ten GmVLNs were distributed on 10 of the 20 chromosomes, and their gene structures and
protein motifs showed high group specificities. The expression pattern analysis suggested that most
GmVLNs are widely expressed in various tissues, but three members have a very high level in seeds.
Moreover, we observed that the cis−elements enriched in the promoters of GmVLNs are mainly
related to abiotic stresses, hormone signals, and developmental processes. The largest number of
cis−elements were associated with light responses, and two GmVLNs, GmVLN5a, and GmVLN5b
were significantly increased under the long light condition. This study not only provides some basic
information about the VLN gene family but also provides a good reference for further characterizing
the diverse functions of VLN genes in soybeans.

Keywords: soybean; VILLIN family; genome−wide analysis; expression profiling; abiotic stresses

1. Introduction

The actin cytoskeleton is a complex and dynamic network in plant cells that partici-
pates in many processes such as vesicle trafficking, cell division and expansion, organelle
movement, cytoplasmic streaming, stomata opening, and signal transduction [1–8]. The
dynamics and organization of the plant actin cytoskeleton are regulated by different actin
binding proteins (ABPs), such as the multifunctional gelsolin/villin/fragmin superfam-
ily, the nucleating proteins Formin and Arp2/3, monomer binding protein profilin, and
the severing and depolymerizing proteins ADF and cofilin [5,9–11]. These ABPs protein
regulate the assembly and disassembly of monomeric actin (G−actin) and filamentous
actin (F−actin) at the temporal and spatial levels. Functional analysis of several related
ABPs has been reported in Arabidopsis. The loss−of−function of Actin−Depolymerizing
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Factor 5 (AtADF5) decreased the tolerance to drought stress and delayed stomata closure by
causing abnormal actin dynamics [12]. Knockdown of FORMIN3 (AtFH3) by RNAi reduced
the abundance of actin cables and thus influenced pollen tube growth [13]. Additionally,
Fimbrin, as one of the famous members of ABPs, also regulates the actin dynamic. In the
atfim4/atfim5 double mutant, the morphology and length of root hairs were significantly
changed [14]. These studies suggested that ABPs play an important role during plant
development by regulating actin dynamics.

VLN belongs to the villin/gelsolin/fragmin ABP superfamily and is involved in
regulating both the stability and dynamics of actin [15–18]. The regulatory function of VLN
proteins is closely related to their structure. Firstly, VLN proteins have six gelsolin home
domains (G1−G6) at the N−terminus and a headpiece domain (VHP) at the C−terminus,
both of which contain two conserved actin−binding domains (ABDs). ABD1, spanning the
G1 and G2, can bind to two adjacent actin monomers in the filament, while ABD2, located in
the VHP, functions to bundle the filaments [5,19,20]. Secondly, Ca2+ binding sites are located
in all VLN proteins and vary in type and number in different VLNs, but the ability of VLNs
to bind to F−actin can be either dependent on or independent of the Ca2+/calmodulin.
These characteristics permit VLN proteins to regulate the organization and dynamics of
actin filaments to form a higher−order structure [9,21–23]. In plants, the first functionally
characterized VLN homologs were known from the Lily (Lilium brownie) and named
115−ABP and 135−ABP, which can bind to the F−actin [24–26]. Further studies revealed
that 135−ABP plays crucial regulatory roles in the F−actin arrangement of pollen tubes and
the cytoplasmic architecture and actin filament organization of root hair [21,25]. In species
including Arabidopsis, Rice (Oryza sativa), and Cotton (Gossypium hirsutum), VLNs were
also found to regulate the actin cytoskeletons by nucleating, severing, binding, capping,
and depolymerizing [23,27,28]. There are five VLNs in both Arabidopsis and Rice, and
fourteen in Cotton; these genes are widely expressed in a variety of tissues [27,29–31], but
only some of them have been functionally characterized. In Arabidopsis, loss−of−function
of VLN1 and VLN4 caused longer and shorter root hairs, respectively, indicating they
regulate the root hair growth in different ways [32]; VLN2 and VLN3 have been reported
to regulate the normal development and organ morphogenesis of plants [33,34]; and VLN5
has an important role in the pollen tube growth [35]. In other species, it is known that
loss−of−function mutations of the rice OsVLN2 gene lead to dwarfing and organ curling
phenotypes [28], while overexpression of cotton GhVLN4 in Arabidopsis increased the length
of cells in the root, root hairs, and pollen tubes [27]. These studies suggest that VLN plays
an important role in plant development.

To date, there are few reports about VLN proteins in legume species, but some other
ABPs and related proteins participating in cytoskeleton dynamics have been reported,
such as ADFs, ARPs, and Formin protein [36–38]. In Lotus japonicus, both Nap1 and Pir1
have been demonstrated to regulate the actin cytoskeleton rearrangement of root. The
organization of the actin cytoskeleton was disturbed in nap1 and pir1 mutants, causing
abnormal rhizobial infection and nitrogen fixation [39]. SCARN, belonging to a novel
class of SCAR proteins, plays a critical role in the reorganization of the microfilament
cytoskeleton by directly binding and activating the ARP2/3 complex. When the SCARN
gene is mutated, the formation of infection threads is reduced, affecting the nitrogen
fixation ability of root nodules [40]. Additionally, in M. truncatula, the actin cytoskeleton
coordinates numerous cellular processes in the development of nitrogen−fixing nodules
has been reported, and the SYMBIOTIC FORMIN 1 (SYFO1) mutation can abolish the
infection chambers and infection threads; silencing the MtARP2/3 also causes defects in
symbiote development and disrupts the nitrogen−fixing units [36,38,41]. Based on these
studies, the actin cytoskeleton is necessary for regulating numerous cellular processes
during the development of legume plants. VLNs, as a major class of ABP proteins, may
also have important roles in these processes in legumes. In soybean, GmVLN4 was reported
to be involved in stress responses, strengthening the resistance to drought, but it is unclear
whether GmVLN4 affects the stability and development of the soybean microfilament
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cytoskeleton [42]. Soybean is a leading source of feeding, vegetable protein, and oil around
the world [43–45], and understanding the regulatory process of VLN−related cytoskeleton
is important for soybean breeding.

In this study, we systematically investigated the characteristics of GmVLNs by per-
forming a phylogenetic tree, amino acid sequence, three−dimensional prediction, gene
structure, and conserved domain analysis. Protein interaction network prediction indicates
that GmVLN is involved in cytoskeletal regulation and multiple signal response pathways.
Ten VLN genes were discovered in the soybean genome, and chromosome localization
analysis showed that they were distributed on 10 chromosomes of soybean. The expression
pattern analysis suggested that most GmVLNs are widely expressed in different tissues,
with a higher transcription level in the pod and the axillary bud. It is worth noting that
GmVLN2b, GmVLN5a, and GmVLN5b are highly expressed in developing seeds; this clue
points out that they possibly take part in seed development regulation. Moreover, the
cis−element analysis revealed that the promoters of GmVLNs were enriched with different
cis−elements that are associated with plant development, MYB binding, hormones, stress,
and light responses. The expression level of GmVLN5a and GmVLN5b was significantly
increased under the long light condition, indicating that these two genes may play an
important role in light responses in soybean. In short, this study provided some systematic
and basis information for further dissecting the gene function of GmVLNs for cytoskele-
tal dynamics regulation and identifying the promising locus among VLN subgroups for
molecular breeding of soybeans in the future.

2. Results
2.1. Isolation and Characterization of the GmVLNs

In order to identify the VLN in soybean, the protein sequences corresponding to the
gelsolin domain (PFAM family PF00626) and the VHP domain (PFAM family PF02209)
profile from Pfam website are used as query sequences, which contain six homology gelsolin
domains and a C−terminate headpiece domain (Figure 1A). We used the query sequence
to perform the further blast with the soybean protein database by Several Sequences to
a Big Database of TBtools, and an NCBI Batch CD−search is used to remove redundant
sequences. Finally, the ten soybean VLN were identified. We named soybean VLN proteins
as GmVLN1a to GmVLN5b based on their homology with VLN proteins in Arabidopsis,
and the encoding genes for these GmVLN proteins were given the names GmVLN1a,
GmVLN1b, GmVLN2a, GmVLN2b, GmVLN3a, GmVLN3b, GmVLN4a, GmVLN4b, GmVLN5a,
and GmVLN5b, respectively (Figure 1B,C).
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Figure 1. Isolation and characterization of the GmVLNs. (A) The VLN harboring the conserved
gelsolin domain (PF00626) and headpiece domain (PF02209). (B) The physical and chemical properties
of GmVLNs. (C) Evolutionary relationship between VLN proteins in Arabidopsis and G.max.

In order to better comprehend the GmVLNs, the physical−chemical properties were
analyzed, such as the length of the amino acid, the protein isoelectric point (pl), the molecu-
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lar weight (MV), and the subcellular localization. We found that the protein of GmVLNs
varies from 908 to 984 amino acids in length. The estimated molecular mass ranged from
101.9 to 108.6 kDa, and GmVLN2b had the longest length and the highest molecular mass.
The predicted isoelectric points of the GmVLNs varied from 5.52 to 5.94; all of them had
isoelectric points greater than 5. Furthermore, a preliminary prediction of their subcellular
locations revealed that they were all in the cytoplasm. There is an interesting finding:
the two paralogous genes of GmVLNs, such as GmVLN1a and GmVLN1b, have the same
protein length but differing molecular weights and isoelectric points. (Figure 1B). Moreover,
using the VLN protein sequence of Arabidopsis as a reference sequence, multiple sequence
linearization analysis was performed on soybean, and it was found that all ten GmVLNs
possess six typical gelsolin domains and one headpiece domain (Figure 2). The above
findings suggest that the similarities and differences in protein structure and character-
istics among GmVLNs may confer conservation and diversification of gene function in
soybean GmVLNs.
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Figure 2. Amino acid alignment of GmVLN proteins. The amino acid alignment of GmVLNs revealed
that there are a series of conserved domains. All sequences corresponding to conserved domains are
marked with lines of different colors.

2.2. Phylogenetic Analysis of GmVLNs and Their Orthologs from Other Representative Plant Species

In order to elucidate the evolutionary relationship between the GmVLNs and their
orthologs from other representative plant species, we download the protein database of
lower plants and higher plants, monocotyledons and dicotyledons, and several widely
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studied legume species to perform phylogenetic analysis; the detailed information of
all these species is listed in supplementary Table S1. To acquire candidate VLN protein
sequences, the query sequences were used to blast the protein database of every species
with TBtools. Candidate protein sequences contain the conserved gelsolin domain, and the
headpiece domain was used to perform phylogenetic analysis. The phylogenetic analysis
results showed that 70 VLNs were classified into three VLN subclasses (VLNI to VLNIII),
VLNI contained 14 VLN genes, both VLNII and VLNIII each contained 28 VLN genes,
and the number of VLN varies among different species (Figure 3A,B). However, we have
not screened any ortholog sequence of VLNs in lower plants such as Porphyra umbilicalis,
Chlamydomonas reinhardtii, and Ostreococcus lucimarinus, which indicates that the VLN
may have been present after plant terrestrialization during the evolution. Among the six
legume species, except for soybeans, which contain ten VLNs, other legume species all
possess five VLNs. This result echoes the fact that soybeans are ancient tetraploids, while
other leguminous crops are diploids. The results of evolutionary analysis indicate that
VLN diverged during the evolution of different species, but was very conservative in the
evolution of the legume.
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Figure 3. Phylogenetic analysis of GmVLNs and their orthologs from other model plant species.
(A) Representative species evolution tree. (B) The phylogenetic tree−related information for all
70 VLN genes of Medicago truncatula (Mt, 5 members), Pisum sativum (Ps, 5 members), Lotus japonicas
(Lj, 5 members), Vigna radiate (Vr, 5 members), Vigna unguiculata (Vu, 5 members), Glycine max (Gm,
10 members), Prunus persica (Pp, 5 members), Vitis vinifera (Vv, 3 members), Arabidopsis thaliana
(At, 5 members), Oryza sativa (Os, 5 members), Zea mays (Zm, 10 members), Aquilegia coerulea (Ac,
3 members), Amborella trichopoda (Amt, 3 members), Selaginella moellendorffii (Sm, 2 members), and
Marchantia polymorpha (Mp, 1 members) by MEGA7.0.

2.3. Collinearity and Chromosomal Location Analysis of GmVLNs

To further explain soybean VLNs underlying function mechanism, the genomes of
A. thaliana, M. truncatula, and G. max were used to do the collinearity analysis. There are
fifteen orthologous pairs of VLNs between the A. thaliana and G. max genomes. Several VLN
genes in soybean have synteny with a same VLN gene in A. thaliana, which implies that
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these GmVLNs may duplicate from the same ancestor during the evolution. Additionally,
there are nine orthologous pairs of VLNs between the G. max and M. truncatula genomes.
The VLN genes of soybean are located on 02 and 03 chromosomes without any collinearity
with the M. truncatula genome, which suggests that there is no orthologous (Figure 4A).
According to these results, it suggests that the VLNs were relatively conserved between
A. thaliana and M. truncatula, and G. max during the evolution of higher plants. In the
chromosomal location analysis, we found the ten VLN genes were unevenly scattered on
the 10 of 20 chromosomes in soybean (Figure 4B). In chromosomes 09, 17, 18, 02, 03, 08, and
19, the VLNs are located on the terminal of chromosomes. However, on chromosomes 10,
13, and 15 the VLNs’ locations are near the centromere of the chromosomes.
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Figure 4. Collinearity and chromosomal location analysis of GmVLNs. (A) The model plants
A. thaliana and M. truncatula were chosen to produce collinearity with G. max; each color line repre-
sents one or multiple collinearities. The gray lines in the background indicate the collinear blocks
between soybean and other species, and the highlighted lines represent the collinear blocks of VLN
genes. (B) The physical locations of GmVLNs on chromosomes. The scale on the left indicated the
genomic length in megabases (Mb).

2.4. Protein Interaction Network Construction and Three−Dimentional Prediction

In order to further understand the role of the GmVLN family in plant development,
we conducted protein interaction network prediction and three−dimensional structure
prediction for all GmVLN proteins. It was found that most of the interactions with
GmVLN proteins are cytoskeletal proteins, such as GLYMA02G29160, GLYMA13G41060,
GLYMA15G04360, GLYMA19G26631, and GLYMA04G39380. This result is consistent with
the conclusion reported in other studies that VLN regulates cytoskeletal composition by
interacting with Actin−related proteins. In addition, GmVLN proteins also interact with
development, stress response, hormones, and MYB proteins, indicating that GmVLN is
involved in multiple signal response pathways. Detailed interaction protein information
is exemplified in the supplementary Tables S6 and S7. In addition to the abovemen-
tioned proteins, there are many others that have not been identified for their protein
families, including GLYMA05G30150, GLYMA12G31290, SHAT1−5, GLYMA09G06320,
GLYMA08G42110, GLYMA13G11980, and GLYMA08G10550, preliminary functional pre-
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dictions indicate that these proteins also participate in important physiological processes
within the cell (Figure 5A).
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Figure 5. Protein interaction network construct and three−dimensional prediction of GmVLNs pro-
teins. (A) Protein−protein interaction network constructed by STRING, where each node represents
a protein and each edge represents an interaction, and the red line points to the soybean VLN direct
interaction protein. (B) Three−dimensional prediction of GmVLNs proteins by the SWISS MODEL.

In the 3D structure prediction analysis, three parameters, GMQE, coverage, and
seq−identity, are combined for template screening. The larger these parameters of the
template, the more accurate the prediction will be, and the selection process will select
the one with the highest score. In our study, all GMQE values were greater than 0.75,
ranging from 0.77 to 0.81; the coverage rate is 100%; and the seq−identity is between
81.77% and 100%, all of which have high reliability. In the same subgroup, the prediction
templates used are the same, consistent with their evolutionary conservatism mentioned
above, indicating that the prediction template we have chosen is reliable. The results
indicate that GmVLN proteins in the same subgroup are highly similar in spatial structure,
such as GmVLN1a and GmVLN1b, GmVLN2a to GmVLN3b, and GmVLN4a to GmVLN5b.
There are significant differences in the three−dimensional structure of different subgroups.
These structural similarities and differences may be related to their functions (Figure 5B),
and the parameters and usage models for predicting the three−dimensional structure of
proteins are presented in supplementary Table S8.
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2.5. Gene Structure Analysis of GmVLNs and the Conserved Motif and Domain Analysis of GmVLNs

To further gain insight into the structural properties of the GmVLNs and their encoding
proteins, we performed the gene structure, conserved motif, and domain analysis of
GmVLNs (Figure 6). We found that the pattern of gene structure, conserved motif, and
domain was remarkably similar among members of the same group, but only slightly
different between groups. The gene of GmVLNs of VLNI and VLNIII contains 22 exons and
21 introns, and VLNII contain 23 exons and 22 introns (Figure 6B). This result is consistent
with the evolutionary result of the GmVLN, where VLNI and VLNIII are on the same
branch, while VLNII are alone in the same branch. Moreover, the lengths of the GmVLN
sequences, exons, and introns are different. In general, in the same group with similar
structural features, it indicates that gene function and the phylogenetic relationship among
the GmVLN genes are highly conserved.
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Figure 6. Gene structure of GmVLNs, motif, and conservative domain analysis of GmVLNs.
(A) Intraspecific evolutionary tree of soybean. (B) The gene structure of GmVLNs, the pink boxes,
blue boxes, and black lines represent the exon, UTR, and intron, respectively. (C) The motif com-
position of GmVLNs, with conserved motifs in the soybean VLN proteins indicated by colored
boxes. (D) Conserved domain of the GmVLNs, with colored boxes representing the conserved
protein domain.

The motif and domain of the GmVLN proteins were also studied to better understand
their conservation and diversification. A total of 20 conserved motifs were named Motifs
1−20. We found that in the same group, the type and number of GmVLN are highly similar,
and different subgroups of the motif number of GmVLN vary from 17 to 20 (Figure 6C).
GmVLN1a and GmVLN1b have 17 motifs, GmVLN2a to GmVLN3b have 19 motifs, and
GmVLN4a to GmVLN5b have 20 motifs. Furthermore, we discovered that the conserved
domain of GmVLN is highly conserved, with all of them having six geisolin domains and a
headpiece domain (VHP), and the VHP location is similar in the same group (Figure 6D).
All of these structural analyses indicate that GmVLNs and their encoding proteins have
synergistic structures, and the difference in these structures may explain the function
difference. This will provide the structural basis for their gene function conservation.

2.6. Expression Patterns of GmVLNs in Different Organs in Soybean

To principally investigate the probable gene function of GmVLNs in various soybean
tissues, the tissue−specific expression data of GmVLNs were first downloaded from the
Legume Information System database, which includes the transcriptional profiles of the
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shoot apical meristem, flower, green pods, leaves, nodule, root tip, and root (Figure 7A).
This result revealed that most of the GmVLNs were constructively expressed in all tis-
sues, and the paralogous genes showed similar expression patterns, such as GmVLN1a
and GmVLN1b, GmVLN2a and GmVLN2b, GmVLN3a and GmVLN3b, GmVLN4a and
GmVLN4b, and GmVLN5a and GmVLN5b, and there are only small differences in expres-
sion between them. Both GmVLN3a and GmVLN3b had high expression levels in various
tissues, too, especially in the shoot apical meristem and root tip. Subsequently, RT−qPCR
was performed to further analyze the expression pattern of these genes in different organs
of soybean (Figure 7B–K). The results are consistent with the above results, and paralogous
gene expression patterns are similar. A special discovery we found was that GmVLN2b
(Figure 7E), GmVLN5a (Figure 7J), and GmVLN5b (Figure 7K) were highly expressed in
the seed, which indicated that these genes may play an important function during seed
development. These results indicate that the GmVLN function in the same branch may be
very conservative, and different branches may have different functions.
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Figure 7. Expression patterns of GmVLNs in different tissues and organs of soybean. (A) The
heat−map of transcriptional level of GmVLNs, the data come from the microarray, and the heat map
was constructed with TBtools. (B–K) The tissues expressional pattern of all GmVLNs was detected
by RT−qPCR. Error bar means ± SD, Asterisks indicate a significant difference between root−other
tissues (t−test, 0.01 < * p < 0.05, 0.001 < ** p < 0.01, 0.0001 < *** p < 0.001, **** p < 0.0001, red asterisks
represent a significant decrease, while black asterisks represent a significant increase).
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2.7. Promoter Cis−Element Analysis and Expression Pattern of GmVLNs under the Different
Lighting Periods

In order to further investigate the possible biological function of GmVLNs, we screened
and analyzed the cis−elements in the predicted promoter region of the GmVLNs. The
3.5 kb sequence upstream of the start code of the GmVLNs was used as the promoter
region for the analysis. The cis−elements screening of GmVLNs was performed via the
Plant−CARE online website, and the heat map was constructed by TBtools (Figure 8A).
We found that these identified cis−elements in the promoter region of GmVLNs are related
to biological processes such as auxin, salicylic acid, JA, gibberellin, abscisic acid responses,
MYB binding, light, stress, wound, and other responses. Among these cis-elements,
the light response elements are the most pronounced. Elements of the TGA−element,
TCA−element, CGTCA−motif, GARE−motif, ABRE, TATC−box, TGACG−motif, P−box,
AE−box, chs−CMA2a, and TC−rich repeats were predicted to be involved in the hormone
signaling pathways. MYB binding site elements include MBS, MBSI, CCAAT−box, and
MRE. The stress response (here, stress pointed out the light, drought, low temperature, de-
fense, and stress anaerobic induction) elements include LTR, ATC−motif, TCT−motif, Sp1,
G−box, CAG−motif, GATA−motif, Box4, AE−box, TCCC−motif, AT1−motif, TC−rich
repeats, GT1−motif, chs−CMA1a, GA−motif, ACE, LAMP, Gap−box, and GTGGC−motif.
In addition to the abovementioned cis−elements, it also contains the cis−elements related
to endosperm expression, meristem expression, metabolism regulation, and circadian con-
trol elements. Cis−element analysis showed that the GmVLNs may involve various signal
pathways and biological processes. Until now, there is no clear evidence to verify these
speculations, so it will be promising to analyze the gene function of GmVLNs, which is
related to external and internal environment signal responses.
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Figure 8. Promoter cis−element analysis and expression pattern of GmVLNs under the different light-
ing periods. (A) The 3.5 kb upstream region of the start code was used to do the cis−element analysis
with Plant−CARE. Hormone−responsive elements, stress−responsive elements, light−responsive el-
ements, and other related elements are present in different colors. (B) The one−month−old seedlings
of soybean, which are under 7 or 21 h light growth conditions. (C) The transcriptional level of GmVLN
genes under different light period conditions.
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To identify whether light responsive elements are important for GmVLN gene expres-
sion, seedlings were grown under different light length conditions. We found that the
plants under short light conditions were taller and more slender compared with the plants
growing under long light conditions, which were shorter and more robust (Figure 8B).
The results showed that the seedling architecture may be associated with a light response
element (Figure 8B). Additionly, RT−qPCR was performed to detect the GmVLNs gene ex-
pression level. The results showed that the transcriptional level of GmVLN5a and GmVLN5b
was significantly higher for the seedlings that were grown under long light period condi-
tions when compared to the seedlings that were grown under short light period conditions
(Figure 8C). These results indicated that the screened light response−related cis−elements
on the promoters of GmVLN5a and GmVLN5b may really be responsible for the transcrip-
tional differences, and the GmVLN5a and GmVLN5b genes may play an important role in
the light response of soybean. Further analysis was required to further uncover the gene
function of these promising genes in the future.

3. Discussion

The VLN gene family is an important family possessing actin−binding domain and
involved in different aspects of plant growth and development. It is a group of regula-
tors that mediate actin dynamics by polymerizing and depolymerizing actin filament [46].
Under different states of development and environmental stress, VLN can rearrange fil-
ament via severing and bundling actin filament [6,33,34,47]. However, before our study,
there had been no genome−wide, in−depth study of the VLN gene family reported in the
soybean, which is an important and widespread legume crop. In this study, we showed
that 10 GmVLNs of soybean were grouped into three subgroups and their gene structures
and protein motifs showed high group specificities. The genome-wide identification and
characterization of the soybean VLN gene family is an essential step for further exploring
the function of this gene family in depth.

There are some studies about the roles of VLN genes in regulating plant architecture,
which is related to the final yield of crops. In Oryza sativa, OsVLN2 participates in regulating
plant height and grain plumpness. Loss−of−function of OsVLN2 led to a semi−dwarfed
phenotype, which was caused by the shorter first and second internodes when compared
with WT. In addition, the osvln2 mutant also showed twisted leaf sheaths and caved grains,
which resulted in a decreased seed setting rate and 1000−grain weight [28]. All VLN
genes have been reported to regulate the different tissues development by controlling
the organization of actin filaments in A. thaliana [6,18,33–35]. AtVLN2 and AtVLN3 are
functional redundancies to regulate the plant architecture. The vln2/vln3 double mutant
produces a twisted phenotype in root, stem, leaf, pod, and inflorescences [33,34]. For crops,
the twisted organs may be detrimental for plant photosynthesis, biomass, and harvest.
In the intercropping system between maize and soybean, proper plant type is important
for increasing soybean yield [48]. Furthermore, AtVLN5 was reported to regulate pollen
germination and pollen tube growth during the reproductive stage [35]. According to the
above studies, it appeared that VLNs play a prominent role in crop yield regulation, which
will help us decipher the genetic basis for the improvement of crops. In this study, the
phylogenetic analysis showed that all VLNs are clustered into three subgroups. In subgroup
I, Arabidopsis and all diploid legumes contain one member, while the ancient tetraploid
soybean contains two members; in subgroup II and III, Arabidopsis and all diploid legumes
contain two members, and the soybean has four members. This indicates that the gene
number of VLNs is rather constant in legumes and Arabidopsis, suggesting that there may be
some conservation of function in this gene family. Our research shows that the 10 GmVLNs
of soybean are widely expressed in different tissues and organs, indicating important roles
in regulating various aspects of soybean growth and development. It is worth noting that
the three genes GmVLN2b, GmVLN5a, and GmVLN5b are highly expressed in seeds, and
they may be involved in the regulation of seed traits, which are potential factors for soybean
yield regulation. To cultivate high−quality and high-yield soybean breeds, we need to do



Plants 2023, 12, 2101 12 of 17

more exploration to uncover the function of the VLN gene in plant architecture and crop
yield in the future.

In addition, strengthening the stress response is considered an important way for im-
proving crop agronomic traits and increasing yield, such as resistance to high temperatures,
cold, salt, drought, and the hormone response. The technologies of quantitative trait loci
(QTL), mapping, CRISPR, and high−throughput were used to research the gene of soybean
stress response to cultivate high−quality soybeans [49,50]. Many members of the VLN gene
family have been shown to be involved in various stress responses. Loss−of−function of
VLN1 in Arabidopsis showed better growth compared with Col−0 under the osmotic stress.
However, ectopic overexpression of GhVLN4 in Arabidopsis exhibited higher resistance to
salt and drought than the wild−type plants [27]. In our study, the cis−element analysis sug-
gested that GmVLNs may be involved in hormone, light, drought, and defense responses
(Figure 8). To examine this hypothesis, this study conducted an analysis of the impact
of light stress on soybean growth and development. It was found that light treatment
induced dwarfing, accompanied by significant changes in the expression of GmVLN5a and
GmVLN5b. Given that both of these genes and the cotton GhVLN4 belong to the subgroup
III, it is reasonable to believe that these genes are evolutionarily homologous and may be
involved not only in light stress responses but also in other stress responses. Although
other VLN genes show no differences in expression levels in response to light stress, they
may be necessary for other stress responses or developmental processes, which needs to be
further tested in future research.

4. Materials and Methods
4.1. Identification and Data Collection of Soybean VLN Family

To identify all the possible VLN in soybean, we downloaded soybean protein data
from the Phytozome website (Phytozome info: G.max Wm82.a4.v1 (doe.gov) accessed on
8 July 2022) [51]. Firstly, searching for PF00626 or PF02209 on the Pfam website resulted
in a large number of domain organization models. A model consisting of 6 gelsolins and
1 VHP was selected, with a UniProt of A0A7R5KBD8 and a protein sequence downloaded
as a reference sequence (Pfam is now hosted by InterPro (xfam.org) accessed on 25 July
2022) [52]. According to the reference sequence to identify all members of the soybean
VLN in Several Sequences to a Big File of TBtools, the number of threads was set to 2,
the E−value was set to 1 × 10−5, the number of hits was set to 500, and the number of
alignments was set to 250, and a total of 12 protein sequence IDs have been extracted that
may be highly homologous to the reference sequence. Protein sequences of 12 protein IDs
were then extracted with Fasta Extract of TBtools. To strengthen the data reliability, all
conserved domains of soybean VLN were predicted by the NCBI batch CD search (Welcome
to NCBI Batch CD-search nih.gov) [53], the expected value threshold was set at 0.01, and
the sequence that contained the gelsolin domain and the headpiece domain was selected
and the other was deleted. These selected sequences were conformed again through the
SMART website (SMART: Main page (embl-heidelberg.de) accessed on 5 August 2022) [54].

4.2. Basic Physicochemical Properties, Amino Acid Alignment Analysis, and 3D Structure
Prediction of Soybean VLN

To further understand the characteristics of soybean VLN, the physical and chemical
parameters of soybean VLN protein were calculated by the online software ExPASY (ExPASy-
ProtParam tool) [55], including molecular weight (MW), isoelectric point (Pl), and amino acid
numbers. The amino acid alignment and sub−location were also analyzed in DNAMAN
Version 10 and Plant-mPLoc server (sjtu.edu.cn (accessed on 10 August 2022)) [56], and
this was performed separately. The three−dimensional structure of GmVLNs proteins
was predicted using the online tool ExPaSy SWISS−MODEL (SWISS-MODEL Interactive
Workspace (expasy.org) accessed on 25 March 2023).

When predicting the three−dimensional structure of proteins, global model quality
evaluation (GMQE), coverage, and sequence identity (Seq Identity) are important screening

doe.gov
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parameters. The GMQE is between 0 and 1, and the closer it is to 1, the better the quality
of the model used. The coverage rate represents the degree to which the target protein
sequence is covered by the template protein sequence; the seq identity represents the
alignment and matching degree of amino acids; and the higher the identity, the more
reliable the model, and the more accurate the predicted structure.

4.3. Phylogenetic, Collinearity, Chromosomal Location Analysis of GmVLNs Gene

We downloaded 18 species’ protein data from different websites to understand the
evolutionary relationship among representative species, screening candidate protein se-
quences from different species based on the methods and parameters in Section 4.1. The
sequence was selected that contained the conserved gelsolin domain and headpiece domain
when using NCBI batch CD−search and the SMART website to predict. In this study, the
phylogenetic tree was constructed with the maximum likelihood (ML) method in MEGA.
A phylogenetic tree visualized result was shown on MEGA7.0. We also downloaded
the whole genome data of G. max, Arabidopsis thaliana, and M. truncatula, and genome
sequences were extracted according to transcript IDs by using the Fasta Extract of TBtools.
The collinearity relationship between two species is established with a One−Step MCScanx
of TBtools: the CPU for BlastP was set to 2, the E−value was set to 1 × 10−10, and the
number of blast hits was set to 5. We then merged the links, gff, and multiple synteny files
using Text Merge for MCScanx of TBtools. Finally, the triple species collinearity relationship
was constructed with Multiple Synteny Plot [57]. In addition, the chromosomal location
analysis of the GmVLNs gene was also complete through Gene Location Visualize from
GTF/GFF of TBtools.

4.4. Gene Structure, Conserved Motif and Conserved Domain Analysis

The soybean VLN family protein gene sequence was downloaded from the Phytozome
websites (Phytozome info: G. max Wm82. a4. v1 (doe.gov) accessed on 8 July 2022) [51]
and extracted using Fasta Extract of TBtools, the gene sequence was used to construct the
gene structure, and the protein sequence was used for motif and domain analysis. Based
on the online website NCBI batch, CD search prediction conserved domain (Welcome to
NCBI Batch CD-search (nih.gov) accessed on 28 July 2022); MEME (MEME-Submission
form (meme-suite.org) accessed on 28 July 2022) [58] prediction conserved motif; and
the evolutionary tree within the species were established by One Step Build a ML Tree
of TBtools using protein sequences. Finally, all these results were visualized in the Gene
Structure View of TBtools.

4.5. Protein Interaction Network Diagram Construction and Cis-Element Analysis

To understand plant VLNs function, we based model plants on the soybean protein
database and constructed protein interaction networks using an online tool (STRING: functional
protein association networks (string-db.org) accessed on 9 May 2023) (confidence limit is 0.4),
and all scores for protein interactions were listed in supplementary Tables S6 and S7. The
soybean VLNs cis−element prediction was by Plant CARE (Search for cis−acting regulatory
elements (ugent.be) accessed on 28 July 2022), and selected a 3.5 kb sequence upstream of
the ATG, which was analyzed, and the result was visualized via HeatMap user interface
of TBtools.

4.6. Different Lighting Period Treatment and Expression Pattern Analysis in Different Tissues

For quantitative PCR expression analysis, the cultivar Williams 82 was used in this
study. Soybean seeds were soil−grown in greenhouses under the following controlled con-
ditions: 24 ◦C day/20 ◦C night temperature; growth in 21 h light/3 h dark or 7 h light/17 h
dark photoperiod 30% to 50% relative humidity; and 150 µE/m2/s light intensity. The
seedlings were randomly divided into two groups for different lighting periods of 30 days.
The shoots of treated samples were collected 30 days after the beginning of the treatment
and processed for analysis of the expression patterns of different VLN genes. Each tray was
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replicated three times. Seedlings were grown under the same temperature and humidity,
and normal photoperiod (14 h light/10 h dark) conditions were used for tissue specific
expression analysis. Tissues of the root, stem, leaf, flower, pod, SAM, seed, and axillary
bud were collected and used for relative quantitative analysis.

4.7. RNA Extraction and qRT PCR Detection

Sheng Gong’s UNIQ−10 column: Trizol total RNA extraction kit was used to extract
RNA, using Nano−Drop 2000 UV spectrophotometer to detect RNA extract quality; Maibo
cDNA synthesis kit was used to reverse transcription RNA to obtain cDNA; and the amount
of reverse transcription RNA was 2 micrograms, diluted 5× as the qRT−PCR reaction
template. qRT−PCR primer design on the NCBI primer blast web page and the primers
used in the experiment are shown in Supplementary Table S3. Maibo fast qPCR Master Mix
kit was used, where the reaction system is 10 µL and the PCR reaction program has a 95 ◦C
pre−denaturation for 10 min, and then 40 cycles including 95 ◦C denaturation for 15 s and
60 ◦C annealing for 1 min were performed. The instrument used was Applied Biosystems
7500, and the experimental results were processed by the 2−∆∆Ct method [59], and every
experiment was repeated three times in an independent sample. Significant differences in
mean values at different sampling times were determined by Tukey’s pairwise comparison
tests, as indicated by different letters in the figures. The graphical representation of the
experimental findings was produced using Graphpad.

During RNA extraction, the tissues of roots, stems, leaves, and SAM were all taken
from normally growing seedlings at 30 days old, axillary bud tissues from plants at 45 days
old, flowers from plants at 60 days old, fruit pods from plants at 70 days old, and seeds from
plants at 85 days old. In the qRT experiment, the reference gene ACT11(Glyma.18g290800)
was used.

5. Conclusions

In this study, the phylogeny and characteristics of the VLN gene in soybean were explored
from different aspects. All 10 GmVLN genes were divided into three groups. The genes in the
same group shared similar evolutionary characteristics, such as three−dimensional structure,
gene structure, motifs, and conserved domains, which implies that they may function
similarly. Additionally, the GmVLN gene was evenly distributed on 10 chromosomes
in the soybean genome, and the amino acid alignment is highly similar. Collinearity
analysis indicates that the GmVLNs gene may have similar functions to the VLN genes
in model species Arabidopsis and Medicago. Analysis of expression patterns in different
tissues shows that GmVLN is widely expressed in different tissues, and different GmVLN
members may have functional overlap. The protein interaction network and cis−element
analysis shows that GmVLNs may involve different physiological processes, including
hormones, stress, and development signal responses. These findings from our work will
serve as a solid foundation for future function studies of the VLNs gene in soybeans or
other species of legumes.
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System); Table S10: In q−RT detection, the Ct value of soybean VLN gene in various tissue.
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